• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 // Neural Net operation support for StreamExecutor instances.
17 //
18 // This is an abstract interface for a platform to optionally support common
19 // neural net operations; it accommodates implementations such as the cudnn
20 // library operations.
21 
22 #ifndef TENSORFLOW_STREAM_EXECUTOR_DNN_H_
23 #define TENSORFLOW_STREAM_EXECUTOR_DNN_H_
24 
25 #include <functional>
26 #include <limits>
27 #include <memory>
28 
29 #include "tensorflow/stream_executor/device_memory.h"
30 #include "tensorflow/stream_executor/lib/array_slice.h"
31 #include "tensorflow/stream_executor/lib/status.h"
32 #include "tensorflow/stream_executor/lib/statusor.h"
33 #include "tensorflow/stream_executor/platform/logging.h"
34 #include "tensorflow/stream_executor/platform/port.h"
35 
36 namespace Eigen {
37 struct half;
38 }  // namespace Eigen
39 
40 namespace perftools {
41 namespace gputools {
42 
43 class HostBuffer;
44 class Stream;
45 class ScratchAllocator;
46 
47 namespace dnn {
48 
49 // Describes how an input or output layer's data is formatted.
50 // Specify int64 so there's no padding in BatchDescriptor.
51 enum class DataLayout : int64 {
52   kYXDepthBatch = 0,  // Same as dist_belief::DF_DEPTH_MAJOR.
53   kYXBatchDepth,      // Same as dist_belief::DF_BATCH_MAJOR.
54   kBatchYXDepth,      // Same as run_brain output, and tensorflow's layout.
55   kBatchDepthYX,      // cuDNN's NCHW layout, data laid out as image, feature
56                       // maps, rows, columns.
57   kBatchDepthYX4,     // cuDNN's NCHW_VECT_C layout, data laid out the same as
58                       // kBatchDepthYX but each element is a vector of 4 feature
59                       // maps.
60 };
61 
62 // Specifies an index to use when accessing specific spatial dimensions.
63 enum class DimIndex : int {
64   X = 0,
65   Y = 1,
66   Z = 2,
67 };
68 
69 // Helper functions to make methods more readable.
GetDim(const std::vector<int64> & data,DimIndex dim)70 inline int64 GetDim(const std::vector<int64>& data, DimIndex dim) {
71   return data.rbegin()[static_cast<int64>(dim)];
72 }
73 
SetDim(std::vector<int64> * data,DimIndex dim,int64 value)74 inline void SetDim(std::vector<int64>* data, DimIndex dim, int64 value) {
75   data->rbegin()[static_cast<int64>(dim)] = value;
76 }
77 
78 // Returns a string representation of the given data layout.
79 string DataLayoutString(DataLayout layout);
80 
81 // Specifies a quantization for activations in a given BatchDescriptor.
82 enum class QuantizedActivationMode {
83   k8Bit = 1,
84   k16Bit = 2,
85   k32Bit = 4,
86 };
87 
88 // Specifies the data type used by an operation.
89 enum class DataType {
90   kFloat = 0,
91   kDouble = 1,
92   kHalf = 2,
93   kInt8 = 3,
94 };
95 
96 // A helper class to convert C/C++ types to the proper enums.
97 template <typename T>
98 struct ToDataType;
99 template <>
100 struct ToDataType<float> {
101   static constexpr DataType value = DataType::kFloat;
102 };
103 template <>
104 struct ToDataType<double> {
105   static constexpr DataType value = DataType::kDouble;
106 };
107 template <>
108 struct ToDataType<Eigen::half> {
109   static constexpr DataType value = DataType::kHalf;
110 };
111 template <>
112 struct ToDataType<int8> {
113   static constexpr DataType value = DataType::kInt8;
114 };
115 
116 // Specifies the types of a RNN model.
117 enum class RnnMode {
118   kRnnRelu = 0,
119   kRnnTanh = 1,
120   kRnnLstm = 2,
121   kRnnGru = 3,
122 };
123 
124 // Specifies the input model and whether there is a linear transformation
125 // between the input state and the first layer hidden state.
126 enum class RnnInputMode {
127   kRnnLinearSkip = 0,
128   kRnnSkipInput = 1,
129 };
130 
131 // Specifies the number of directions used in a RNN model. When bidirection
132 // is used, the input states and output sequence contain data for both
133 // directions.
134 enum class RnnDirectionMode {
135   kRnnUnidirectional = 0,
136   kRnnBidirectional = 1,
137 };
138 
139 // Relevant to DepthToSpace and SpaceToDepth. This is the write layout when
140 // performing depth to space and the read layout when performing space to depth.
141 // It's specified with most-major dimension first and most-minor dimension last.
142 // In DepthToSpace, the D*M² values are read in and then, for DepthHeightWidth,
143 // written out to the output patch, by varying first width, then height, then
144 // depth. In C array format, it looks like [depth][height][width]. See
145 // DepthToSpace comment for more information.
146 enum class DepthToSpaceLayout { DepthHeightWidth };
147 
148 // Specifies the descriptor for a RNN model.
149 //
150 // An example use case:
151 //   * The user first creates a model through createRnnDescriptor.
152 //   * The user queries the size of the underlying opaque parameter buffer.
153 //   * The user creates and initializes a parameter buffer of the proper size.
154 //   * The user runs forward and backward operations using this RNN descriptor.
155 //   * Once a while, user queries maintainable weights and bias regions from
156 //       the underlying parameter buffer. They are more likely to be forward
157 //       compatible and should used in saving and restoring a model.
158 //   * The user releases the RNN descriptor when the model is no longer in use.
159 class RnnDescriptor {
160  public:
161   struct ParamsRegion {
162     int64 offset;
163     int64 size;
164   };
165   typedef std::vector<ParamsRegion> ParamsRegions;
166   virtual ~RnnDescriptor() {}
167   virtual int64 ParamsSizeInBytes() const { return -1; }
168   virtual ParamsRegions ParamsWeightRegions() const { return ParamsRegions(); }
169   virtual ParamsRegions ParamsBiasRegions() const { return ParamsRegions(); }
170 };
171 
172 // Specifies the sequence in a RNN model.
173 //
174 // The user is responsible for releasing this descriptor when it is no longer
175 // in use. The destructor releases the underlying descriptors.
176 class RnnSequenceTensorDescriptor {
177  public:
178   virtual ~RnnSequenceTensorDescriptor() {}
179 };
180 
181 // Specifies either the input and hidden state in a RNN model.
182 //
183 // The user is responsible for releasing this descriptor when it is no longer
184 // in use. The destructor releases the underlying descriptors.
185 class RnnStateTensorDescriptor {
186  public:
187   virtual ~RnnStateTensorDescriptor() {}
188 };
189 
190 // Returns a string representation of the given quantization mode.
191 string QuantizedActivationModeString(QuantizedActivationMode mode);
192 
193 // Describes the dimensions that a layer consumes/produces.
194 //
195 // This is a matrix (height, width), its "depth" (feature_map_count),
196 // how many of these matrices are present (count),
197 // and the maximum and minimum values expected in the matrix (value_max,
198 // value_min).
199 // If input is quantized, all values greater
200 // than value_max will be clipped to value_max and all values less than
201 // value_min will be clipped to value_min.
202 // When quantized output is dequantized no value will be greater than
203 // value_max or less than value_min.
204 //
205 // Uses the named argument construction form:
206 //
207 //  auto input_batch_dimensions =
208 //      BatchDescriptor().set_count(42).set_feature_map_count(7)...
209 //
210 // Details:
211 //
212 // For a convolutional layer, a single inference takes a 3-dimensional matrix
213 // of input and produces a 3-dimensional matrix of output. We call the three
214 // dimensions height, width and feature_map_count, where for an image, the
215 // height and width correspond to the Y and X pixel indices, respectively, and
216 // the feature_map_count corresponds to the RGB dimension of the input data.
217 // Then the count indicates how many 3D matrices are being presented to be
218 // processed at once; this corresponds to the neural network concept of
219 // minibatch size.
220 //
221 // For a fully connected layer, it's better to put the nodes of the layer in
222 // the feature_map_count, and leave the height and weight as degenerate (== 1).
223 // Count indicates how many input vectors (degenerate 3D matrices) are to be
224 // processed.
225 //
226 // If unspecified, value_max and value_min default to 0.0.
227 // If value_max == value_min the Stream will attempt to derive valid values -
228 // for example the output of Relu6 activation will always be in the range
229 // [0.0, 6.0].
230 //
231 // If unspecified, layout defaults to kYXDepthBatch.
232 class BatchDescriptor {
233  public:
234   // Creates a "blank" batch descriptor, which should be initialized via the
235   // named argument helpers.
236   BatchDescriptor();
237   explicit BatchDescriptor(int ndims);
238 
239   // Clones values from 'other' for initialization.
240   void CloneFrom(const BatchDescriptor& other);
241 
242   string ToString() const;
243   string ToShortString() const;
244 
245   // Accessors.
246   int64 count() const { return count_; }
247   int64 feature_map_count() const { return feature_map_count_; }
248   int64 height() const { return GetDim(spatial_size_, DimIndex::Y); }
249   int64 width() const { return GetDim(spatial_size_, DimIndex::X); }
250   int64 spatial_dim(DimIndex dim) const { return GetDim(spatial_size_, dim); }
251   int ndims() const { return ndims_; }
252   float value_max() const { return value_max_; }
253   float value_min() const { return value_min_; }
254   DataLayout layout() const { return layout_; }
255   QuantizedActivationMode quantized_activation_mode() const {
256     return quantized_activation_mode_;
257   }
258   // Full dimensions of the underlying data, ordered according to a specific
259   // layout.
260   std::vector<int64> full_dims(const DataLayout& layout) const;
261 
262   // Full strides of the underlying data, ordered according to a specific
263   // layout.
264   std::vector<int64> full_strides(const DataLayout& layout) const;
265 
266   // Named-argument helpers for avoiding user error during construction.
267   BatchDescriptor& set_count(int64 value) {
268     count_ = value;
269     return *this;
270   }
271   BatchDescriptor& set_feature_map_count(int64 value) {
272     feature_map_count_ = value;
273     return *this;
274   }
275   BatchDescriptor& set_height(int64 value) {
276     SetDim(&spatial_size_, DimIndex::Y, value);
277     return *this;
278   }
279   BatchDescriptor& set_width(int64 value) {
280     SetDim(&spatial_size_, DimIndex::X, value);
281     return *this;
282   }
283   BatchDescriptor& set_spatial_dim(DimIndex dim, int64 value) {
284     SetDim(&spatial_size_, dim, value);
285     return *this;
286   }
287   BatchDescriptor& set_value_max(float value) {
288     value_max_ = value;
289     return *this;
290   }
291   BatchDescriptor& set_value_min(float value) {
292     value_min_ = value;
293     return *this;
294   }
295   BatchDescriptor& set_layout(DataLayout layout) {
296     layout_ = layout;
297     return *this;
298   }
299   BatchDescriptor& set_quantized_activation_mode(
300       QuantizedActivationMode quantized_activation_mode) {
301     quantized_activation_mode_ = quantized_activation_mode;
302     return *this;
303   }
304 
305   // Return the number of nodes in a single feature map.
306   int64 NodesPerFeatureMap() const;
307 
308   // Return the number of nodes across all feature maps. Note that this is not
309   // affected by the batch count.
310   int64 NodesAcrossFeatureMaps() const;
311 
312   // Returns the number of elements (e.g. RGB pixel values) required to hold a
313   // given batch descriptor, given a no-padding assumption. Note that this is
314   // affected by the batch count.
315   int64 ElementCount() const;
316 
317   // Return the number of weights required to fully connect a layer with
318   // dimensions given by the 'input' descriptor with a layer with dimensions
319   // given by the 'output' descriptor.
320   static int64 FullyConnectedWeightCount(const BatchDescriptor& input,
321                                          const BatchDescriptor& output);
322 
323   // Return the number of biases required to fully connect to an output layer
324   // with dimensions given the 'output' descriptor.
325   static int64 FullyConnectedBiasCount(const BatchDescriptor& output);
326 
327   // Return a BatchDescriptor for the output of a depth concatenation
328   // with the given input descriptors. The inputs should have the same
329   // dimensions, except possibly for feature_map_count(), though this
330   // function does not verify that.
331   static BatchDescriptor DepthConcatenateOutputDescriptor(
332       port::ArraySlice<dnn::BatchDescriptor> inputs);
333 
334  private:
335   int64 count_;
336   int64 feature_map_count_;
337   // Stored as: ..., y, x.
338   std::vector<int64> spatial_size_;
339   float value_max_;
340   float value_min_;
341   DataLayout layout_;
342   int ndims_;
343   QuantizedActivationMode quantized_activation_mode_;
344 };
345 
346 // Describes how a filter is laid out in the memory.
347 // Specify int64 so there's no padding in FilterDescriptor.
348 enum class FilterLayout : int64 {
349   kOutputInputYX = 0,  // cuDNN's default filter layout, laid out as:
350                        // (major) output feature maps >> input feature maps >>
351                        // rows >> columns (minor).
352   kOutputInputYX4,  // laid out the same as kOutputInputYX but each element is a
353                     // vector of 4 feature maps.
354   kInputYXOutput,   // Same as dist_belief's default filter layout.
355   kYXInputOutput,   // Same as tensorflow's default filter layout.
356 };
357 
358 // Returns a string representation of the given filter layout.
359 string FilterLayoutString(FilterLayout layout);
360 
361 // Describes a filter for the convolution. This is the "window" from
362 // height-by-width patches of each of the feature maps in the input layer to the
363 // cells within the output feature map.
364 //
365 // Uses the named argument construction form:
366 //
367 //  FilterDescriptor filter_dimensions;
368 //  filter_dimensions
369 //    .set_output_feature_map_count(42)
370 //    .set_input_feature_map_count(7)
371 //    ...
372 //
373 // Arguments:
374 // - output_feature_map_count: number of feature maps in the output layer.
375 // - input_feature_map_count: number of feature maps in the input layer (from
376 //      which the filter patch is taken).
377 // - input_filter_height: "height" number of neurons used in the sliding window
378 //      over the input layer.
379 // - input_filter_width: "width" number of neurons used in the sliding window
380 //      over the input layer.
381 //
382 // Sometimes names like "filter input height" are referred to by synonymous
383 // terminology, such as "kernel y size".
384 //
385 // If unspecified, layout defaults to kOutputInputYX.
386 class FilterDescriptor {
387  public:
388   // By default construction, all dimensions are set to zero, so they should all
389   // be populated by the user via the named-argument helpers below. (See class
390   // comment for details.)
391   FilterDescriptor();
392   explicit FilterDescriptor(int ndims);
393   ~FilterDescriptor();
394 
395   // Named-argument helpers for avoiding user error during construction.
396   FilterDescriptor& set_output_feature_map_count(int64 value) {
397     output_feature_map_count_ = value;
398     return *this;
399   }
400   FilterDescriptor& set_input_feature_map_count(int64 value) {
401     input_feature_map_count_ = value;
402     return *this;
403   }
404   FilterDescriptor& set_input_filter_height(int64 value) {
405     SetDim(&input_filter_dims_, DimIndex::Y, value);
406     return *this;
407   }
408   FilterDescriptor& set_input_filter_width(int64 value) {
409     SetDim(&input_filter_dims_, DimIndex::X, value);
410     return *this;
411   }
412   FilterDescriptor& set_layout(FilterLayout layout) {
413     layout_ = layout;
414     return *this;
415   }
416   FilterDescriptor& set_spatial_dim(DimIndex dim, int64 value) {
417     SetDim(&input_filter_dims_, dim, value);
418     return *this;
419   }
420   int ndims() const { return ndims_; }
421 
422   void CloneFrom(const FilterDescriptor& other);
423 
424   string ToString() const;
425   string ToShortString() const;
426 
427   // Returns the number of weights required as parameters for a convolution
428   // using this filter descriptor.
429   int64 ComputeWeightCount() const;
430 
431   // Returns the number of biases required as parameters for a convolution
432   // using this filter descriptor.
433   int64 bias_count() const { return output_feature_map_count_; }
434 
435   int64 output_feature_map_count() const { return output_feature_map_count_; }
436   int64 input_feature_map_count() const { return input_feature_map_count_; }
437   int64 input_filter_height() const {
438     return GetDim(input_filter_dims_, DimIndex::Y);
439   }
440   int64 input_filter_width() const {
441     return GetDim(input_filter_dims_, DimIndex::X);
442   }
443   int64 input_filter_dim(DimIndex dim) const {
444     return GetDim(input_filter_dims_, dim);
445   }
446 
447   FilterLayout layout() const { return layout_; }
448   std::vector<int64> input_filter_dims() const { return input_filter_dims_; }
449 
450  private:
451   int64 output_feature_map_count_;
452   int64 input_feature_map_count_;
453   // Stored as: ..., y, x.
454   std::vector<int64> input_filter_dims_;
455   int ndims_;
456   FilterLayout layout_;
457 };
458 
459 // Describes how padding should be aligned when the total number of pad
460 // elements is odd.
461 enum class PadAlignment : int64 {
462   kDefault = 0,        // default padding for the device.
463   kCudnnPadding,       // cuDNN padding - prefer to pad at the start.
464   kTensorFlowPadding,  // TensorFlow padding - prefer to pad at the end.
465 };
466 
467 // Returns a string representation of the given padding alignment.
468 string PadAlignmentString(PadAlignment alignment);
469 
470 // Describes a convolution.
471 //
472 // Uses the named argument construction form:
473 //
474 //  ConvolutionDescriptor convolution_dimensions;
475 //  convolution_dimensions
476 //    .set_vertical_filter_stride(2)
477 //    .set_horizontal_filter_stride(2)
478 //    ...
479 //
480 // Arguments:
481 // - zero_padding_height: padding of the "y dimension" of the input data. Note
482 //    that this is different from the height of the filter.
483 // - zero_padding_width: analogous to the height above, but in the "x
484 //    dimension".
485 // - vertical_filter_stride: the convolution slides a 2-dimensional window of
486 //    filter-height-by-filter-width over the input layer -- the center of that
487 //    window is moved in the "y dimension" according to this stride value.
488 // - horizontal_filter_stride: analogous to the vertical stride above, but in
489 //    the "x dimension".
490 // - vertical_dilation_rate: there will be (vertical_dilation_rate - 1) skipped
491 //   cells between each filter element in the "y dimension".
492 // - horizontal_dilation_rate: there will be (horizontal_dilation_rate - 1)
493 //   skipped cells between each filter element in the "x dimension".
494 class ConvolutionDescriptor {
495  public:
496   // By default construction, there is no zero-padding and the filter stride is
497   // 1x1 (centering the filter on every cell in the input layer's
498   // width-by-height area).
499   ConvolutionDescriptor();
500   explicit ConvolutionDescriptor(int ndims);
501   ~ConvolutionDescriptor();
502 
503   string ToString() const;
504   string ToShortString() const;
505 
506   ConvolutionDescriptor& set_zero_padding_height(int64 value) {
507     SetDim(&zero_padding_, DimIndex::Y, value);
508     return *this;
509   }
510   ConvolutionDescriptor& set_zero_padding_width(int64 value) {
511     SetDim(&zero_padding_, DimIndex::X, value);
512     return *this;
513   }
514   ConvolutionDescriptor& set_zero_padding(DimIndex dim, int64 value) {
515     SetDim(&zero_padding_, dim, value);
516     return *this;
517   }
518   ConvolutionDescriptor& set_vertical_filter_stride(int64 value) {
519     SetDim(&filter_strides_, DimIndex::Y, value);
520     return *this;
521   }
522   ConvolutionDescriptor& set_horizontal_filter_stride(int64 value) {
523     SetDim(&filter_strides_, DimIndex::X, value);
524     return *this;
525   }
526   ConvolutionDescriptor& set_filter_stride(DimIndex dim, int64 value) {
527     SetDim(&filter_strides_, dim, value);
528     return *this;
529   }
530   ConvolutionDescriptor& set_vertical_dilation_rate(int64 value) {
531     SetDim(&dilation_rates_, DimIndex::Y, value);
532     return *this;
533   }
534   ConvolutionDescriptor& set_horizontal_dilation_rate(int64 value) {
535     SetDim(&dilation_rates_, DimIndex::X, value);
536     return *this;
537   }
538   ConvolutionDescriptor& set_dilation_rate(DimIndex dim, int64 value) {
539     SetDim(&dilation_rates_, dim, value);
540     return *this;
541   }
542   ConvolutionDescriptor& set_pad_alignment(PadAlignment pad_alignment) {
543     pad_alignment_ = pad_alignment;
544     return *this;
545   }
546   int64 zero_padding_height() const {
547     return GetDim(zero_padding_, DimIndex::Y);
548   }
549   int64 zero_padding_width() const {
550     return GetDim(zero_padding_, DimIndex::X);
551   }
552   int64 vertical_filter_stride() const {
553     return GetDim(filter_strides_, DimIndex::Y);
554   }
555   int64 horizontal_filter_stride() const {
556     return GetDim(filter_strides_, DimIndex::X);
557   }
558   int64 vertical_dilation_rate() const {
559     return GetDim(dilation_rates_, DimIndex::Y);
560   }
561   int64 horizontal_dilation_rate() const {
562     return GetDim(dilation_rates_, DimIndex::X);
563   }
564 
565   int zero_padding(DimIndex dim) const { return GetDim(zero_padding_, dim); }
566   int filter_stride(DimIndex dim) const { return GetDim(filter_strides_, dim); }
567   int dilation_rate(DimIndex dim) const { return GetDim(dilation_rates_, dim); }
568   PadAlignment pad_alignment() const { return pad_alignment_; }
569   int ndims() const { return ndims_; }
570 
571   std::vector<int64> strides() const { return filter_strides_; }
572   std::vector<int64> dilations() const { return dilation_rates_; }
573   std::vector<int64> padding() const { return zero_padding_; }
574 
575  private:
576   // Stored as: .. y, x.
577   std::vector<int64> zero_padding_;
578   std::vector<int64> filter_strides_;
579   std::vector<int64> dilation_rates_;
580   PadAlignment pad_alignment_;
581   int ndims_;
582   // TODO(leary) cudnn provides these fields, but need to characterize what
583   // their effect is -- they may be boolean rather than integral.
584   // int64 upscale_input_x;
585   // int64 upscale_input_y;
586 };
587 
588 // A patch of values in the input can be pooled via either a max or an average
589 // operation.
590 // Specify int64 so there's no padding in PoolingDescriptor.
591 enum class PoolingMode : int64 {
592   kMaximum,
593   kAverage,
594 };
595 
596 // Specify the dimension in which to concatenate inputs in space.
597 // Specify int64 so there's no padding in SpaceConcatenateMode.
598 enum class SpaceConcatenateMode : int64 {
599   XDirection,
600   YDirection,
601 };
602 
603 // Returns a short name for the pooling mode, e.g. "Avg".
604 string ShortPoolingModeString(PoolingMode mode);
605 
606 // Describes a pooling operation to be enqueued onto a stream via a platform's
607 // DnnSupport.
608 //
609 // TODO(broune): describe how padding works and what happens if the
610 // window height/width is not divisible by the vertical/horizontal
611 // stride.
612 //
613 // Arguments:
614 //  pooling_mode: pooling operator to use on the input patch
615 //  window_height: height of input window
616 //  window_width: width of input window
617 //  vertical_stride: vertical delta for center of the input patch
618 //  horizontal_stride: horizontal delta for center of the input patch
619 class PoolingDescriptor {
620  public:
621   PoolingDescriptor();
622   explicit PoolingDescriptor(int ndims);
623 
624   PoolingDescriptor& set_pooling_mode(PoolingMode value) {
625     mode_ = value;
626     return *this;
627   }
628   PoolingDescriptor& set_window_height(int64 value) {
629     SetDim(&window_, DimIndex::Y, value);
630     return *this;
631   }
632   PoolingDescriptor& set_window_width(int64 value) {
633     SetDim(&window_, DimIndex::X, value);
634     return *this;
635   }
636   PoolingDescriptor& set_window(DimIndex dim, int64 value) {
637     SetDim(&window_, dim, value);
638     return *this;
639   }
640   PoolingDescriptor& set_vertical_padding(int64 value) {
641     SetDim(&padding_, DimIndex::Y, value);
642     return *this;
643   }
644   PoolingDescriptor& set_horizontal_padding(int64 value) {
645     SetDim(&padding_, DimIndex::X, value);
646     return *this;
647   }
648   PoolingDescriptor& set_padding(DimIndex dim, int64 value) {
649     SetDim(&padding_, dim, value);
650     return *this;
651   }
652   PoolingDescriptor& set_vertical_stride(int64 value) {
653     SetDim(&strides_, DimIndex::Y, value);
654     return *this;
655   }
656   PoolingDescriptor& set_horizontal_stride(int64 value) {
657     SetDim(&strides_, DimIndex::X, value);
658     return *this;
659   }
660   PoolingDescriptor& set_stride(DimIndex dim, int64 value) {
661     SetDim(&strides_, dim, value);
662     return *this;
663   }
664   PoolingDescriptor& set_propagate_nans(bool value) {
665     propagate_nans_ = value;
666     return *this;
667   }
668 
669   int ndims() const { return ndims_; }
670   void CloneFrom(const PoolingDescriptor& other);
671 
672   string ToString() const;
673   string ToShortString() const;
674 
675   PoolingMode mode() const { return mode_; }
676   int64 window_height() const { return GetDim(window_, DimIndex::Y); }
677   int64 window_width() const { return GetDim(window_, DimIndex::X); }
678   int64 window(DimIndex dim) const { return GetDim(window_, dim); }
679   int64 vertical_padding() const { return GetDim(padding_, DimIndex::Y); }
680   int64 horizontal_padding() const { return GetDim(padding_, DimIndex::X); }
681   int64 padding(DimIndex dim) const { return GetDim(padding_, dim); }
682   int64 vertical_stride() const { return GetDim(strides_, DimIndex::Y); }
683   int64 horizontal_stride() const { return GetDim(strides_, DimIndex::X); }
684   int64 stride(DimIndex dim) const { return GetDim(strides_, dim); }
685   std::vector<int64> window() const { return window_; }
686   std::vector<int64> padding() const { return padding_; }
687   std::vector<int64> strides() const { return strides_; }
688   bool propagate_nans() const { return propagate_nans_; }
689 
690  private:
691   PoolingMode mode_;
692   int ndims_;
693   bool propagate_nans_;
694 
695   // Stored as: ..., y, x.
696   std::vector<int64> window_;
697   std::vector<int64> padding_;
698   std::vector<int64> strides_;
699 };
700 
701 // Collects parameters for DNN algorithms
702 class AlgorithmDesc {
703  public:
704   typedef int64 Index;
705   AlgorithmDesc() : algo_(kDefaultAlgorithm), tensor_ops_enabled_(false) {}
706   AlgorithmDesc(Index a, bool use_tensor_ops)
707       : algo_(a), tensor_ops_enabled_(use_tensor_ops) {}
708   bool is_default() const { return algo_ == kDefaultAlgorithm; }
709   bool tensor_ops_enabled() const { return tensor_ops_enabled_; }
710   Index algo_id() const { return algo_; }
711   bool operator==(const AlgorithmDesc& other) const {
712     return this->algo_ == other.algo_ &&
713            this->tensor_ops_enabled_ == other.tensor_ops_enabled_;
714   }
715 
716  private:
717   enum { kDefaultAlgorithm = -1 };
718   Index algo_;
719   bool tensor_ops_enabled_;
720 };
721 
722 // Describes the result from a perf experiment.
723 //
724 // Arguments:
725 //  algorithm: returns the exact algorithm that was used.
726 //  elapsed_time_in_ms: returns the measured elapsed time in milliseconds.
727 class ProfileResult {
728  public:
729   bool is_valid() const {
730     return (!algorithm_.is_default() &&
731             elapsed_time_in_ms_ != std::numeric_limits<float>::max());
732   }
733   AlgorithmDesc algorithm() const { return algorithm_; }
734   void set_algorithm(AlgorithmDesc val) { algorithm_ = val; }
735   float elapsed_time_in_ms() const { return elapsed_time_in_ms_; }
736   void set_elapsed_time_in_ms(float val) { elapsed_time_in_ms_ = val; }
737 
738  private:
739   AlgorithmDesc algorithm_;
740   float elapsed_time_in_ms_ = std::numeric_limits<float>::max();
741 };
742 
743 // Describes the configuration for the algorithms that will used.
744 //
745 // Arguments:
746 //  algorithm: the primary algorithm that should be used.
747 //  algorithm_no_scratch: a secondary algorithm that should be used, if the
748 //    the allocation for the scratch memory fails.
749 class AlgorithmConfig {
750  public:
751   AlgorithmConfig() {}
752   explicit AlgorithmConfig(AlgorithmDesc algorithm) : algorithm_(algorithm) {}
753   AlgorithmConfig(AlgorithmDesc algorithm, AlgorithmDesc algorithm_no_scratch)
754       : algorithm_(algorithm), algorithm_no_scratch_(algorithm_no_scratch) {}
755   AlgorithmDesc algorithm() const { return algorithm_; }
756   void set_algorithm(AlgorithmDesc val) { algorithm_ = val; }
757   AlgorithmDesc algorithm_no_scratch() const { return algorithm_no_scratch_; }
758   void set_algorithm_no_scratch(AlgorithmDesc val) {
759     algorithm_no_scratch_ = val;
760   }
761   bool operator==(const AlgorithmConfig& other) const {
762     return this->algorithm_ == other.algorithm_ &&
763            this->algorithm_no_scratch_ == other.algorithm_no_scratch_;
764   }
765   bool operator!=(const AlgorithmConfig& other) const {
766     return !(*this == other);
767   }
768   string ToString() const;
769 
770  private:
771   AlgorithmDesc algorithm_;
772   AlgorithmDesc algorithm_no_scratch_;
773 };
774 
775 // Describes a local response normalization (LRN). LRN is used e.g. in
776 // dist_belief.
777 //
778 // Let V be the vector of feature maps at some (batch, y, x)
779 // coordinate. LRN applies independently to each vector V in the
780 // input, across all coordinates (batch, y, x), by mapping each V to
781 // another vector U of the same size using the formula
782 //
783 //   U_i = V_i / ((bias + alpha * (sum_j V_j^2)) ^ beta)
784 //
785 // where the sum is taken over j in the closed range [i - range, i + range].
786 //
787 // When calculating U_i the j in the sum can extend beyond the bounds
788 // of V. If wrap_around is true, then V_j = V_{j mod F} where F is the
789 // size of V, which is the number of feature maps. If wrap_around is
790 // false, then V_j = 0 for j outside [0, F-1].
791 //
792 // If segment_size <= F, where F is the number of feature_maps, then
793 // segment_size has no effect. Otherwise, each consecutive segment of
794 // segment_size entries in V are normalized separately.
795 //
796 // Not all StreamExecutors allow wrap_around == true or segment_size
797 // != 64. Some do not implement normalization at all.
798 class NormalizeDescriptor {
799  public:
800   NormalizeDescriptor();
801 
802   NormalizeDescriptor& set_bias(float bias) {
803     bias_ = bias;
804     return *this;
805   }
806 
807   NormalizeDescriptor& set_range(int32 range) {
808     range_ = range;
809     return *this;
810   }
811 
812   NormalizeDescriptor& set_alpha(float alpha) {
813     alpha_ = alpha;
814     return *this;
815   }
816 
817   NormalizeDescriptor& set_beta(float beta) {
818     beta_ = beta;
819     return *this;
820   }
821 
822   NormalizeDescriptor& set_wrap_around(bool wrap_around) {
823     wrap_around_ = wrap_around;
824     return *this;
825   }
826 
827   NormalizeDescriptor& set_segment_size(int32 segment_size) {
828     segment_size_ = segment_size;
829     return *this;
830   }
831 
832   void CloneFrom(const NormalizeDescriptor& other);
833 
834   string ToString() const;
835   string ToShortString() const;
836 
837   float bias() const { return bias_; }
838   int32 range() const { return range_; }
839   float alpha() const { return alpha_; }
840   float beta() const { return beta_; }
841   bool wrap_around() const { return wrap_around_; }
842   int32 segment_size() const { return segment_size_; }
843 
844  private:
845   float bias_;
846   int32 range_;
847   float alpha_;
848   float beta_;
849   bool wrap_around_;
850   int32 segment_size_;
851 };
852 
853 // Describes a kind of non-linearity (threshold-like mathematical function).
854 enum class ActivationMode {
855   kNone,
856   kSigmoid,
857   // Rectified linear activation: f(x) = x < 0 ? 0 : x
858   kRelu,
859   // Rectified linear activation, where upper maximum is 6.0.
860   kRelu6,
861   // Rectified linear activation, where upper maximum specified by
862   // BatchDescriptor::value_max().
863   kReluX,
864   kTanh,
865   // Like ReluX, but passes all values in the range [-X,X].
866   kBandPass,
867 };
868 
869 // Returns a string representation of the given activation mode.
870 string ActivationModeString(ActivationMode mode);
871 
872 // Describes the operation that DoElementwiseOperation should perform on its
873 // inputs.
874 enum class ElementwiseOperation { kAdd, kMultiply };
875 
876 string ElementwiseOperationString(ElementwiseOperation op);
877 
878 // Suite of operations typically used for implementing Deep/Convolutional Neural
879 // Nets. Note: A false return value of an operation indicates the
880 // implementation is not available.
881 class DnnSupport {
882  public:
883   DnnSupport() {}
884   virtual ~DnnSupport() {}
885 
886   virtual port::Status Init() = 0;
887 
888   // Performs a single-precision forward batch normalization operation onto
889   // the stream.
890   //
891   // Arguments:
892   //  stream: borrowed pointer to the stream that the batch normalization
893   //    operation should be enqueued onto.
894   //  x: input data.
895   //  scale: scaling parameters.
896   //  offset: offset parameters.
897   //  estimated_mean: population mean estimated during training.
898   //    Used for inference only; empty for training.
899   //  estimated_variance: population variance estimated during training,
900   //    used for inference only; empty for training.
901   //  x_desc: dimensions of the input data, which is the same as the dimensions
902   //    of the output.
903   //  scale_offset_desc: dimensions of scale and offset.
904   //  epsilon: a small floating point number added to the variance of x.
905   //  y: output data.
906   //  batch_mean: batch mean, to be used to compute the running mean.
907   //  batch_variance: batch variance, to be used to compute
908   //    the running variance.
909   //  reserve_space_1: saved mean, to be reused in the backward gradient
910   //    computation.
911   //  reserve_space_2: saved inv_var (1/sqrt(epsilon + variance), to be reused
912   //    in the backward gradient computation.
913   //  is_training: Set to true for training, false for inference.
914   //  var_to_inv_var: a function to convert the variance to inverted variance
915   //    for cuDNN v4 forward inference.
916   //  inv_var_to_var: a function to convert the inverted variance to
917   //    variance for cuDNN v4 forward training, to be used for TensorFlow
918   //    to calculate the running variance.
919   virtual bool DoBatchNormalizationForward(
920       Stream* stream, const DeviceMemory<float>& x,
921       const DeviceMemory<float>& scale, const DeviceMemory<float>& offset,
922       const DeviceMemory<float>& estimated_mean,
923       const DeviceMemory<float>& estimated_variance,
924       const dnn::BatchDescriptor& x_desc,
925       const dnn::BatchDescriptor& scale_offset_desc, const double epsilon,
926       DeviceMemory<float>* y, DeviceMemory<float>* batch_mean,
927       DeviceMemory<float>* batch_var, DeviceMemory<float>* reserve_space_1,
928       DeviceMemory<float>* reserve_space_2, bool is_training,
929       std::function<const DeviceMemory<float>&()> var_to_inv_var,
930       std::function<void()> inv_var_to_var) {
931     return false;
932   }
933 
934   // Performs a half-precision forwards batch normalization operation onto the
935   // stream. See DoBatchNormalizationForward above for argument details.
936   virtual bool DoBatchNormalizationForward(
937       Stream* stream, const DeviceMemory<Eigen::half>& x,
938       const DeviceMemory<float>& scale, const DeviceMemory<float>& offset,
939       const DeviceMemory<float>& estimated_mean,
940       const DeviceMemory<float>& estimated_variance,
941       const dnn::BatchDescriptor& x_desc,
942       const dnn::BatchDescriptor& scale_offset_desc, const double epsilon,
943       DeviceMemory<Eigen::half>* y, DeviceMemory<float>* batch_mean,
944       DeviceMemory<float>* batch_var, DeviceMemory<float>* reserve_space_1,
945       DeviceMemory<float>* reserve_space_2, bool is_training,
946       std::function<const DeviceMemory<float>&()> var_to_inv_var,
947       std::function<void()> inv_var_to_var) {
948     return false;
949   }
950 
951   // Performs a single-precision backward batch normalization gradient
952   // computation operation onto the stream.
953   //
954   // Arguments:
955   //  stream: borrowed pointer to the stream that the batch normalization
956   //    gradient computation operation should be enqueued onto.
957   //  y_backprop: gradient with regard to output y.
958   //  x: input data.
959   //  scale: scaling parameters.
960   //  inv_var: 1/sqrt(epsilon + variance) of x.
961   //  x_desc: dimensions of the input data, which is the same as the dimensions
962   //    of the output.
963   //  scale_offset_desc: dimensions of scale and offset.
964   //  epsilon: a small floating point number added to the variance of x.
965   //  x_backprop: gradient with respect to input x.
966   //  scale_backprop: gradient with respect to scale.
967   //  offset_backprop: gradient with respect to offset.
968   virtual bool DoBatchNormalizationBackward(
969       Stream* stream, const DeviceMemory<float>& y_backprop,
970       const DeviceMemory<float>& x, const DeviceMemory<float>& scale,
971       const DeviceMemory<float>& mean, const DeviceMemory<float>& inv_var,
972       const dnn::BatchDescriptor& x_desc,
973       const dnn::BatchDescriptor& scale_offset_desc, const double epsilon,
974       DeviceMemory<float>* x_backprop, DeviceMemory<float>* scale_backprop,
975       DeviceMemory<float>* offset_backprop) {
976     return false;
977   }
978 
979   // Performs a half-precision backward batch normalization gradient computation
980   // operation onto the stream. See DoBatchNormalizationBackward above for
981   // argument details.
982   virtual bool DoBatchNormalizationBackward(
983       Stream* stream, const DeviceMemory<Eigen::half>& y_backprop,
984       const DeviceMemory<Eigen::half>& x, const DeviceMemory<float>& scale,
985       const DeviceMemory<float>& mean, const DeviceMemory<float>& inv_var,
986       const dnn::BatchDescriptor& x_desc,
987       const dnn::BatchDescriptor& scale_offset_desc, const double epsilon,
988       DeviceMemory<Eigen::half>* x_backprop,
989       DeviceMemory<float>* scale_backprop,
990       DeviceMemory<float>* offset_backprop) {
991     return false;
992   }
993 
994   // Enqueues a fused convolution operation onto the stream.
995   // We provide several variants with different types for inputs, biases and
996   // scaling parameters.
997   //
998   // Arguments (all borrowed):
999   //  stream: borrowed pointer to the stream that the 'convolve' operation
1000   //    should be enqueued onto.
1001   //  conv_input_descriptor: dimensions of the convolution input layer.
1002   //  conv_input_data: un-owned device memory region which contains the
1003   //    convolution input.
1004   //  conv_input_scale: a floating point scale to multiply with each element
1005   //    of conv_input_data.
1006   //  filter_descriptor: dimensions of the convolution filter.
1007   //  filter_data: un-owned device memory region which contains the
1008   //    convolution filter weights.
1009   //  convolution_descriptor: stride of the convolution filter.
1010   //  biases: un-owned device memory region containing biases to add to the
1011   //    input.
1012   //  activation_mode: Type of activation to perform.
1013   //  side_input_data: un-owned device memory region which contains optional
1014   //    side input data. If 'side_input_scale' is non-zero, then this must
1015   //    point to data in the tensor shape specified by output_shape.
1016   //    It will be scaled by 'side_input_scale' and added to the convolution
1017   //    result and bias prior to applying the activation function.
1018   //  side_input_scale: a floating point scale to multiply with each element
1019   //    of side_input_data.
1020   //  output_descriptor: dimensions of the output layer.
1021   //  output_data: un-owned device memory region in which to place the
1022   //    convolution result.
1023   //  scratch_allocator: un-owned, may-be-null object that may allocate scratch
1024   //    space in order to speed up the convolution operation.
1025   //  algorithm: specifies which algorithm should be used for the
1026   //    operation. If algorithm.is_default(), the system will pick an algorithm
1027   //    by default. The coding of the algorithm is be interpretted by the
1028   //    underlying implementation.
1029   //  output_profile_result: the output profile result for this call. The
1030   //    profiling is only enabled when this is not nullptr.
1031   //
1032   // conv_input_descriptor, filter_descriptor, convolution_descriptor and
1033   // output_descriptor together specify exactly how the convolution is aligned
1034   // with the input data:
1035   //
1036   // * (input dimensions - filter size + 1) / filter stride == output dimensions
1037   //   corresponds to dist_belief padding = VALID, i.e. the input is not padded.
1038   // * input dimensions / filter stride == output dimensions
1039   //   corresponds to dist_belief padding = SAME, i.e. input and output are the
1040   //   same size - this requires padding the input.
1041   // * (input dimensions + filter size - 1) / filter stride == output dimensions
1042   //   corresponds to dist_belief padding = FULL, i.e. the output is sized so
1043   //   that if the inverse of the filter is applied to the output in VALID mode
1044   //   the result is the same size as the input - this requires even more
1045   //   padding of the input.
1046   virtual bool DoFusedConvolve(
1047       Stream* stream, const dnn::BatchDescriptor& conv_input_descriptor,
1048       const DeviceMemory<double>& conv_input_data, double conv_input_scale,
1049       const dnn::FilterDescriptor& filter_descriptor,
1050       const DeviceMemory<double>& filter_data,
1051       const dnn::ConvolutionDescriptor& convolution_descriptor,
1052       const DeviceMemory<double>& side_input_data, double side_input_scale,
1053       const dnn::BatchDescriptor& bias_descriptor,
1054       const DeviceMemory<double>& biases, dnn::ActivationMode activation_mode,
1055       const dnn::BatchDescriptor& output_descriptor,
1056       DeviceMemory<double>* output_data, ScratchAllocator* scratch_allocator,
1057       const dnn::AlgorithmConfig& algorithm_config,
1058       dnn::ProfileResult* output_profile_result) {
1059     return false;
1060   }
1061 
1062   // This is the float version of DoFusedConvolve.
1063   virtual bool DoFusedConvolve(
1064       Stream* stream, const dnn::BatchDescriptor& conv_input_descriptor,
1065       const DeviceMemory<float>& conv_input_data, float conv_input_scale,
1066       const dnn::FilterDescriptor& filter_descriptor,
1067       const DeviceMemory<float>& filter_data,
1068       const dnn::ConvolutionDescriptor& convolution_descriptor,
1069       const DeviceMemory<float>& side_input_data, float side_input_scale,
1070       const dnn::BatchDescriptor& bias_descriptor,
1071       const DeviceMemory<float>& biases, dnn::ActivationMode activation_mode,
1072       const dnn::BatchDescriptor& output_descriptor,
1073       DeviceMemory<float>* output_data, ScratchAllocator* scratch_allocator,
1074       const dnn::AlgorithmConfig& algorithm_config,
1075       dnn::ProfileResult* output_profile_result) {
1076     return false;
1077   }
1078 
1079   // This is the Eigen::half version of DoFusedConvolve.
1080   // The scaling parameters are still floats.
1081   virtual bool DoFusedConvolve(
1082       Stream* stream, const dnn::BatchDescriptor& conv_input_descriptor,
1083       const DeviceMemory<Eigen::half>& conv_input_data, float conv_input_scale,
1084       const dnn::FilterDescriptor& filter_descriptor,
1085       const DeviceMemory<Eigen::half>& filter_data,
1086       const dnn::ConvolutionDescriptor& convolution_descriptor,
1087       const DeviceMemory<Eigen::half>& side_input_data, float side_input_scale,
1088       const dnn::BatchDescriptor& bias_descriptor,
1089       const DeviceMemory<Eigen::half>& biases,
1090       dnn::ActivationMode activation_mode,
1091       const dnn::BatchDescriptor& output_descriptor,
1092       DeviceMemory<Eigen::half>* output_data,
1093       ScratchAllocator* scratch_allocator,
1094       const dnn::AlgorithmConfig& algorithm_config,
1095       dnn::ProfileResult* output_profile_result) {
1096     return false;
1097   }
1098 
1099   // This is the int8 version of DoFusedConvolve.
1100   // The bias input and scaling parameters are floats.
1101   virtual bool DoFusedConvolve(
1102       Stream* stream, const dnn::BatchDescriptor& conv_input_descriptor,
1103       const DeviceMemory<int8>& conv_input_data, float conv_input_scale,
1104       const dnn::FilterDescriptor& filter_descriptor,
1105       const DeviceMemory<int8>& filter_data,
1106       const dnn::ConvolutionDescriptor& convolution_descriptor,
1107       const DeviceMemory<int8>& side_input_data, float side_input_scale,
1108       const dnn::BatchDescriptor& bias_descriptor,
1109       const DeviceMemory<float>& biases, dnn::ActivationMode activation_mode,
1110       const dnn::BatchDescriptor& output_descriptor,
1111       DeviceMemory<int8>* output_data, ScratchAllocator* scratch_allocator,
1112       const dnn::AlgorithmConfig& algorithm_config,
1113       dnn::ProfileResult* output_profile_result) {
1114     return false;
1115   }
1116 
1117   // Enqueues a single-precision convolution operation onto the stream.
1118   //
1119   // Arguments (all borrowed):
1120   //  stream: borrowed pointer to the stream that the 'convolve' operation
1121   //    should be enqueued onto.
1122   //  input_descriptor: dimensions of the input layer.
1123   //  input_data: un-owned device memory region which contains the
1124   //    convolution input.
1125   //  filter_descriptor: dimensions of the convolution filter.
1126   //  convolution_descriptor: stride of the convolution filter.
1127   //  input. This can be DeviceMemory pointing to NULL only when activation_mode
1128   //  is kNone.
1129   //  output_descriptor: dimensions of the output layer.
1130   //  output_data: un-owned device memory region in which to place the
1131   //    convolution result.
1132   //  scratch_allocator: un-owned, may-be-null object that may allocate scratch
1133   //    space in order to speed up the convolution operation.
1134   //  algorithm: an integer to specify which algorithm should be used for the
1135   //    operation. kDefaultAlgorithm means the system will pick an algorithm
1136   //    by default. The coding of the algorithm is be interpreted by the
1137   //    underlying implementation.
1138   //  output_profile_result: the output profile result for this call. The
1139   //    profiling is only enabled when this is not nullptr.
1140   //
1141   // input_descriptor, filter_descriptor, convolution_descriptor and
1142   // output_descriptor together specify exactly how the convolution is aligned
1143   // with the input data:
1144   //
1145   // * (input dimensions - filter size + 1) / filter stride == output dimensions
1146   //   corresponds to dist_belief padding = VALID, i.e. the input is not padded.
1147   // * input dimensions / filter stride == output dimensions
1148   //   corresponds to dist_belief padding = SAME, i.e. input and output are the
1149   //   same size - this requires padding the input.
1150   // * (input dimensions + filter size - 1) / filter stride == output dimensions
1151   //   corresponds to dist_belief padding = FULL, i.e. the output is sized so
1152   //   that if the inverse of the filter is applied to the output in VALID mode
1153   //   the result is the same size as the input - this requires even more
1154   //   padding of the input.
1155   virtual bool DoConvolve(
1156       Stream* stream, const dnn::BatchDescriptor& input_descriptor,
1157       const DeviceMemory<float>& input_data,
1158       const dnn::FilterDescriptor& filter_descriptor,
1159       const DeviceMemory<float>& filter_data,
1160       const dnn::ConvolutionDescriptor& convolution_descriptor,
1161       const dnn::BatchDescriptor& output_descriptor,
1162       DeviceMemory<float>* output_data, ScratchAllocator* scratch_allocator,
1163       const dnn::AlgorithmConfig& algorithm_config,
1164       ProfileResult* output_profile_result) = 0;
1165 
1166   // Enqueues a double-precision convolution operation onto the stream.
1167   // See DoConvolve above for argument details.
1168   virtual bool DoConvolve(
1169       Stream* stream, const dnn::BatchDescriptor& batch_descriptor,
1170       const DeviceMemory<double>& input_data,
1171       const dnn::FilterDescriptor& filter_descriptor,
1172       const DeviceMemory<double>& filter_data,
1173       const dnn::ConvolutionDescriptor& convolution_descriptor,
1174       const dnn::BatchDescriptor& output_descriptor,
1175       DeviceMemory<double>* output_data) = 0;
1176 
1177   // Enqueues a half-precision convolution operation onto the stream.
1178   // See DoConvolve above for argument details.
1179   virtual bool DoConvolve(
1180       Stream* stream, const dnn::BatchDescriptor& batch_descriptor,
1181       const DeviceMemory<Eigen::half>& input_data,
1182       const dnn::FilterDescriptor& filter_descriptor,
1183       const DeviceMemory<Eigen::half>& filter_data,
1184       const dnn::ConvolutionDescriptor& convolution_descriptor,
1185       const dnn::BatchDescriptor& output_descriptor,
1186       DeviceMemory<Eigen::half>* output_data,
1187       ScratchAllocator* scratch_allocator,
1188       const dnn::AlgorithmConfig& algorithm_config,
1189       ProfileResult* output_profile_result) = 0;
1190 
1191   // Return a list of algorithms supported by the forward convolution pass.
1192   virtual bool GetConvolveAlgorithms(
1193       bool with_winograd_nonfused, int cc_major, int cc_minor,
1194       std::vector<AlgorithmDesc>* out_algorithms);
1195 
1196   // Version of DoConvolve that uses pre-quantized 8 bit coefficients.
1197   // coefficient_scales specifies the scaling of each column of coefficients:
1198   // original float coefficient[row * num_columns + column] =
1199   //     quantized coefficient[row * num_columns + column] *
1200   //     coefficient_scales[column].
1201   virtual bool DoConvolveQuantized(
1202       Stream* stream, const dnn::BatchDescriptor& input_descriptor,
1203       const DeviceMemory<float>& input_data,
1204       const dnn::FilterDescriptor& filter_descriptor,
1205       const DeviceMemory<int8>& filter_coefficients,
1206       const DeviceMemory<float>& coefficient_scales,
1207       const dnn::ConvolutionDescriptor& convolution_descriptor,
1208       const dnn::BatchDescriptor& output_descriptor,
1209       DeviceMemory<float>* output_data) = 0;
1210 
1211   // Same as DoConvolveQuantized above, but int8 filter coefficients.
1212   virtual bool DoConvolveQuantized(
1213       Stream* stream, const dnn::BatchDescriptor& input_descriptor,
1214       const DeviceMemory<float>& input_data,
1215       const dnn::FilterDescriptor& filter_descriptor,
1216       const DeviceMemory<int16>& filter_coefficients,
1217       const DeviceMemory<float>& coefficient_scales,
1218       const dnn::ConvolutionDescriptor& convolution_descriptor,
1219       const dnn::BatchDescriptor& output_descriptor,
1220       DeviceMemory<float>* output_data) = 0;
1221 
1222   // Variation of the above with the weight matrix split into two matrices.
1223   // first_weights: Coefficients of the first matrix.
1224   // second_weights: Coefficients of the second matrix.
1225   // depth_multiplier: specifies the columns of the first matrix and rows
1226   // of the second one - first_weights columns = depth_multiplier,
1227   // second_weights rows = depth_multiplier *
1228   //                       filter_descriptor.input_feature_map_count().
1229   // see go/separable for documentation on separable convolutions.
1230   virtual bool DoSeparableConvolve(
1231       Stream* stream, const BatchDescriptor& input_descriptor,
1232       const DeviceMemory<float>& input_data,
1233       const FilterDescriptor& filter_descriptor, int depth_multiplier,
1234       const DeviceMemory<float>& first_weights,
1235       const DeviceMemory<float>& second_weights,
1236       const ConvolutionDescriptor& convolution_descriptor,
1237       const BatchDescriptor& output_descriptor,
1238       DeviceMemory<float>* output_data) = 0;
1239 
1240   // Enqueues a single-precision backward convolution (for data) operation onto
1241   // the stream.
1242   //
1243   // Arguments:
1244   //  stream: borrowed pointer to the stream that the 'convolve' operation
1245   //    should be enqueued onto.
1246   //  filter_descriptor: dimensions of the convolution filter.
1247   //  filter_data: coefficients for the convolution filter.
1248   //  output_descriptor: dimensions of the output gradients, which is the same
1249   //    as the dimensions of the output.
1250   //  backward_output_data: un-owned device memory region which contains the
1251   //    backprop of the output.
1252   //  convolution_descriptor: stride of the convolution filter.
1253   //  input_descriptor: dimensions of the input layer.
1254   //  backward_input_data: un-owned device memory region in which to place the
1255   //    backprop of the input.
1256   //  scratch_allocator: un-owned, may-be-null object that may allocate scratch
1257   //    space in order to speed up the convolution operation.
1258   virtual bool DoConvolveBackwardData(
1259       Stream* stream, const FilterDescriptor& filter_descriptor,
1260       const DeviceMemory<float>& filter_data,
1261       const BatchDescriptor& output_descriptor,
1262       DeviceMemory<float> backward_output_data,
1263       const ConvolutionDescriptor& convolution_descriptor,
1264       const BatchDescriptor& input_descriptor,
1265       DeviceMemory<float>* backward_input_data,
1266       ScratchAllocator* scratch_allocator,
1267       const dnn::AlgorithmConfig& algorithm_config,
1268       ProfileResult* output_profile_result) = 0;
1269 
1270   // Return a list of algorithms supported by the backward convolution pass for
1271   // data.
1272   virtual bool GetConvolveBackwardDataAlgorithms(
1273       bool with_winograd_nonfused, int cc_major, int cc_minor,
1274       std::vector<AlgorithmDesc>* out_algorithms);
1275 
1276   virtual bool DoConvolveBackwardData(
1277       Stream* stream, const FilterDescriptor& filter_descriptor,
1278       const DeviceMemory<Eigen::half>& filter_data,
1279       const BatchDescriptor& output_descriptor,
1280       DeviceMemory<Eigen::half> backward_output_data,
1281       const ConvolutionDescriptor& convolution_descriptor,
1282       const BatchDescriptor& input_descriptor,
1283       DeviceMemory<Eigen::half>* backward_input_data,
1284       ScratchAllocator* scratch_allocator,
1285       const dnn::AlgorithmConfig& algorithm_config,
1286       ProfileResult* output_profile_result) = 0;
1287 
1288   // Enqueues a single-precision backward convolution (for filter) operation
1289   // onto the stream.
1290   //
1291   // Arguments:
1292   //  stream: borrowed pointer to the stream that the 'convolve' operation
1293   //    should be enqueued onto.
1294   //  input_descriptor: dimensions of the input layer.
1295   //  input_data: un-owned device memory region which contains the
1296   //    convolution input.
1297   //  output_descriptor: dimensions of the output gradients, which is the same
1298   //    as the dimensions of the output.
1299   //  backward_output_data: un-owned device memory region which contains the
1300   //    backprop of the output.
1301   //  convolution_descriptor: stride of the convolution filter.
1302   //  filter_descriptor: dimensions of the convolution filter.
1303   //  backward_filter_data: un-owned device memory region in which to place the
1304   //    backprop of the filter.
1305   //  scratch_allocator: un-owned, may-be-null object that may allocate scratch
1306   //    space in order to speed up the convolution operation.
1307   virtual bool DoConvolveBackwardFilter(
1308       Stream* stream, const BatchDescriptor& input_descriptor,
1309       const DeviceMemory<float>& input_data,
1310       const BatchDescriptor& output_descriptor,
1311       DeviceMemory<float> backward_output_data,
1312       const ConvolutionDescriptor& convolution_descriptor,
1313       const FilterDescriptor& filter_descriptor,
1314       DeviceMemory<float>* backward_filter_data,
1315       ScratchAllocator* scratch_allocator,
1316       const dnn::AlgorithmConfig& algorithm_config,
1317       ProfileResult* output_profile_result) = 0;
1318 
1319   // Return a list of algorithms supported by the backward convolution pass for
1320   // filters.
1321   virtual bool GetConvolveBackwardFilterAlgorithms(
1322       bool with_winograd_nonfused, int cc_major, int cc_minor,
1323       std::vector<AlgorithmDesc>* out_algorithms);
1324 
1325   virtual bool DoConvolveBackwardFilter(
1326       Stream* stream, const BatchDescriptor& input_descriptor,
1327       const DeviceMemory<Eigen::half>& input_data,
1328       const BatchDescriptor& output_descriptor,
1329       DeviceMemory<Eigen::half> backward_output_data,
1330       const ConvolutionDescriptor& convolution_descriptor,
1331       const FilterDescriptor& filter_descriptor,
1332       DeviceMemory<Eigen::half>* backward_filter_data,
1333       ScratchAllocator* scratch_allocator,
1334       const dnn::AlgorithmConfig& algorithm_config,
1335       ProfileResult* output_profile_result) = 0;
1336 
1337   // Enqueues a single-precision backward convolution (for bias) operation onto
1338   // the stream.
1339   //
1340   // Arguments:
1341   //  stream: borrowed pointer to the stream that the 'convolve' operation
1342   //    should be enqueued onto.
1343   //  input_descriptor: dimensions of the input layer.
1344   //  input_data: un-owned device memory region which contains the
1345   //    convolution input.
1346   //  bias_descriptor: dimensions of the bias tensor. Should be the same as the
1347   //    input dimensions, but with the spatial dimensions set to 1.
1348   //  backward_filter_data: un-owned device memory region in which to place the
1349   //    backprop of the bias.
1350   virtual bool DoConvolveBackwardBias(Stream* stream,
1351                                       const BatchDescriptor& input_descriptor,
1352                                       const DeviceMemory<float>& input_data,
1353                                       const BatchDescriptor& bias_descriptor,
1354                                       DeviceMemory<float>* backward_bias_data) {
1355     return false;
1356   }
1357 
1358   virtual bool DoConvolveBackwardBias(
1359       Stream* stream, const BatchDescriptor& input_descriptor,
1360       const DeviceMemory<double>& input_data,
1361       const BatchDescriptor& bias_descriptor,
1362       DeviceMemory<double>* backward_bias_data) {
1363     return false;
1364   }
1365 
1366   virtual bool DoConvolveBackwardBias(
1367       Stream* stream, const BatchDescriptor& input_descriptor,
1368       const DeviceMemory<Eigen::half>& input_data,
1369       const BatchDescriptor& bias_descriptor,
1370       DeviceMemory<Eigen::half>* backward_bias_data) {
1371     return false;
1372   }
1373 
1374   // Fully connects the "nodes" (float values) in input_data with
1375   // shape input_dimensions to output_data with output_dimensions
1376   // using provided weights. This is equivalent to computing a matrix
1377   // product, hence the name MatMul.
1378   //
1379   // A BatchDescriptor has four dimensions: batch, y, x, depth. Matrix products
1380   // happen in two dimensions. To get down to two dimensions, we consider the
1381   // input y, x and depth dimension as one combined dimension T. For now,
1382   // assume that the output height and width are 1 and let OD be the output
1383   // depth.
1384   //
1385   // There are three device memory buffers passed in to this
1386   // function. We can now view all three as matrices:
1387   //
1388   //   input_data: A batch x T matrix
1389   //   weights: A T x OD matrix
1390   //   output_data: A batch x OD matrix
1391   //
1392   // This function then computes the matrix product of input_data and
1393   // weights and writes the result into output_data.
1394   //
1395   // Here the weights buffer is in row major order, i.e. the first OD
1396   // entries in weights are the first row, the second OD entries in
1397   // weights are the second row and so on.
1398   //
1399   // The case for output width*height > 1 is more complicated. Let K =
1400   // OY * OX where OY is the output height and OX is the output
1401   // width. Then weights is divided into K sub-arrays W_i, for
1402   // i=0,...,k-1, that each represent a T x OD matrix. This function
1403   // then computes the K matrix multiplications of input_data with
1404   // each W_i. This creates K matrices with dimensions batch x
1405   // OD. These K matrices are concatenated horizontally to form one
1406   // larger matrix with dimensions batch x (K*OD); note that this is
1407   // not the same as concatenating the bytes of the matrices. The
1408   // combined matrix can then be interpreted as a tensor with
1409   // dimensions (batch, OY, OX, OD). If the output tensor format is
1410   // not kBatchYXDepth, this function would then need to arrange for
1411   // the output to be in the requested layout, if that is
1412   // supported. Note that the case K=1 is equivalent to the
1413   // description above. It is recommended to prefer the case K=1.
1414   //
1415   // Arguments (all borrowed):
1416   //  stream: borrowed pointer to the stream that the 'fully connect' operation
1417   //    should be enqueued onto.
1418   //  output_data: un-owned device memory region in which to place the
1419   //    fully connected result.
1420   virtual bool DoMatMul(Stream* stream, const DeviceMemory<float>& input_data,
1421                         const DeviceMemory<float>& weights,
1422                         const dnn::BatchDescriptor& input_dimensions,
1423                         const dnn::BatchDescriptor& output_dimensions,
1424                         DeviceMemory<float>* output_data) = 0;
1425 
1426   // Version of DoMatMul that uses pre-quantized 8 bit weights.
1427   // weight_scales specifies the scaling of each column of weights:
1428   // original float weight[row * num_columns + column] =
1429   //     quantized_weight[row * nnum_columns + column] * weight_scales[column].
1430   virtual bool DoMatMulQuantized(Stream* stream,
1431                                  const DeviceMemory<float>& input_data,
1432                                  const DeviceMemory<int8>& quantized_weights,
1433                                  const DeviceMemory<float>& weight_scales,
1434                                  const dnn::BatchDescriptor& input_dimensions,
1435                                  const dnn::BatchDescriptor& output_dimensions,
1436                                  DeviceMemory<float>* output_data) = 0;
1437 
1438   // Version of DoMatMul that uses pre-quantized 16 bit weights.
1439   // weight_scales specifies the scaling of each column of weights:
1440   // original float weight[row * num_columns + column] =
1441   //     quantized_weight[row * nnum_columns + column] * weight_scales[column].
1442   virtual bool DoMatMulQuantized(Stream* stream,
1443                                  const DeviceMemory<float>& input_data,
1444                                  const DeviceMemory<int16>& quantized_weights,
1445                                  const DeviceMemory<float>& weight_scales,
1446                                  const dnn::BatchDescriptor& input_dimensions,
1447                                  const dnn::BatchDescriptor& output_dimensions,
1448                                  DeviceMemory<float>* output_data) = 0;
1449 
1450   // Adds biases to the feature maps in input_data producing
1451   // output_data. input_data can equal output_data, but must not
1452   // partially overlap it.
1453   //
1454   // Let K = count() * height() * width() and N = feature_map_count()
1455   // on dimensions. Then input_value contains K*N values and biases
1456   // contains N values. We can thus logically consider input_value to
1457   // contain K vectors of N elements each. This function adds biases
1458   // to each of those N vectors.
1459   //
1460   // TODO(broune): This works differently when width() * height() > 1
1461   // and the call to ThenBiasAdd() follows a call to ThenMatMul(). In
1462   // that case there should be width() * height() *
1463   // feature_map_count() biases, but this is not implemented on all
1464   // StreamExecutors.
1465   //
1466   // Arguments (all borrowed):
1467   //  stream: borrowed pointer to the stream that the 'bias add' operation
1468   //    should be enqueued onto.
1469   //  input_data: un-owned device memory region containing the input.
1470   //  biases: un-owned device memory region containing biases to add to the
1471   //    input.
1472   //  dimensions: dimensions of input_data and output_data.
1473   //  output_data: un-owned device memory region in which to place the result.
1474   virtual bool DoBiasAdd(Stream* stream, const DeviceMemory<float>& input_data,
1475                          const DeviceMemory<float>& biases,
1476                          const dnn::BatchDescriptor& dimensions,
1477                          DeviceMemory<float>* output_data) = 0;
1478 
1479   // Performs a forward pooling operation on input_data, writing to
1480   // output_data. See PoolingDescriptor for how to configure the
1481   // pooling operation.
1482   //
1483   // Pooling happens as a window that moves across the Y and X
1484   // dimensions of input_data, where each position of the window
1485   // yields one output value. E.g. for max pooling, the computed value
1486   // is the maximum element in the window. The operation is applied
1487   // independently to each batch and at each feature map (depth), so
1488   // that the output depth and feature_map_count are the same as for
1489   // the input. The output width and height can be different.
1490   //
1491   // See PoolingDescriptor for how to configure the pooling operation.
1492   virtual bool DoPoolForward(Stream* stream,
1493                              const dnn::PoolingDescriptor& pooling_dimensions,
1494                              const dnn::BatchDescriptor& input_dimensions,
1495                              const DeviceMemory<float>& input_data,
1496                              const dnn::BatchDescriptor& output_dimensions,
1497                              DeviceMemory<float>* output_data) = 0;
1498 
1499   virtual bool DoPoolForward(Stream* stream,
1500                              const dnn::PoolingDescriptor& pooling_dimensions,
1501                              const dnn::BatchDescriptor& input_dimensions,
1502                              const DeviceMemory<double>& input_data,
1503                              const dnn::BatchDescriptor& output_dimensions,
1504                              DeviceMemory<double>* output_data) {
1505     LOG(FATAL) << "DoPoolForward not implemented for double.";
1506     return false;
1507   }
1508 
1509   virtual bool DoPoolForward(Stream* stream,
1510                              const dnn::PoolingDescriptor& pooling_dimensions,
1511                              const dnn::BatchDescriptor& input_dimensions,
1512                              const DeviceMemory<Eigen::half>& input_data,
1513                              const dnn::BatchDescriptor& output_dimensions,
1514                              DeviceMemory<Eigen::half>* output_data) {
1515     LOG(FATAL) << "DoPoolForward not implemented for float16.";
1516     return false;
1517   }
1518 
1519   // Performs differentiation of the pooling operation.
1520   virtual bool DoPoolBackward(Stream* stream,
1521                               const dnn::PoolingDescriptor& pooling_dimensions,
1522                               const dnn::BatchDescriptor& input_dimensions,
1523                               const DeviceMemory<double>& input_data,
1524                               const dnn::BatchDescriptor& output_dimensions,
1525                               const DeviceMemory<double>& output_data,
1526                               const DeviceMemory<double>& input_diff_data,
1527                               DeviceMemory<double>* output_diff_data) {
1528     LOG(FATAL) << "DoPoolBackward not implemented.";
1529     return false;
1530   }
1531 
1532   virtual bool DoPoolBackward(Stream* stream,
1533                               const dnn::PoolingDescriptor& pooling_dimensions,
1534                               const dnn::BatchDescriptor& input_dimensions,
1535                               const DeviceMemory<float>& input_data,
1536                               const dnn::BatchDescriptor& output_dimensions,
1537                               const DeviceMemory<float>& output_data,
1538                               const DeviceMemory<float>& input_diff_data,
1539                               DeviceMemory<float>* output_diff_data) {
1540     LOG(FATAL) << "DoPoolBackward not implemented.";
1541     return false;
1542   }
1543 
1544   virtual bool DoPoolBackward(Stream* stream,
1545                               const dnn::PoolingDescriptor& pooling_dimensions,
1546                               const dnn::BatchDescriptor& input_dimensions,
1547                               const DeviceMemory<Eigen::half>& input_data,
1548                               const dnn::BatchDescriptor& output_dimensions,
1549                               const DeviceMemory<Eigen::half>& output_data,
1550                               const DeviceMemory<Eigen::half>& input_diff_data,
1551                               DeviceMemory<Eigen::half>* output_diff_data) {
1552     LOG(FATAL) << "DoPoolBackward not implemented.";
1553     return false;
1554   }
1555 
1556   // Applies local response normalization to the values from
1557   // input_data and writes the result to output_data. See comments on
1558   // NormalizeDescriptor for a description of local response
1559   // normalization.
1560   virtual bool DoNormalize(Stream* stream,
1561                            const dnn::NormalizeDescriptor& normalize_descriptor,
1562                            const DeviceMemory<float>& input_data,
1563                            DeviceMemory<float>* output_data) = 0;
1564 
1565   // Applies local response normalization to the values from input_data and
1566   // writes the result to output_data.
1567   //
1568   // Similar to DoNormalize, but normalizes across feature maps and allows for
1569   // specifying the dimensions of the tensor.
1570   //
1571   // See comments on NormalizeDescriptor for a description of local response
1572   // normalization.
1573   virtual bool DoNormalizeWithDimensions(
1574       Stream* stream, const dnn::NormalizeDescriptor& normalize_descriptor,
1575       const dnn::BatchDescriptor& dimensions,
1576       const DeviceMemory<float>& input_data, DeviceMemory<float>* output_data) {
1577     return false;
1578   }
1579 
1580   // Performs backpropagation for the normalization operation
1581   //
1582   // Given raw data, its corresponding normalized output, and a gradient of some
1583   // unspecified function with respect to the normalized variables, computes the
1584   // gradient of that unspecified function with respect to the raw variables.
1585   //
1586   // The normalized data input array is expected to match the output that would
1587   // be obtained by running the raw data input array through the DoNormalize
1588   // method above.
1589   //
1590   // See comments on NormalizeDescriptor for a description of local response
1591   // normalization.
1592   virtual bool DoNormalizeBackwardWithDimensions(
1593       Stream* stream, const dnn::NormalizeDescriptor& normalize_descriptor,
1594       const dnn::BatchDescriptor& dimensions,
1595       const DeviceMemory<float>& raw_data,
1596       const DeviceMemory<float>& normalized_data,
1597       const DeviceMemory<float>& normalized_variable_gradient,
1598       DeviceMemory<float>* raw_variable_gradient) {
1599     return false;
1600   }
1601 
1602   // Applies an activation function (see ActivationMode) to all of the values
1603   // held on the device in 'input_data', whose dimensions are described by
1604   // 'dimensions'.
1605   //
1606   // Arguments (all borrowed):
1607   //  stream: borrowed pointer to the stream that the 'activate' operation
1608   //    should be enqueued onto.
1609   //  activation_mode: Type of activation to perform.
1610   //  input_data: un-owned device memory region which contains the
1611   //    activate input.
1612   //  output_data: un-owned device memory region in which to place the
1613   //    activate result.
1614   virtual bool DoActivate(Stream* stream, ActivationMode activation_mode,
1615                           const BatchDescriptor& dimensions,
1616                           const DeviceMemory<float>& input_data,
1617                           DeviceMemory<float>* output_data, uint64 options) {
1618     return false;
1619   }
1620 
1621   // Concatenates several layers into one, by concatenating the depth of each
1622   // layer at matching x and y coordinates.
1623   // The inputs must all have the same width and height, the output will have
1624   // the same width and height as the inputs and its depth will be the sum of
1625   // the input depths.
1626   //
1627   // Arguments (all borrowed):
1628   //  stream: borrowed pointer to the stream that the 'depth concatenate'
1629   // operation should be enqueued onto.
1630   //  input_dimensions: The dimensions of each input.
1631   //  input_data: un-owned device memory region which contains the
1632   //    input data for each input layer.
1633   //  output_data: un-owned device memory region in which to place the
1634   //    depth concatenate result.
1635   virtual bool DoDepthConcatenate(
1636       Stream* stream, port::ArraySlice<dnn::BatchDescriptor> input_dimensions,
1637       port::ArraySlice<const DeviceMemory<float>*> input_data,
1638       DeviceMemory<float>* output_data) = 0;
1639 
1640   // Concatenates several layers into one, by concatenating each in the
1641   // x-dimension or y-dimension, based on a user-specified flag.
1642   // For x-concatenation, layers are aligned at matching y and depth
1643   // coordinates, and for y-concatenation, they are aligned at matching x and
1644   // depth coordinates. The inputs must all have the same depth and batch size.
1645   // For x-concatenation, the inputs must have the same height (y-size), and the
1646   // output will have the same depth and height as the inputs and its width (x-
1647   // size) will be the sum of the input widths.  For y-concatenation, the inputs
1648   // must have the same width, and the output will have the same depth and width
1649   // as the inputs, and its height will be the sum of the input heights.
1650   //
1651   // Arguments:
1652   //  stream: borrowed pointer to the stream that the 'space concatenate'
1653   //    operation should be enqueued onto.
1654   //  input_dimensions: the dimensions of each input.
1655   //  input_data: un-owned device memory region which contains the input data
1656   //    for each input layer.
1657   //  output_data: un-owned device memory region in which to place the space
1658   //    concatenate result.
1659   //  concat_direction:  either dnn:SpaceConcatenateMode::XDirection or
1660   //    dnn::SpaceConcatenateMode::YDirection.
1661   virtual bool DoSpaceConcatenate(
1662       Stream* stream, port::ArraySlice<dnn::BatchDescriptor> input_dimensions,
1663       port::ArraySlice<const DeviceMemory<float>*> input_data,
1664       DeviceMemory<float>* output_data,
1665       dnn::SpaceConcatenateMode concat_direction) {
1666     return false;
1667   }
1668 
1669   // Change the layout of the data by shrinking one dimension (or set of
1670   // dimensions) and growing another dimension (or set of dimensions), while
1671   // keeping the total number of data elements constant, and maintaining the
1672   // current data ordering.
1673   //
1674   // Currently, the only supported operation is depth into space by a power of
1675   // 2. E.g. (y, x, z) -> (y*2, x*2, z/4)
1676   //
1677   // Note that Reshape may not be a no-op, depending on the platform and which
1678   // dimensions are being changed.
1679   //
1680   // Example: forgetting about batch for the moment, let's take a tensor that's
1681   // 2x1x8 (y by x by z) and reshape to a tensor that's 4x2x2. The memory layout
1682   // is row-major order: y,x,z. I.e. z changes the fastest, then x, then y. The
1683   // elements of the tensor range from 0 to 15. The x,y,z indices are below each
1684   // element.
1685   //
1686   //  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
1687   // y0 y0 y0 y0 y0 y0 y0 y0 y1 y1 y1 y1 y1 y1 y1 y1
1688   // x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0
1689   // z0 z1 z2 z3 z4 z5 z6 z7 z0 z1 z2 z3 z4 z5 z6 z7
1690   //
1691   // reshape to 4x2x2
1692   //
1693   //  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
1694   // y0 y0 y0 y0 y1 y1 y1 y1 y2 y2 y2 y2 y3 y3 y3 y3
1695   // x0 x0 x1 x1 x0 x0 x1 x1 x0 x0 x1 x1 x0 x0 x1 x1
1696   // z0 z1 z0 z1 z0 z1 z0 z1 z0 z1 z0 z1 z0 z1 z0 z1
1697   virtual bool DoReshape(Stream* stream,
1698                          const dnn::BatchDescriptor& input_dimensions,
1699                          const DeviceMemory<float>& input_data,
1700                          const dnn::BatchDescriptor& output_dimensions,
1701                          DeviceMemory<float>* output_data) {
1702     return false;
1703   }
1704 
1705   // Depth to space takes an X by Y image with depth D*M² and changes it to an
1706   // MX x MY image with depth D. Each input location (x,y) with depth D*M² in
1707   // the input image is changed to an MxM contiguous area in the output image,
1708   // with the values being laid out in the raster order by DepthToSpaceLayout,
1709   // and will have a new depth of D.
1710   //
1711   // Example.
1712   // M=2, Din =8, Xin=2, Yin=2. Xout=4, Yout=4,  Dout=2
1713   // DepthHeightWidth layout
1714   // Values within a 'cell' are at different depths and same x & y.
1715   // Input:
1716   // abcdefgh  ijklmnop
1717   // qrstuvwx  yz012345
1718   // Output:
1719   // ae bf im jn
1720   // cg dh ko lp
1721   // qu rv y2 z3
1722   // sw tx 04 15
1723   //
1724   // sqrt_depth_reduction: 'M' in the comment above
1725   virtual bool DoDepthToSpace(Stream* stream,
1726                               const dnn::BatchDescriptor& input_dimensions,
1727                               const DeviceMemory<float>& input_data,
1728                               const DepthToSpaceLayout& depth_to_space_layout,
1729                               const int& sqrt_depth_reduction,
1730                               DeviceMemory<float>* output_data) {
1731     return false;
1732   }
1733 
1734   // Space to depth is the inverse of depth to space. Space to depth takes each
1735   // non-overlapping M by M patch (in the X and Y dimensions) with depth D of
1736   // the input, and transforms it to a 1 by 1 patch with depth D*M². If the
1737   // input has size (MX, MY, D), the output has size (X, Y, D*M²). The number of
1738   // data elements is not changed.
1739   //
1740   // Example.
1741   // M=2, Din =2, Xin=4, Yin=4,  Dout=8
1742   // DepthHeightWidth layout
1743   // Values within a 'cell' are at different depths and same x & y.
1744   // Input:
1745   // ae bf im jn
1746   // cg dh ko lp
1747   // qu rv y2 z3
1748   // sw tx 04 15
1749   // Output:
1750   // abcdefgh  ijklmnop
1751   // qrstuvwx  yz012345
1752   //
1753   // sqrt_depth_increase: 'M' in the comment above
1754   virtual bool DoSpaceToDepth(Stream* stream,
1755                               const dnn::BatchDescriptor& input_dimensions,
1756                               const DeviceMemory<float>& input_data,
1757                               const DepthToSpaceLayout& space_to_depth_layout,
1758                               const int& sqrt_depth_increase,
1759                               DeviceMemory<float>* output_data) {
1760     return false;
1761   }
1762 
1763   // Computes the specified operation (e.g. addition or multiplication)
1764   // between corresponding elements in the inputs and stores the result in the
1765   // output element.
1766   // The inputs and output must all have the same dimensions, but may have
1767   // different quantization parameters (min_value and max_value).
1768   //
1769   // Arguments (all borrowed):
1770   //  stream: borrowed pointer to the stream that the 'elementwise operation'
1771   // should be enqueued onto.
1772   //  operation: The operation to perform.
1773   //  input_dimensions: The dimensions of each input.
1774   //  input_data: un-owned device memory region which contains the
1775   //    input data for each input layer.
1776   //  output_dimensions: The dimensions of the output.
1777   //  output_data: un-owned device memory region in which to place the
1778   //    operation result.
1779   virtual bool DoElementwiseOperate(
1780       Stream* stream, ElementwiseOperation operation,
1781       port::ArraySlice<dnn::BatchDescriptor> input_dimensions,
1782       port::ArraySlice<const DeviceMemory<float>*> input_data,
1783       const dnn::BatchDescriptor& output_dimensions,
1784       DeviceMemory<float>* output_data) = 0;
1785 
1786   // Computes the specified operation (e.g. addition or multiplication)
1787   // between corresponding elements in the inputs and stores the result in the
1788   // output element. Each input is multiplied by a scalar constant and the
1789   // result is divided by a scalar constant.
1790   // e.g. To perform Z = 0.9*X + 1.1*Y, set the input multiplicands to 9 and 11
1791   // and the output divisor to 10.
1792   // The inputs and output must all have the same dimensions, but may have
1793   // different quantization parameters (min_value and max_value).
1794   //
1795   // Arguments (all borrowed):
1796   //  stream: borrowed pointer to the stream that the 'elementwise operation'
1797   // should be enqueued onto.
1798   //  operation: The operation to perform.
1799   //  input_multiplicands: Amount to scale each input.
1800   //  output_divisor: Amount to divide the output.
1801   //  input_dimensions: The dimensions of each input.
1802   //  input_data: un-owned device memory region which contains the
1803   //    input data for each input layer.
1804   //  output_dimensions: The dimensions of the output.
1805   //  output_data: un-owned device memory region in which to place the
1806   //    operation result.
1807   virtual bool DoElementwiseOperateScaledQuantized(
1808       Stream* stream, ElementwiseOperation operation,
1809       port::ArraySlice<int> input_multiplicands, int output_divisor,
1810       port::ArraySlice<dnn::BatchDescriptor> input_dimensions,
1811       port::ArraySlice<const DeviceMemory<float>*> input_data,
1812       const dnn::BatchDescriptor& output_dimensions,
1813       DeviceMemory<float>* output_data) {
1814     return false;
1815   }
1816 
1817   // Pads the input with zeros in the X and Y dimensions. The feature_map
1818   // dimension is unchanged.
1819   //
1820   // Arguments (all borrowed):
1821   //  stream: borrowed pointer to the stream that the 'elementwise operation'
1822   // should be enqueued onto.
1823   //  dimensions: The dimensions of the input.
1824   //  input_data: un-owned device memory region which contains the
1825   //    input data for the input layer.
1826   //  left_pad: Amount to pad the input on the left.
1827   //  right_pad: Amount to pad the input on the right.
1828   //  top_pad: Amount to pad the input at the top (low Y).
1829   //  bottom_pad: Amount to pad the input at the bottom (high Y).
1830   //  output_data: un-owned device memory region in which to place the
1831   //    padded result.
1832   virtual bool DoXYPad(Stream* stream, const dnn::BatchDescriptor &dimensions,
1833                        const DeviceMemory<float> &input_data,
1834                        int64 left_pad, int64 right_pad, int64 top_pad,
1835                        int64 bottom_pad, DeviceMemory<float> *output_data) = 0;
1836 
1837   // Extracts a slice of the input in the X and Y dimensions. The feature_map
1838   // dimension is unchanged.
1839   //
1840   // Arguments (all borrowed):
1841   //  stream: borrowed pointer to the stream that the 'elementwise operation'
1842   // should be enqueued onto.
1843   //  dimensions: The dimensions of the input.
1844   //  input_data: un-owned device memory region which contains the
1845   //    input data for the input layer.
1846   //  left_trim: Amount to cut off the input on the left.
1847   //  right_trim: Amount to cut off the input on the right.
1848   //  top_trim: Amount to cut off the input at the top (low y).
1849   //  bottom_trim: Amount to cut off the input at the bottom (high Y).
1850   //  output_data: un-owned device memory region in which to place the
1851   //    padded result.
1852   virtual bool DoXYSlice(Stream* stream, const dnn::BatchDescriptor &dimensions,
1853                     const DeviceMemory<float> &input_data,
1854                     int64 left_trim, int64 right_trim, int64 top_trim,
1855                     int64 bottom_trim, DeviceMemory<float> *output_data) = 0;
1856 
1857   // Grows the input tensor by replicating the X and Y dimensions. The batch and
1858   // depth/feature_map dimensions are unchanged. Currently, the input tensor is
1859   // limited to X=1 and Y=1.
1860   //
1861   // For example, the input has dimensions x=2, y=3, and replicate_x=3,
1862   // replicate_y=2. The diagonal elements of the output would be: [x0y0, x1y1,
1863   // x0y2, x1y0, x0y1, x1y2].
1864   // Here is the example as a picture. input:
1865   // AB
1866   // CD
1867   // EF
1868   // broadcast result:
1869   // ABABAB
1870   // CDCDCD
1871   // EFEFEF
1872   // ABABAB
1873   // CDCDCD
1874   // EFEFEF
1875   //
1876   // Arguments (all borrowed):
1877   //  stream: borrowed pointer to the stream that the 'elementwise operation'
1878   // should be enqueued onto.
1879   //  dimensions: The dimensions of the input.
1880   //  input_data: un-owned device memory region which contains the
1881   //    input data for the input layer.
1882   //  replicate_x: Amount to replicate the input's X dimension.
1883   //  replicate_y: Amount to replicate the input's Y dimension.
1884   //  output_data: un-owned device memory region in which to place the
1885   //    padded result.
1886   virtual bool DoXYBroadcast(Stream* stream,
1887                              const dnn::BatchDescriptor& dimensions,
1888                              const DeviceMemory<float>& input_data,
1889                              int64 replicate_x, int64 replicate_y,
1890                              DeviceMemory<float>* output_data) {
1891     return false;
1892   }
1893 
1894   // Enqueues an asynchronous memcpy of the *quantized* output of a layer (that
1895   // is, bytes instead of scaled floats) into 'host_dst' if they are available
1896   // for the underlying DNN implementation. If this quantized output is not
1897   // available, false is returned, which will place 'stream' into an error
1898   // state.
1899   //
1900   // Arguments (all borrowed):
1901   //  stream: borrowed pointer to the stream that the 'quantized memcpy'
1902   //    operation should be enqueued onto.
1903   //  gpu_unquantized_src: the device memory that contains the unquantized data
1904   //    -- this data should also have a corresponding quantized representation
1905   //    on the device for this operation to succeed.
1906   //  mode: Type of quantization of the data to write into host_dst.
1907   //  host_dst: un-owned host memory region that is mutated in place,
1908   //    it is clobbered by the values in 'gpu_unquantized_src' when the enqueued
1909   //    (asynchronous) memcpy operation is performed.
1910   //  size: size in bytes of the host_dst host memory region.
1911   virtual bool DoMemcpyD2HQuantized(
1912       Stream* stream, const DeviceMemory<float>& gpu_unquantized_src,
1913       QuantizedActivationMode mode, void* host_dst, int64 size) = 0;
1914 
1915   // Enqueues an asynchronous memcpy of 'host_dst' into the *quantized* input
1916   // of a layer (that is, bytes instead of scaled floats) if they are supported
1917   // by the underlying DNN implementation. If this quantized input is not
1918   // supported, false is returned, which will place 'stream' into an error
1919   // state.
1920   //
1921   // Arguments (all borrowed):
1922   //  stream: borrowed pointer to the stream that the 'quantized memcpy'
1923   //    operation should be enqueued onto.
1924   //  host_src: un-owned host memory region that contains the quantized data.
1925   //  size: size in bytes of the host_src host memory region.
1926   //  mode: Type of quantization of the data to read from host_src.
1927   //  gpu_unquantized_dst: the device memory that is clobbered by the values in
1928   //    'host_src' when the enqueued (asynchronous) memcpy operation is
1929   //    performed. -- this data should also have a corresponding quantized
1930   //    representation on the device for this operation to
1931   //    succeed.
1932   virtual bool DoMemcpyH2DQuantized(
1933       Stream* stream, const void* host_src, int64 size,
1934       QuantizedActivationMode mode,
1935       DeviceMemory<float>* gpu_unquantized_dst) = 0;
1936 
1937   // Enqueues an asynchronous copy of the contents of buffer_src to
1938   // gpu_unquantized_dst.
1939   virtual bool DoCopyHostBuffer2Device(
1940       Stream* stream, HostBuffer* buffer_src,
1941       DeviceMemory<float>* gpu_unquantized_dst) {
1942     return false;
1943   }
1944 
1945   // Enqueues an asynchronous copy of the contents of gpu_unquantized_src to
1946   // buffer_dst.
1947   virtual bool DoCopyDevice2HostBuffer(
1948       Stream* stream, const DeviceMemory<float>& gpu_unquantized_src,
1949       HostBuffer* buffer_dst) {
1950     return false;
1951   }
1952 
1953   // Create an RNN descriptor based on model shapes and configurations.
1954   // The caller retains the ownership of the descriptor.
1955   //
1956   // Arguments:
1957   //  num_layers: the number of layers for a RNN model.
1958   //  hidden_size: the size of the hidden state.
1959   //  input_size: the size of the input state.
1960   //  input_mode: an enum to specify whether a linear transformation is added
1961   //    after the input state. If input_size is different from hidden_size, this
1962   //    is required.
1963   //  direction_mode: an enum to specify whether this model is unidirectional or
1964   //    bidirectional.
1965   //  rnn_mode: an enum to specify the type of model to build.
1966   //  data_type: an enum to specify the data types used in this model.
1967   //  dropout: the dropout threshold between layers. When it is 0., no dropout
1968   //    is added.
1969   //  seed: a seed for initializing the dropout layers.
1970   //  state_allocator: an memory allocator that will be used to store the state
1971   //    for dropout layer. The user has to maintain the memory until the model
1972   //    is no longer in use.
1973   virtual port::StatusOr<std::unique_ptr<dnn::RnnDescriptor>>
1974   createRnnDescriptor(int num_layers, int hidden_size, int input_size,
1975                       dnn::RnnInputMode input_mode,
1976                       dnn::RnnDirectionMode direction_mode,
1977                       dnn::RnnMode rnn_mode, dnn::DataType data_type,
1978                       float dropout, uint64 seed,
1979                       ScratchAllocator* state_allocator) {
1980     return port::Status{port::error::UNIMPLEMENTED,
1981                         "createRnnDescriptor is unimplemented"};
1982   }
1983 
1984   // Create a RNN sequence descriptor that specifies either the input or output
1985   // sequence. The caller retains the ownership of the returned descriptor.
1986   //
1987   // Arguments:
1988   //  seq_length: the length of the sequence.
1989   //  batch_size: the size of a minibatch.
1990   //  data_size: the size of the state.
1991   //  data_type: an enum to specify the type for the underlying data.
1992   virtual port::StatusOr<std::unique_ptr<dnn::RnnSequenceTensorDescriptor>>
1993   createRnnSequenceTensorDescriptor(int seq_length, int batch_size,
1994                                     int data_size, dnn::DataType data_type) {
1995     return port::Status{port::error::UNIMPLEMENTED,
1996                         "createRnnSequenceTensorDescriptor is unimplemented"};
1997   }
1998 
1999   // Create an RNN state descriptor that specifies the input or hidden state.
2000   // The caller retains the ownership of the returned descriptor.
2001   virtual port::StatusOr<std::unique_ptr<dnn::RnnStateTensorDescriptor>>
2002   createRnnStateTensorDescriptor(int num_layer, int batch_size, int data_size,
2003                                  dnn::DataType data_type) {
2004     return port::Status{port::error::UNIMPLEMENTED,
2005                         "createRnnStateTensorDescriptor is unimplemented"};
2006   }
2007 
2008   // Enqueue a forward operation of the RNN model onto the stream.
2009   //
2010   // Arguments:
2011   //  stream: pointer to the stream where this operation should be enqueued to.
2012   //  rnn_desc: a RNN descriptor created by createRnnDescriptor.
2013   //  input_desc: descriptor for the input sequence.
2014   //  input_data: the device memory region that contains the input data.
2015   //  input_h_desc: descriptor for the input "h" state.
2016   //  input_h_data: the device memory region that contains the input "h" data.
2017   //  input_c_desc: descriptor for the input "c" state.
2018   //  input_c_data: the device memory region that contains the input "c" data.
2019   //    This must be specified for LSTM models.
2020   //  params: the device memory region that contains the parameters used in this
2021   //    model.
2022   //  output_desc: descriptor for the output sequence.
2023   //  output_data: the memory region that stores the output sequence data.
2024   //  output_h_desc: descriptor for the output "h" state.
2025   //  output_h_data: the memory region that stores the output "h" data.
2026   //  output_c_desc: descriptor for the output "c" state.
2027   //  output_c_data: the memory region that stores the output "c" data. This
2028   //    must be specified for LSTM models.
2029   //  is_training: whether this is used in training or inference. That decides
2030   //    whether respace_space data need to be produced.
2031   //  reserve_space_allocator: if "is_training" is true, an memory allocator
2032   //    to create memory that holds the produced reserve_space. The caller is
2033   //  retains the data and feed it to the backward pass.
2034   //  workspace_allocator: an allocator to create temporary workspace used in
2035   //    this kernel. The caller is responsible for retaining the memory long
2036   //    enough for the lifespan of this operation, and recycles afterwards.
2037   virtual bool DoRnnForward(Stream* stream, const dnn::RnnDescriptor& rnn_desc,
2038                             const dnn::RnnSequenceTensorDescriptor& input_desc,
2039                             const DeviceMemory<Eigen::half>& input_data,
2040                             const dnn::RnnStateTensorDescriptor& input_h_desc,
2041                             const DeviceMemory<Eigen::half>& input_h_data,
2042                             const dnn::RnnStateTensorDescriptor& input_c_desc,
2043                             const DeviceMemory<Eigen::half>& input_c_data,
2044                             const DeviceMemory<Eigen::half>& params,
2045                             const dnn::RnnSequenceTensorDescriptor& output_desc,
2046                             DeviceMemory<Eigen::half>* output_data,
2047                             const dnn::RnnStateTensorDescriptor& output_h_desc,
2048                             DeviceMemory<Eigen::half>* output_h_data,
2049                             const dnn::RnnStateTensorDescriptor& output_c_desc,
2050                             DeviceMemory<Eigen::half>* output_c_data,
2051                             bool is_training,
2052                             ScratchAllocator* reserve_space_allocator,
2053                             ScratchAllocator* workspace_allocator) {
2054     return false;
2055   }
2056 
2057   virtual bool DoRnnForward(Stream* stream, const dnn::RnnDescriptor& rnn_desc,
2058                             const dnn::RnnSequenceTensorDescriptor& input_desc,
2059                             const DeviceMemory<float>& input_data,
2060                             const dnn::RnnStateTensorDescriptor& input_h_desc,
2061                             const DeviceMemory<float>& input_h_data,
2062                             const dnn::RnnStateTensorDescriptor& input_c_desc,
2063                             const DeviceMemory<float>& input_c_data,
2064                             const DeviceMemory<float>& params,
2065                             const dnn::RnnSequenceTensorDescriptor& output_desc,
2066                             DeviceMemory<float>* output_data,
2067                             const dnn::RnnStateTensorDescriptor& output_h_desc,
2068                             DeviceMemory<float>* output_h_data,
2069                             const dnn::RnnStateTensorDescriptor& output_c_desc,
2070                             DeviceMemory<float>* output_c_data,
2071                             bool is_training,
2072                             ScratchAllocator* reserve_space_allocator,
2073                             ScratchAllocator* workspace_allocator) {
2074     return false;
2075   }
2076 
2077   virtual bool DoRnnForward(Stream* stream, const dnn::RnnDescriptor& rnn_desc,
2078                             const dnn::RnnSequenceTensorDescriptor& input_desc,
2079                             const DeviceMemory<double>& input_data,
2080                             const dnn::RnnStateTensorDescriptor& input_h_desc,
2081                             const DeviceMemory<double>& input_h_data,
2082                             const dnn::RnnStateTensorDescriptor& input_c_desc,
2083                             const DeviceMemory<double>& input_c_data,
2084                             const DeviceMemory<double>& params,
2085                             const dnn::RnnSequenceTensorDescriptor& output_desc,
2086                             DeviceMemory<double>* output_data,
2087                             const dnn::RnnStateTensorDescriptor& output_h_desc,
2088                             DeviceMemory<double>* output_h_data,
2089                             const dnn::RnnStateTensorDescriptor& output_c_desc,
2090                             DeviceMemory<double>* output_c_data,
2091                             bool is_training,
2092                             ScratchAllocator* reserve_space_allocator,
2093                             ScratchAllocator* workspace_allocator) {
2094     return false;
2095   }
2096   // Enqueue a backward operation of the RNN model onto the stream.
2097   //
2098   // Arguments:
2099   //  stream: pointer to the stream where this operation should be enqueued to.
2100   //  rnn_desc: a RNN descriptor created by createRnnDescriptor.
2101   //  input_desc: descriptor for the input sequence.
2102   //  input_data: the device memory region that contains the input data.
2103   //  input_h_desc: descriptor for the input "h" state.
2104   //  input_h_data: the device memory region that contains the input "h" data.
2105   //  input_c_desc: descriptor for the input "c" state.
2106   //  input_c_data: the device memory region that contains the input "c" data.
2107   //    This must be specified for LSTM models.
2108   //  params: the device memory region that contains the parameters used in this
2109   //    model.
2110   //  output_desc: descriptor for the output sequence.
2111   //  output_data: the memory region that stores the output sequence data.
2112   //  output_h_desc: descriptor for the output "h" state.
2113   //  output_h_data: the memory region that stores the output "h" data.
2114   //  output_c_desc: descriptor for the output "c" state.
2115   //  output_c_data: the memory region that stores the output "c" data. This
2116   //    must be specified for LSTM models.
2117   //  output_backprop_data: the device memory region that contains the backprop
2118   //    to the output sequence.
2119   //  output_h_backprop_data: the device memory region that contains the
2120   //    backprop to the output "h" state.
2121   //  output_c_backprop_data: the device memory region that contains the
2122   //    backprop to the output "c" state.
2123   //  input_backprop_data: the device memory region that stores the backprop
2124   //    to the input sequence.
2125   //  input_h_backprop_data: the device memory region that stores the backprop
2126   //    to the input "h" state.
2127   //  input_c_backprop_data: the device memory region that stores the backprop
2128   //    to the input "c" state.
2129   //  params_backprop_data: the device memory region that stores the backprop
2130   //    to the parameters.
2131   //  reserve_space_data: the reserve_space data that is produced by the forward
2132   //    operation. This memory region could be modified by this operation.
2133   //  workspace_allocator: a memory allocator that creates the temporary
2134   //    workspace memory used by this operation. The caller is responsible for
2135   //    keeping the memory alive long enough for this operation, and recylces
2136   //    afterwards.
2137   virtual bool DoRnnBackward(
2138       Stream* stream, const dnn::RnnDescriptor& rnn_desc,
2139       const dnn::RnnSequenceTensorDescriptor& input_desc,
2140       const DeviceMemory<Eigen::half>& input_data,
2141       const dnn::RnnStateTensorDescriptor& input_h_desc,
2142       const DeviceMemory<Eigen::half>& input_h_data,
2143       const dnn::RnnStateTensorDescriptor& input_c_desc,
2144       const DeviceMemory<Eigen::half>& input_c_data,
2145       const DeviceMemory<Eigen::half>& params,
2146       const dnn::RnnSequenceTensorDescriptor& output_desc,
2147       const DeviceMemory<Eigen::half>& output_data,
2148       const dnn::RnnStateTensorDescriptor& output_h_desc,
2149       const DeviceMemory<Eigen::half>& output_h_data,
2150       const dnn::RnnStateTensorDescriptor& output_c_desc,
2151       const DeviceMemory<Eigen::half>& output_c_data,
2152       const DeviceMemory<Eigen::half>& output_backprop_data,
2153       const DeviceMemory<Eigen::half>& output_h_backprop_data,
2154       const DeviceMemory<Eigen::half>& output_c_backprop_data,
2155       DeviceMemory<Eigen::half>* input_backprop_data,
2156       DeviceMemory<Eigen::half>* input_h_backprop_data,
2157       DeviceMemory<Eigen::half>* input_c_backprop_data,
2158       DeviceMemory<Eigen::half>* params_backprop_data,
2159       DeviceMemory<uint8>* reserve_space_data,
2160       ScratchAllocator* workspace_allocator) {
2161     return false;
2162   }
2163 
2164   virtual bool DoRnnBackward(
2165       Stream* stream, const dnn::RnnDescriptor& rnn_desc,
2166       const dnn::RnnSequenceTensorDescriptor& input_desc,
2167       const DeviceMemory<float>& input_data,
2168       const dnn::RnnStateTensorDescriptor& input_h_desc,
2169       const DeviceMemory<float>& input_h_data,
2170       const dnn::RnnStateTensorDescriptor& input_c_desc,
2171       const DeviceMemory<float>& input_c_data,
2172       const DeviceMemory<float>& params,
2173       const dnn::RnnSequenceTensorDescriptor& output_desc,
2174       const DeviceMemory<float>& output_data,
2175       const dnn::RnnStateTensorDescriptor& output_h_desc,
2176       const DeviceMemory<float>& output_h_data,
2177       const dnn::RnnStateTensorDescriptor& output_c_desc,
2178       const DeviceMemory<float>& output_c_data,
2179       const DeviceMemory<float>& output_backprop_data,
2180       const DeviceMemory<float>& output_h_backprop_data,
2181       const DeviceMemory<float>& output_c_backprop_data,
2182       DeviceMemory<float>* input_backprop_data,
2183       DeviceMemory<float>* input_h_backprop_data,
2184       DeviceMemory<float>* input_c_backprop_data,
2185       DeviceMemory<float>* params_backprop_data,
2186       DeviceMemory<uint8>* reserve_space_data,
2187       ScratchAllocator* workspace_allocator) {
2188     return false;
2189   }
2190 
2191   virtual bool DoRnnBackward(
2192       Stream* stream, const dnn::RnnDescriptor& rnn_desc,
2193       const dnn::RnnSequenceTensorDescriptor& input_desc,
2194       const DeviceMemory<double>& input_data,
2195       const dnn::RnnStateTensorDescriptor& input_h_desc,
2196       const DeviceMemory<double>& input_h_data,
2197       const dnn::RnnStateTensorDescriptor& input_c_desc,
2198       const DeviceMemory<double>& input_c_data,
2199       const DeviceMemory<double>& params,
2200       const dnn::RnnSequenceTensorDescriptor& output_desc,
2201       const DeviceMemory<double>& output_data,
2202       const dnn::RnnStateTensorDescriptor& output_h_desc,
2203       const DeviceMemory<double>& output_h_data,
2204       const dnn::RnnStateTensorDescriptor& output_c_desc,
2205       const DeviceMemory<double>& output_c_data,
2206       const DeviceMemory<double>& output_backprop_data,
2207       const DeviceMemory<double>& output_h_backprop_data,
2208       const DeviceMemory<double>& output_c_backprop_data,
2209       DeviceMemory<double>* input_backprop_data,
2210       DeviceMemory<double>* input_h_backprop_data,
2211       DeviceMemory<double>* input_c_backprop_data,
2212       DeviceMemory<double>* params_backprop_data,
2213       DeviceMemory<uint8>* reserve_space_data,
2214       ScratchAllocator* workspace_allocator) {
2215     return false;
2216   }
2217 
2218   // Transforms a tensor into another tensor with a different layout and/or data
2219   // type.
2220   //
2221   // Arguments:
2222   //  stream: pointer to the stream where this operation should be enqueued to.
2223   //  input_desc: specifies the shape and the data layout of the input tensor.
2224   //  input_type: the data type of the input tensor.
2225   //  input_data: the device memory region that contains the input tensor.
2226   //  output_desc: specifies the shape and the data layout of the output tensor.
2227   //  output_type: the data type of the output tensor.
2228   //  scale: an element-wise scaling factor to apply.
2229   //  output_data: the device memory region that contains the output tensor.
2230   virtual bool DoTransformTensor(Stream* stream,
2231                                  const dnn::BatchDescriptor& input_desc,
2232                                  dnn::DataType input_type,
2233                                  const DeviceMemoryBase& input_data,
2234                                  const dnn::BatchDescriptor& output_desc,
2235                                  dnn::DataType output_type, float scale,
2236                                  DeviceMemoryBase* output_data) {
2237     return false;
2238   }
2239 
2240  private:
2241   SE_DISALLOW_COPY_AND_ASSIGN(DnnSupport);
2242 };
2243 
2244 }  // namespace dnn
2245 }  // namespace gputools
2246 }  // namespace perftools
2247 
2248 #endif  // TENSORFLOW_STREAM_EXECUTOR_DNN_H_
2249