1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stddef.h>
6 #include <stdint.h>
7
8 #include <vector>
9
10 #include "base/bind.h"
11 #include "base/bind_helpers.h"
12 #include "base/compiler_specific.h"
13 #include "base/logging.h"
14 #include "base/macros.h"
15 #include "base/memory/ptr_util.h"
16 #include "base/memory/ref_counted.h"
17 #include "base/message_loop/message_loop.h"
18 #include "base/message_loop/message_loop_test.h"
19 #include "base/pending_task.h"
20 #include "base/posix/eintr_wrapper.h"
21 #include "base/run_loop.h"
22 #include "base/single_thread_task_runner.h"
23 #include "base/synchronization/waitable_event.h"
24 #include "base/test/test_simple_task_runner.h"
25 #include "base/threading/platform_thread.h"
26 #include "base/threading/thread.h"
27 #include "base/threading/thread_task_runner_handle.h"
28 #include "build/build_config.h"
29 #include "testing/gtest/include/gtest/gtest.h"
30
31 #if defined(OS_ANDROID)
32 #include "base/android/jni_android.h"
33 #include "base/test/android/java_handler_thread_for_testing.h"
34 #endif
35
36 #if defined(OS_WIN)
37 #include "base/message_loop/message_pump_win.h"
38 #include "base/process/memory.h"
39 #include "base/strings/string16.h"
40 #include "base/win/current_module.h"
41 #include "base/win/scoped_handle.h"
42 #endif
43
44 namespace base {
45
46 // TODO(darin): Platform-specific MessageLoop tests should be grouped together
47 // to avoid chopping this file up with so many #ifdefs.
48
49 namespace {
50
TypeDefaultMessagePumpFactory()51 std::unique_ptr<MessagePump> TypeDefaultMessagePumpFactory() {
52 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_DEFAULT);
53 }
54
TypeIOMessagePumpFactory()55 std::unique_ptr<MessagePump> TypeIOMessagePumpFactory() {
56 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_IO);
57 }
58
TypeUIMessagePumpFactory()59 std::unique_ptr<MessagePump> TypeUIMessagePumpFactory() {
60 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_UI);
61 }
62
63 class Foo : public RefCounted<Foo> {
64 public:
Foo()65 Foo() : test_count_(0) {
66 }
67
Test1ConstRef(const std::string & a)68 void Test1ConstRef(const std::string& a) {
69 ++test_count_;
70 result_.append(a);
71 }
72
test_count() const73 int test_count() const { return test_count_; }
result() const74 const std::string& result() const { return result_; }
75
76 private:
77 friend class RefCounted<Foo>;
78
~Foo()79 ~Foo() {}
80
81 int test_count_;
82 std::string result_;
83 };
84
85 #if defined(OS_ANDROID)
AbortMessagePump()86 void AbortMessagePump() {
87 JNIEnv* env = base::android::AttachCurrentThread();
88 jclass exception = env->FindClass(
89 "org/chromium/base/TestSystemMessageHandler$TestException");
90
91 env->ThrowNew(exception,
92 "This is a test exception that should be caught in "
93 "TestSystemMessageHandler.handleMessage");
94 static_cast<base::MessageLoopForUI*>(base::MessageLoop::current())->Abort();
95 }
96
RunTest_AbortDontRunMoreTasks(bool delayed,bool init_java_first)97 void RunTest_AbortDontRunMoreTasks(bool delayed, bool init_java_first) {
98 WaitableEvent test_done_event(WaitableEvent::ResetPolicy::MANUAL,
99 WaitableEvent::InitialState::NOT_SIGNALED);
100
101 std::unique_ptr<android::JavaHandlerThread> java_thread;
102 if (init_java_first) {
103 java_thread =
104 android::JavaHandlerThreadForTesting::CreateJavaFirst(&test_done_event);
105 } else {
106 java_thread = android::JavaHandlerThreadForTesting::Create(
107 "JavaHandlerThreadForTesting from AbortDontRunMoreTasks",
108 &test_done_event);
109 }
110 java_thread->Start();
111
112 if (delayed) {
113 java_thread->message_loop()->task_runner()->PostDelayedTask(
114 FROM_HERE, Bind(&AbortMessagePump), TimeDelta::FromMilliseconds(10));
115 } else {
116 java_thread->message_loop()->task_runner()->PostTask(
117 FROM_HERE, Bind(&AbortMessagePump));
118 }
119
120 // Wait to ensure we catch the correct exception (and don't crash)
121 test_done_event.Wait();
122
123 java_thread->Stop();
124 java_thread.reset();
125 }
126
TEST(MessageLoopTest,JavaExceptionAbort)127 TEST(MessageLoopTest, JavaExceptionAbort) {
128 constexpr bool delayed = false;
129 constexpr bool init_java_first = false;
130 RunTest_AbortDontRunMoreTasks(delayed, init_java_first);
131 }
TEST(MessageLoopTest,DelayedJavaExceptionAbort)132 TEST(MessageLoopTest, DelayedJavaExceptionAbort) {
133 constexpr bool delayed = true;
134 constexpr bool init_java_first = false;
135 RunTest_AbortDontRunMoreTasks(delayed, init_java_first);
136 }
TEST(MessageLoopTest,JavaExceptionAbortInitJavaFirst)137 TEST(MessageLoopTest, JavaExceptionAbortInitJavaFirst) {
138 constexpr bool delayed = false;
139 constexpr bool init_java_first = true;
140 RunTest_AbortDontRunMoreTasks(delayed, init_java_first);
141 }
142 #endif // defined(OS_ANDROID)
143
144 #if defined(OS_WIN)
145
146 // This function runs slowly to simulate a large amount of work being done.
SlowFunc(TimeDelta pause,int * quit_counter)147 static void SlowFunc(TimeDelta pause, int* quit_counter) {
148 PlatformThread::Sleep(pause);
149 if (--(*quit_counter) == 0)
150 MessageLoop::current()->QuitWhenIdle();
151 }
152
153 // This function records the time when Run was called in a Time object, which is
154 // useful for building a variety of MessageLoop tests.
RecordRunTimeFunc(Time * run_time,int * quit_counter)155 static void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
156 *run_time = Time::Now();
157
158 // Cause our Run function to take some time to execute. As a result we can
159 // count on subsequent RecordRunTimeFunc()s running at a future time,
160 // without worry about the resolution of our system clock being an issue.
161 SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
162 }
163
SubPumpFunc()164 void SubPumpFunc() {
165 MessageLoop::current()->SetNestableTasksAllowed(true);
166 MSG msg;
167 while (GetMessage(&msg, NULL, 0, 0)) {
168 TranslateMessage(&msg);
169 DispatchMessage(&msg);
170 }
171 MessageLoop::current()->QuitWhenIdle();
172 }
173
RunTest_PostDelayedTask_SharedTimer_SubPump()174 void RunTest_PostDelayedTask_SharedTimer_SubPump() {
175 MessageLoop message_loop(MessageLoop::TYPE_UI);
176
177 // Test that the interval of the timer, used to run the next delayed task, is
178 // set to a value corresponding to when the next delayed task should run.
179
180 // By setting num_tasks to 1, we ensure that the first task to run causes the
181 // run loop to exit.
182 int num_tasks = 1;
183 Time run_time;
184
185 message_loop.task_runner()->PostTask(FROM_HERE, Bind(&SubPumpFunc));
186
187 // This very delayed task should never run.
188 message_loop.task_runner()->PostDelayedTask(
189 FROM_HERE, Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
190 TimeDelta::FromSeconds(1000));
191
192 // This slightly delayed task should run from within SubPumpFunc.
193 message_loop.task_runner()->PostDelayedTask(
194 FROM_HERE, Bind(&PostQuitMessage, 0), TimeDelta::FromMilliseconds(10));
195
196 Time start_time = Time::Now();
197
198 RunLoop().Run();
199 EXPECT_EQ(1, num_tasks);
200
201 // Ensure that we ran in far less time than the slower timer.
202 TimeDelta total_time = Time::Now() - start_time;
203 EXPECT_GT(5000, total_time.InMilliseconds());
204
205 // In case both timers somehow run at nearly the same time, sleep a little
206 // and then run all pending to force them both to have run. This is just
207 // encouraging flakiness if there is any.
208 PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
209 RunLoop().RunUntilIdle();
210
211 EXPECT_TRUE(run_time.is_null());
212 }
213
214 const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test";
215
216 enum TaskType {
217 MESSAGEBOX,
218 ENDDIALOG,
219 RECURSIVE,
220 TIMEDMESSAGELOOP,
221 QUITMESSAGELOOP,
222 ORDERED,
223 PUMPS,
224 SLEEP,
225 RUNS,
226 };
227
228 // Saves the order in which the tasks executed.
229 struct TaskItem {
TaskItembase::__anon8eaa457a0111::TaskItem230 TaskItem(TaskType t, int c, bool s)
231 : type(t),
232 cookie(c),
233 start(s) {
234 }
235
236 TaskType type;
237 int cookie;
238 bool start;
239
operator ==base::__anon8eaa457a0111::TaskItem240 bool operator == (const TaskItem& other) const {
241 return type == other.type && cookie == other.cookie && start == other.start;
242 }
243 };
244
operator <<(std::ostream & os,TaskType type)245 std::ostream& operator <<(std::ostream& os, TaskType type) {
246 switch (type) {
247 case MESSAGEBOX: os << "MESSAGEBOX"; break;
248 case ENDDIALOG: os << "ENDDIALOG"; break;
249 case RECURSIVE: os << "RECURSIVE"; break;
250 case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
251 case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
252 case ORDERED: os << "ORDERED"; break;
253 case PUMPS: os << "PUMPS"; break;
254 case SLEEP: os << "SLEEP"; break;
255 default:
256 NOTREACHED();
257 os << "Unknown TaskType";
258 break;
259 }
260 return os;
261 }
262
operator <<(std::ostream & os,const TaskItem & item)263 std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
264 if (item.start)
265 return os << item.type << " " << item.cookie << " starts";
266 else
267 return os << item.type << " " << item.cookie << " ends";
268 }
269
270 class TaskList {
271 public:
RecordStart(TaskType type,int cookie)272 void RecordStart(TaskType type, int cookie) {
273 TaskItem item(type, cookie, true);
274 DVLOG(1) << item;
275 task_list_.push_back(item);
276 }
277
RecordEnd(TaskType type,int cookie)278 void RecordEnd(TaskType type, int cookie) {
279 TaskItem item(type, cookie, false);
280 DVLOG(1) << item;
281 task_list_.push_back(item);
282 }
283
Size()284 size_t Size() {
285 return task_list_.size();
286 }
287
Get(int n)288 TaskItem Get(int n) {
289 return task_list_[n];
290 }
291
292 private:
293 std::vector<TaskItem> task_list_;
294 };
295
296 // MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
297 // common controls (like OpenFile) and StartDoc printing function can cause
298 // implicit message loops.
MessageBoxFunc(TaskList * order,int cookie,bool is_reentrant)299 void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
300 order->RecordStart(MESSAGEBOX, cookie);
301 if (is_reentrant)
302 MessageLoop::current()->SetNestableTasksAllowed(true);
303 MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
304 order->RecordEnd(MESSAGEBOX, cookie);
305 }
306
307 // Will end the MessageBox.
EndDialogFunc(TaskList * order,int cookie)308 void EndDialogFunc(TaskList* order, int cookie) {
309 order->RecordStart(ENDDIALOG, cookie);
310 HWND window = GetActiveWindow();
311 if (window != NULL) {
312 EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
313 // Cheap way to signal that the window wasn't found if RunEnd() isn't
314 // called.
315 order->RecordEnd(ENDDIALOG, cookie);
316 }
317 }
318
RecursiveFunc(TaskList * order,int cookie,int depth,bool is_reentrant)319 void RecursiveFunc(TaskList* order, int cookie, int depth,
320 bool is_reentrant) {
321 order->RecordStart(RECURSIVE, cookie);
322 if (depth > 0) {
323 if (is_reentrant)
324 MessageLoop::current()->SetNestableTasksAllowed(true);
325 ThreadTaskRunnerHandle::Get()->PostTask(
326 FROM_HERE,
327 Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
328 }
329 order->RecordEnd(RECURSIVE, cookie);
330 }
331
QuitFunc(TaskList * order,int cookie)332 void QuitFunc(TaskList* order, int cookie) {
333 order->RecordStart(QUITMESSAGELOOP, cookie);
334 MessageLoop::current()->QuitWhenIdle();
335 order->RecordEnd(QUITMESSAGELOOP, cookie);
336 }
337
RecursiveFuncWin(scoped_refptr<SingleThreadTaskRunner> task_runner,HANDLE event,bool expect_window,TaskList * order,bool is_reentrant)338 void RecursiveFuncWin(scoped_refptr<SingleThreadTaskRunner> task_runner,
339 HANDLE event,
340 bool expect_window,
341 TaskList* order,
342 bool is_reentrant) {
343 task_runner->PostTask(FROM_HERE,
344 Bind(&RecursiveFunc, order, 1, 2, is_reentrant));
345 task_runner->PostTask(FROM_HERE,
346 Bind(&MessageBoxFunc, order, 2, is_reentrant));
347 task_runner->PostTask(FROM_HERE,
348 Bind(&RecursiveFunc, order, 3, 2, is_reentrant));
349 // The trick here is that for recursive task processing, this task will be
350 // ran _inside_ the MessageBox message loop, dismissing the MessageBox
351 // without a chance.
352 // For non-recursive task processing, this will be executed _after_ the
353 // MessageBox will have been dismissed by the code below, where
354 // expect_window_ is true.
355 task_runner->PostTask(FROM_HERE, Bind(&EndDialogFunc, order, 4));
356 task_runner->PostTask(FROM_HERE, Bind(&QuitFunc, order, 5));
357
358 // Enforce that every tasks are sent before starting to run the main thread
359 // message loop.
360 ASSERT_TRUE(SetEvent(event));
361
362 // Poll for the MessageBox. Don't do this at home! At the speed we do it,
363 // you will never realize one MessageBox was shown.
364 for (; expect_window;) {
365 HWND window = FindWindow(L"#32770", kMessageBoxTitle);
366 if (window) {
367 // Dismiss it.
368 for (;;) {
369 HWND button = FindWindowEx(window, NULL, L"Button", NULL);
370 if (button != NULL) {
371 EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
372 EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
373 break;
374 }
375 }
376 break;
377 }
378 }
379 }
380
381 // TODO(darin): These tests need to be ported since they test critical
382 // message loop functionality.
383
384 // A side effect of this test is the generation a beep. Sorry.
RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type)385 void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
386 MessageLoop loop(message_loop_type);
387
388 Thread worker("RecursiveDenial2_worker");
389 Thread::Options options;
390 options.message_loop_type = message_loop_type;
391 ASSERT_EQ(true, worker.StartWithOptions(options));
392 TaskList order;
393 win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
394 worker.task_runner()->PostTask(
395 FROM_HERE, Bind(&RecursiveFuncWin, ThreadTaskRunnerHandle::Get(),
396 event.Get(), true, &order, false));
397 // Let the other thread execute.
398 WaitForSingleObject(event.Get(), INFINITE);
399 RunLoop().Run();
400
401 ASSERT_EQ(17u, order.Size());
402 EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
403 EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
404 EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
405 EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
406 EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
407 EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
408 // When EndDialogFunc is processed, the window is already dismissed, hence no
409 // "end" entry.
410 EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
411 EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
412 EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
413 EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
414 EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
415 EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
416 EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
417 EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
418 EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
419 EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
420 EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
421 }
422
423 // A side effect of this test is the generation a beep. Sorry. This test also
424 // needs to process windows messages on the current thread.
RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type)425 void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
426 MessageLoop loop(message_loop_type);
427
428 Thread worker("RecursiveSupport2_worker");
429 Thread::Options options;
430 options.message_loop_type = message_loop_type;
431 ASSERT_EQ(true, worker.StartWithOptions(options));
432 TaskList order;
433 win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
434 worker.task_runner()->PostTask(
435 FROM_HERE, Bind(&RecursiveFuncWin, ThreadTaskRunnerHandle::Get(),
436 event.Get(), false, &order, true));
437 // Let the other thread execute.
438 WaitForSingleObject(event.Get(), INFINITE);
439 RunLoop().Run();
440
441 ASSERT_EQ(18u, order.Size());
442 EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
443 EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
444 EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
445 // Note that this executes in the MessageBox modal loop.
446 EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
447 EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
448 EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
449 EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
450 EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
451 /* The order can subtly change here. The reason is that when RecursiveFunc(1)
452 is called in the main thread, if it is faster than getting to the
453 PostTask(FROM_HERE, Bind(&QuitFunc) execution, the order of task
454 execution can change. We don't care anyway that the order isn't correct.
455 EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
456 EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
457 EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
458 EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
459 */
460 EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
461 EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
462 EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
463 EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
464 EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
465 EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
466 }
467
468 #endif // defined(OS_WIN)
469
PostNTasksThenQuit(int posts_remaining)470 void PostNTasksThenQuit(int posts_remaining) {
471 if (posts_remaining > 1) {
472 ThreadTaskRunnerHandle::Get()->PostTask(
473 FROM_HERE, Bind(&PostNTasksThenQuit, posts_remaining - 1));
474 } else {
475 MessageLoop::current()->QuitWhenIdle();
476 }
477 }
478
479 #if defined(OS_WIN)
480
481 class TestIOHandler : public MessageLoopForIO::IOHandler {
482 public:
483 TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
484
485 void OnIOCompleted(MessageLoopForIO::IOContext* context,
486 DWORD bytes_transfered,
487 DWORD error) override;
488
489 void Init();
490 void WaitForIO();
context()491 OVERLAPPED* context() { return &context_.overlapped; }
size()492 DWORD size() { return sizeof(buffer_); }
493
494 private:
495 char buffer_[48];
496 MessageLoopForIO::IOContext context_;
497 HANDLE signal_;
498 win::ScopedHandle file_;
499 bool wait_;
500 };
501
TestIOHandler(const wchar_t * name,HANDLE signal,bool wait)502 TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
503 : signal_(signal), wait_(wait) {
504 memset(buffer_, 0, sizeof(buffer_));
505
506 file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
507 FILE_FLAG_OVERLAPPED, NULL));
508 EXPECT_TRUE(file_.IsValid());
509 }
510
Init()511 void TestIOHandler::Init() {
512 MessageLoopForIO::current()->RegisterIOHandler(file_.Get(), this);
513
514 DWORD read;
515 EXPECT_FALSE(ReadFile(file_.Get(), buffer_, size(), &read, context()));
516 EXPECT_EQ(static_cast<DWORD>(ERROR_IO_PENDING), GetLastError());
517 if (wait_)
518 WaitForIO();
519 }
520
OnIOCompleted(MessageLoopForIO::IOContext * context,DWORD bytes_transfered,DWORD error)521 void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
522 DWORD bytes_transfered, DWORD error) {
523 ASSERT_TRUE(context == &context_);
524 ASSERT_TRUE(SetEvent(signal_));
525 }
526
WaitForIO()527 void TestIOHandler::WaitForIO() {
528 EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
529 EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
530 }
531
RunTest_IOHandler()532 void RunTest_IOHandler() {
533 win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
534 ASSERT_TRUE(callback_called.IsValid());
535
536 const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
537 win::ScopedHandle server(
538 CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
539 ASSERT_TRUE(server.IsValid());
540
541 Thread thread("IOHandler test");
542 Thread::Options options;
543 options.message_loop_type = MessageLoop::TYPE_IO;
544 ASSERT_TRUE(thread.StartWithOptions(options));
545
546 TestIOHandler handler(kPipeName, callback_called.Get(), false);
547 thread.task_runner()->PostTask(
548 FROM_HERE, Bind(&TestIOHandler::Init, Unretained(&handler)));
549 // Make sure the thread runs and sleeps for lack of work.
550 PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
551
552 const char buffer[] = "Hello there!";
553 DWORD written;
554 EXPECT_TRUE(WriteFile(server.Get(), buffer, sizeof(buffer), &written, NULL));
555
556 DWORD result = WaitForSingleObject(callback_called.Get(), 1000);
557 EXPECT_EQ(WAIT_OBJECT_0, result);
558
559 thread.Stop();
560 }
561
RunTest_WaitForIO()562 void RunTest_WaitForIO() {
563 win::ScopedHandle callback1_called(
564 CreateEvent(NULL, TRUE, FALSE, NULL));
565 win::ScopedHandle callback2_called(
566 CreateEvent(NULL, TRUE, FALSE, NULL));
567 ASSERT_TRUE(callback1_called.IsValid());
568 ASSERT_TRUE(callback2_called.IsValid());
569
570 const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
571 const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
572 win::ScopedHandle server1(
573 CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
574 win::ScopedHandle server2(
575 CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
576 ASSERT_TRUE(server1.IsValid());
577 ASSERT_TRUE(server2.IsValid());
578
579 Thread thread("IOHandler test");
580 Thread::Options options;
581 options.message_loop_type = MessageLoop::TYPE_IO;
582 ASSERT_TRUE(thread.StartWithOptions(options));
583
584 TestIOHandler handler1(kPipeName1, callback1_called.Get(), false);
585 TestIOHandler handler2(kPipeName2, callback2_called.Get(), true);
586 thread.task_runner()->PostTask(
587 FROM_HERE, Bind(&TestIOHandler::Init, Unretained(&handler1)));
588 // TODO(ajwong): Do we really need such long Sleeps in this function?
589 // Make sure the thread runs and sleeps for lack of work.
590 TimeDelta delay = TimeDelta::FromMilliseconds(100);
591 PlatformThread::Sleep(delay);
592 thread.task_runner()->PostTask(
593 FROM_HERE, Bind(&TestIOHandler::Init, Unretained(&handler2)));
594 PlatformThread::Sleep(delay);
595
596 // At this time handler1 is waiting to be called, and the thread is waiting
597 // on the Init method of handler2, filtering only handler2 callbacks.
598
599 const char buffer[] = "Hello there!";
600 DWORD written;
601 EXPECT_TRUE(WriteFile(server1.Get(), buffer, sizeof(buffer), &written, NULL));
602 PlatformThread::Sleep(2 * delay);
603 EXPECT_EQ(static_cast<DWORD>(WAIT_TIMEOUT),
604 WaitForSingleObject(callback1_called.Get(), 0))
605 << "handler1 has not been called";
606
607 EXPECT_TRUE(WriteFile(server2.Get(), buffer, sizeof(buffer), &written, NULL));
608
609 HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
610 DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
611 EXPECT_EQ(WAIT_OBJECT_0, result);
612
613 thread.Stop();
614 }
615
616 #endif // defined(OS_WIN)
617
618 } // namespace
619
620 //-----------------------------------------------------------------------------
621 // Each test is run against each type of MessageLoop. That way we are sure
622 // that message loops work properly in all configurations. Of course, in some
623 // cases, a unit test may only be for a particular type of loop.
624
625 RUN_MESSAGE_LOOP_TESTS(Default, &TypeDefaultMessagePumpFactory);
626 RUN_MESSAGE_LOOP_TESTS(UI, &TypeUIMessagePumpFactory);
627 RUN_MESSAGE_LOOP_TESTS(IO, &TypeIOMessagePumpFactory);
628
629 #if defined(OS_WIN)
TEST(MessageLoopTest,PostDelayedTask_SharedTimer_SubPump)630 TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
631 RunTest_PostDelayedTask_SharedTimer_SubPump();
632 }
633
634 // This test occasionally hangs. See http://crbug.com/44567.
TEST(MessageLoopTest,DISABLED_RecursiveDenial2)635 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
636 RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
637 RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
638 RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
639 }
640
TEST(MessageLoopTest,RecursiveSupport2)641 TEST(MessageLoopTest, RecursiveSupport2) {
642 // This test requires a UI loop.
643 RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
644 }
645 #endif // defined(OS_WIN)
646
647 class DummyTaskObserver : public MessageLoop::TaskObserver {
648 public:
DummyTaskObserver(int num_tasks)649 explicit DummyTaskObserver(int num_tasks)
650 : num_tasks_started_(0),
651 num_tasks_processed_(0),
652 num_tasks_(num_tasks) {}
653
~DummyTaskObserver()654 ~DummyTaskObserver() override {}
655
WillProcessTask(const PendingTask & pending_task)656 void WillProcessTask(const PendingTask& pending_task) override {
657 num_tasks_started_++;
658 EXPECT_LE(num_tasks_started_, num_tasks_);
659 EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
660 }
661
DidProcessTask(const PendingTask & pending_task)662 void DidProcessTask(const PendingTask& pending_task) override {
663 num_tasks_processed_++;
664 EXPECT_LE(num_tasks_started_, num_tasks_);
665 EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
666 }
667
num_tasks_started() const668 int num_tasks_started() const { return num_tasks_started_; }
num_tasks_processed() const669 int num_tasks_processed() const { return num_tasks_processed_; }
670
671 private:
672 int num_tasks_started_;
673 int num_tasks_processed_;
674 const int num_tasks_;
675
676 DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
677 };
678
TEST(MessageLoopTest,TaskObserver)679 TEST(MessageLoopTest, TaskObserver) {
680 const int kNumPosts = 6;
681 DummyTaskObserver observer(kNumPosts);
682
683 MessageLoop loop;
684 loop.AddTaskObserver(&observer);
685 loop.task_runner()->PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumPosts));
686 RunLoop().Run();
687 loop.RemoveTaskObserver(&observer);
688
689 EXPECT_EQ(kNumPosts, observer.num_tasks_started());
690 EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
691 }
692
693 #if defined(OS_WIN)
TEST(MessageLoopTest,IOHandler)694 TEST(MessageLoopTest, IOHandler) {
695 RunTest_IOHandler();
696 }
697
TEST(MessageLoopTest,WaitForIO)698 TEST(MessageLoopTest, WaitForIO) {
699 RunTest_WaitForIO();
700 }
701
TEST(MessageLoopTest,HighResolutionTimer)702 TEST(MessageLoopTest, HighResolutionTimer) {
703 MessageLoop message_loop;
704 Time::EnableHighResolutionTimer(true);
705
706 const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
707 const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
708
709 EXPECT_FALSE(message_loop.HasHighResolutionTasks());
710 // Post a fast task to enable the high resolution timers.
711 message_loop.task_runner()->PostDelayedTask(
712 FROM_HERE, Bind(&PostNTasksThenQuit, 1), kFastTimer);
713 EXPECT_TRUE(message_loop.HasHighResolutionTasks());
714 RunLoop().Run();
715 EXPECT_FALSE(message_loop.HasHighResolutionTasks());
716 EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
717 // Check that a slow task does not trigger the high resolution logic.
718 message_loop.task_runner()->PostDelayedTask(
719 FROM_HERE, Bind(&PostNTasksThenQuit, 1), kSlowTimer);
720 EXPECT_FALSE(message_loop.HasHighResolutionTasks());
721 RunLoop().Run();
722 EXPECT_FALSE(message_loop.HasHighResolutionTasks());
723 Time::EnableHighResolutionTimer(false);
724 }
725
726 #endif // defined(OS_WIN)
727
728 #if defined(OS_POSIX) && !defined(OS_NACL)
729
730 namespace {
731
732 class QuitDelegate : public MessageLoopForIO::Watcher {
733 public:
OnFileCanWriteWithoutBlocking(int fd)734 void OnFileCanWriteWithoutBlocking(int fd) override {
735 MessageLoop::current()->QuitWhenIdle();
736 }
OnFileCanReadWithoutBlocking(int fd)737 void OnFileCanReadWithoutBlocking(int fd) override {
738 MessageLoop::current()->QuitWhenIdle();
739 }
740 };
741
TEST(MessageLoopTest,FileDescriptorWatcherOutlivesMessageLoop)742 TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
743 // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
744 // This could happen when people use the Singleton pattern or atexit.
745
746 // Create a file descriptor. Doesn't need to be readable or writable,
747 // as we don't need to actually get any notifications.
748 // pipe() is just the easiest way to do it.
749 int pipefds[2];
750 int err = pipe(pipefds);
751 ASSERT_EQ(0, err);
752 int fd = pipefds[1];
753 {
754 // Arrange for controller to live longer than message loop.
755 MessageLoopForIO::FileDescriptorWatcher controller(FROM_HERE);
756 {
757 MessageLoopForIO message_loop;
758
759 QuitDelegate delegate;
760 message_loop.WatchFileDescriptor(fd,
761 true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
762 // and don't run the message loop, just destroy it.
763 }
764 }
765 if (IGNORE_EINTR(close(pipefds[0])) < 0)
766 PLOG(ERROR) << "close";
767 if (IGNORE_EINTR(close(pipefds[1])) < 0)
768 PLOG(ERROR) << "close";
769 }
770
TEST(MessageLoopTest,FileDescriptorWatcherDoubleStop)771 TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
772 // Verify that it's ok to call StopWatchingFileDescriptor().
773 // (Errors only showed up in valgrind.)
774 int pipefds[2];
775 int err = pipe(pipefds);
776 ASSERT_EQ(0, err);
777 int fd = pipefds[1];
778 {
779 // Arrange for message loop to live longer than controller.
780 MessageLoopForIO message_loop;
781 {
782 MessageLoopForIO::FileDescriptorWatcher controller(FROM_HERE);
783
784 QuitDelegate delegate;
785 message_loop.WatchFileDescriptor(fd,
786 true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
787 controller.StopWatchingFileDescriptor();
788 }
789 }
790 if (IGNORE_EINTR(close(pipefds[0])) < 0)
791 PLOG(ERROR) << "close";
792 if (IGNORE_EINTR(close(pipefds[1])) < 0)
793 PLOG(ERROR) << "close";
794 }
795
796 } // namespace
797
798 #endif // defined(OS_POSIX) && !defined(OS_NACL)
799
800 namespace {
801 // Inject a test point for recording the destructor calls for Closure objects
802 // send to MessageLoop::PostTask(). It is awkward usage since we are trying to
803 // hook the actual destruction, which is not a common operation.
804 class DestructionObserverProbe :
805 public RefCounted<DestructionObserverProbe> {
806 public:
DestructionObserverProbe(bool * task_destroyed,bool * destruction_observer_called)807 DestructionObserverProbe(bool* task_destroyed,
808 bool* destruction_observer_called)
809 : task_destroyed_(task_destroyed),
810 destruction_observer_called_(destruction_observer_called) {
811 }
Run()812 virtual void Run() {
813 // This task should never run.
814 ADD_FAILURE();
815 }
816 private:
817 friend class RefCounted<DestructionObserverProbe>;
818
~DestructionObserverProbe()819 virtual ~DestructionObserverProbe() {
820 EXPECT_FALSE(*destruction_observer_called_);
821 *task_destroyed_ = true;
822 }
823
824 bool* task_destroyed_;
825 bool* destruction_observer_called_;
826 };
827
828 class MLDestructionObserver : public MessageLoop::DestructionObserver {
829 public:
MLDestructionObserver(bool * task_destroyed,bool * destruction_observer_called)830 MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
831 : task_destroyed_(task_destroyed),
832 destruction_observer_called_(destruction_observer_called),
833 task_destroyed_before_message_loop_(false) {
834 }
WillDestroyCurrentMessageLoop()835 void WillDestroyCurrentMessageLoop() override {
836 task_destroyed_before_message_loop_ = *task_destroyed_;
837 *destruction_observer_called_ = true;
838 }
task_destroyed_before_message_loop() const839 bool task_destroyed_before_message_loop() const {
840 return task_destroyed_before_message_loop_;
841 }
842 private:
843 bool* task_destroyed_;
844 bool* destruction_observer_called_;
845 bool task_destroyed_before_message_loop_;
846 };
847
848 } // namespace
849
TEST(MessageLoopTest,DestructionObserverTest)850 TEST(MessageLoopTest, DestructionObserverTest) {
851 // Verify that the destruction observer gets called at the very end (after
852 // all the pending tasks have been destroyed).
853 MessageLoop* loop = new MessageLoop;
854 const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
855
856 bool task_destroyed = false;
857 bool destruction_observer_called = false;
858
859 MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
860 loop->AddDestructionObserver(&observer);
861 loop->task_runner()->PostDelayedTask(
862 FROM_HERE, Bind(&DestructionObserverProbe::Run,
863 new DestructionObserverProbe(
864 &task_destroyed, &destruction_observer_called)),
865 kDelay);
866 delete loop;
867 EXPECT_TRUE(observer.task_destroyed_before_message_loop());
868 // The task should have been destroyed when we deleted the loop.
869 EXPECT_TRUE(task_destroyed);
870 EXPECT_TRUE(destruction_observer_called);
871 }
872
873
874 // Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
875 // posts tasks on that message loop.
TEST(MessageLoopTest,ThreadMainTaskRunner)876 TEST(MessageLoopTest, ThreadMainTaskRunner) {
877 MessageLoop loop;
878
879 scoped_refptr<Foo> foo(new Foo());
880 std::string a("a");
881 ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, Bind(
882 &Foo::Test1ConstRef, foo, a));
883
884 // Post quit task;
885 ThreadTaskRunnerHandle::Get()->PostTask(
886 FROM_HERE,
887 Bind(&MessageLoop::QuitWhenIdle, Unretained(MessageLoop::current())));
888
889 // Now kick things off
890 RunLoop().Run();
891
892 EXPECT_EQ(foo->test_count(), 1);
893 EXPECT_EQ(foo->result(), "a");
894 }
895
TEST(MessageLoopTest,IsType)896 TEST(MessageLoopTest, IsType) {
897 MessageLoop loop(MessageLoop::TYPE_UI);
898 EXPECT_TRUE(loop.IsType(MessageLoop::TYPE_UI));
899 EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_IO));
900 EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_DEFAULT));
901 }
902
903 #if defined(OS_WIN)
EmptyFunction()904 void EmptyFunction() {}
905
PostMultipleTasks()906 void PostMultipleTasks() {
907 ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
908 base::Bind(&EmptyFunction));
909 ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
910 base::Bind(&EmptyFunction));
911 }
912
913 static const int kSignalMsg = WM_USER + 2;
914
PostWindowsMessage(HWND message_hwnd)915 void PostWindowsMessage(HWND message_hwnd) {
916 PostMessage(message_hwnd, kSignalMsg, 0, 2);
917 }
918
EndTest(bool * did_run,HWND hwnd)919 void EndTest(bool* did_run, HWND hwnd) {
920 *did_run = true;
921 PostMessage(hwnd, WM_CLOSE, 0, 0);
922 }
923
924 int kMyMessageFilterCode = 0x5002;
925
TestWndProcThunk(HWND hwnd,UINT message,WPARAM wparam,LPARAM lparam)926 LRESULT CALLBACK TestWndProcThunk(HWND hwnd, UINT message,
927 WPARAM wparam, LPARAM lparam) {
928 if (message == WM_CLOSE)
929 EXPECT_TRUE(DestroyWindow(hwnd));
930 if (message != kSignalMsg)
931 return DefWindowProc(hwnd, message, wparam, lparam);
932
933 switch (lparam) {
934 case 1:
935 // First, we post a task that will post multiple no-op tasks to make sure
936 // that the pump's incoming task queue does not become empty during the
937 // test.
938 ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
939 base::Bind(&PostMultipleTasks));
940 // Next, we post a task that posts a windows message to trigger the second
941 // stage of the test.
942 ThreadTaskRunnerHandle::Get()->PostTask(
943 FROM_HERE, base::Bind(&PostWindowsMessage, hwnd));
944 break;
945 case 2:
946 // Since we're about to enter a modal loop, tell the message loop that we
947 // intend to nest tasks.
948 MessageLoop::current()->SetNestableTasksAllowed(true);
949 bool did_run = false;
950 ThreadTaskRunnerHandle::Get()->PostTask(
951 FROM_HERE, base::Bind(&EndTest, &did_run, hwnd));
952 // Run a nested windows-style message loop and verify that our task runs. If
953 // it doesn't, then we'll loop here until the test times out.
954 MSG msg;
955 while (GetMessage(&msg, 0, 0, 0)) {
956 if (!CallMsgFilter(&msg, kMyMessageFilterCode))
957 DispatchMessage(&msg);
958 // If this message is a WM_CLOSE, explicitly exit the modal loop. Posting
959 // a WM_QUIT should handle this, but unfortunately MessagePumpWin eats
960 // WM_QUIT messages even when running inside a modal loop.
961 if (msg.message == WM_CLOSE)
962 break;
963 }
964 EXPECT_TRUE(did_run);
965 MessageLoop::current()->QuitWhenIdle();
966 break;
967 }
968 return 0;
969 }
970
TEST(MessageLoopTest,AlwaysHaveUserMessageWhenNesting)971 TEST(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) {
972 MessageLoop loop(MessageLoop::TYPE_UI);
973 HINSTANCE instance = CURRENT_MODULE();
974 WNDCLASSEX wc = {0};
975 wc.cbSize = sizeof(wc);
976 wc.lpfnWndProc = TestWndProcThunk;
977 wc.hInstance = instance;
978 wc.lpszClassName = L"MessageLoopTest_HWND";
979 ATOM atom = RegisterClassEx(&wc);
980 ASSERT_TRUE(atom);
981
982 HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0,
983 HWND_MESSAGE, 0, instance, 0);
984 ASSERT_TRUE(message_hwnd) << GetLastError();
985
986 ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1));
987
988 RunLoop().Run();
989
990 ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance));
991 }
992 #endif // defined(OS_WIN)
993
TEST(MessageLoopTest,SetTaskRunner)994 TEST(MessageLoopTest, SetTaskRunner) {
995 MessageLoop loop;
996 scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
997
998 loop.SetTaskRunner(new_runner);
999 EXPECT_EQ(new_runner, loop.task_runner());
1000 EXPECT_EQ(new_runner, ThreadTaskRunnerHandle::Get());
1001 }
1002
TEST(MessageLoopTest,OriginalRunnerWorks)1003 TEST(MessageLoopTest, OriginalRunnerWorks) {
1004 MessageLoop loop;
1005 scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
1006 scoped_refptr<SingleThreadTaskRunner> original_runner(loop.task_runner());
1007 loop.SetTaskRunner(new_runner);
1008
1009 scoped_refptr<Foo> foo(new Foo());
1010 original_runner->PostTask(FROM_HERE,
1011 Bind(&Foo::Test1ConstRef, foo, "a"));
1012 RunLoop().RunUntilIdle();
1013 EXPECT_EQ(1, foo->test_count());
1014 }
1015
TEST(MessageLoopTest,DeleteUnboundLoop)1016 TEST(MessageLoopTest, DeleteUnboundLoop) {
1017 // It should be possible to delete an unbound message loop on a thread which
1018 // already has another active loop. This happens when thread creation fails.
1019 MessageLoop loop;
1020 std::unique_ptr<MessageLoop> unbound_loop(MessageLoop::CreateUnbound(
1021 MessageLoop::TYPE_DEFAULT, MessageLoop::MessagePumpFactoryCallback()));
1022 unbound_loop.reset();
1023 EXPECT_EQ(&loop, MessageLoop::current());
1024 EXPECT_EQ(loop.task_runner(), ThreadTaskRunnerHandle::Get());
1025 }
1026
TEST(MessageLoopTest,ThreadName)1027 TEST(MessageLoopTest, ThreadName) {
1028 {
1029 std::string kThreadName("foo");
1030 MessageLoop loop;
1031 PlatformThread::SetName(kThreadName);
1032 EXPECT_EQ(kThreadName, loop.GetThreadName());
1033 }
1034
1035 {
1036 std::string kThreadName("bar");
1037 base::Thread thread(kThreadName);
1038 ASSERT_TRUE(thread.StartAndWaitForTesting());
1039 EXPECT_EQ(kThreadName, thread.message_loop()->GetThreadName());
1040 }
1041 }
1042
1043 } // namespace base
1044