• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/base64.h>
58 
59 #include <assert.h>
60 #include <limits.h>
61 #include <string.h>
62 
63 #include <openssl/type_check.h>
64 
65 #include "../internal.h"
66 
67 
68 // constant_time_lt_args_8 behaves like |constant_time_lt_8| but takes |uint8_t|
69 // arguments for a slightly simpler implementation.
constant_time_lt_args_8(uint8_t a,uint8_t b)70 static inline uint8_t constant_time_lt_args_8(uint8_t a, uint8_t b) {
71   crypto_word_t aw = a;
72   crypto_word_t bw = b;
73   // |crypto_word_t| is larger than |uint8_t|, so |aw| and |bw| have the same
74   // MSB. |aw| < |bw| iff MSB(|aw| - |bw|) is 1.
75   return constant_time_msb_w(aw - bw);
76 }
77 
78 // constant_time_in_range_8 returns |CONSTTIME_TRUE_8| if |min| <= |a| <= |max|
79 // and |CONSTTIME_FALSE_8| otherwise.
constant_time_in_range_8(uint8_t a,uint8_t min,uint8_t max)80 static inline uint8_t constant_time_in_range_8(uint8_t a, uint8_t min,
81                                                uint8_t max) {
82   a -= min;
83   return constant_time_lt_args_8(a, max - min + 1);
84 }
85 
86 // Encoding.
87 
conv_bin2ascii(uint8_t a)88 static uint8_t conv_bin2ascii(uint8_t a) {
89   // Since PEM is sometimes used to carry private keys, we encode base64 data
90   // itself in constant-time.
91   a &= 0x3f;
92   uint8_t ret = constant_time_select_8(constant_time_eq_8(a, 62), '+', '/');
93   ret =
94       constant_time_select_8(constant_time_lt_args_8(a, 62), a - 52 + '0', ret);
95   ret =
96       constant_time_select_8(constant_time_lt_args_8(a, 52), a - 26 + 'a', ret);
97   ret = constant_time_select_8(constant_time_lt_args_8(a, 26), a + 'A', ret);
98   return ret;
99 }
100 
101 OPENSSL_COMPILE_ASSERT(sizeof(((EVP_ENCODE_CTX *)(NULL))->data) % 3 == 0,
102                        data_length_must_be_multiple_of_base64_chunk_size);
103 
EVP_EncodedLength(size_t * out_len,size_t len)104 int EVP_EncodedLength(size_t *out_len, size_t len) {
105   if (len + 2 < len) {
106     return 0;
107   }
108   len += 2;
109   len /= 3;
110 
111   if (((len << 2) >> 2) != len) {
112     return 0;
113   }
114   len <<= 2;
115 
116   if (len + 1 < len) {
117     return 0;
118   }
119   len++;
120 
121   *out_len = len;
122   return 1;
123 }
124 
EVP_EncodeInit(EVP_ENCODE_CTX * ctx)125 void EVP_EncodeInit(EVP_ENCODE_CTX *ctx) {
126   OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX));
127 }
128 
EVP_EncodeUpdate(EVP_ENCODE_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,size_t in_len)129 void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len,
130                       const uint8_t *in, size_t in_len) {
131   size_t total = 0;
132 
133   *out_len = 0;
134   if (in_len == 0) {
135     return;
136   }
137 
138   assert(ctx->data_used < sizeof(ctx->data));
139 
140   if (sizeof(ctx->data) - ctx->data_used > in_len) {
141     OPENSSL_memcpy(&ctx->data[ctx->data_used], in, in_len);
142     ctx->data_used += (unsigned)in_len;
143     return;
144   }
145 
146   if (ctx->data_used != 0) {
147     const size_t todo = sizeof(ctx->data) - ctx->data_used;
148     OPENSSL_memcpy(&ctx->data[ctx->data_used], in, todo);
149     in += todo;
150     in_len -= todo;
151 
152     size_t encoded = EVP_EncodeBlock(out, ctx->data, sizeof(ctx->data));
153     ctx->data_used = 0;
154 
155     out += encoded;
156     *(out++) = '\n';
157     *out = '\0';
158 
159     total = encoded + 1;
160   }
161 
162   while (in_len >= sizeof(ctx->data)) {
163     size_t encoded = EVP_EncodeBlock(out, in, sizeof(ctx->data));
164     in += sizeof(ctx->data);
165     in_len -= sizeof(ctx->data);
166 
167     out += encoded;
168     *(out++) = '\n';
169     *out = '\0';
170 
171     if (total + encoded + 1 < total) {
172       *out_len = 0;
173       return;
174     }
175 
176     total += encoded + 1;
177   }
178 
179   if (in_len != 0) {
180     OPENSSL_memcpy(ctx->data, in, in_len);
181   }
182 
183   ctx->data_used = (unsigned)in_len;
184 
185   if (total > INT_MAX) {
186     // We cannot signal an error, but we can at least avoid making *out_len
187     // negative.
188     total = 0;
189   }
190   *out_len = (int)total;
191 }
192 
EVP_EncodeFinal(EVP_ENCODE_CTX * ctx,uint8_t * out,int * out_len)193 void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) {
194   if (ctx->data_used == 0) {
195     *out_len = 0;
196     return;
197   }
198 
199   size_t encoded = EVP_EncodeBlock(out, ctx->data, ctx->data_used);
200   out[encoded++] = '\n';
201   out[encoded] = '\0';
202   ctx->data_used = 0;
203 
204   // ctx->data_used is bounded by sizeof(ctx->data), so this does not
205   // overflow.
206   assert(encoded <= INT_MAX);
207   *out_len = (int)encoded;
208 }
209 
EVP_EncodeBlock(uint8_t * dst,const uint8_t * src,size_t src_len)210 size_t EVP_EncodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) {
211   uint32_t l;
212   size_t remaining = src_len, ret = 0;
213 
214   while (remaining) {
215     if (remaining >= 3) {
216       l = (((uint32_t)src[0]) << 16L) | (((uint32_t)src[1]) << 8L) | src[2];
217       *(dst++) = conv_bin2ascii(l >> 18L);
218       *(dst++) = conv_bin2ascii(l >> 12L);
219       *(dst++) = conv_bin2ascii(l >> 6L);
220       *(dst++) = conv_bin2ascii(l);
221       remaining -= 3;
222     } else {
223       l = ((uint32_t)src[0]) << 16L;
224       if (remaining == 2) {
225         l |= ((uint32_t)src[1] << 8L);
226       }
227 
228       *(dst++) = conv_bin2ascii(l >> 18L);
229       *(dst++) = conv_bin2ascii(l >> 12L);
230       *(dst++) = (remaining == 1) ? '=' : conv_bin2ascii(l >> 6L);
231       *(dst++) = '=';
232       remaining = 0;
233     }
234     ret += 4;
235     src += 3;
236   }
237 
238   *dst = '\0';
239   return ret;
240 }
241 
242 
243 // Decoding.
244 
EVP_DecodedLength(size_t * out_len,size_t len)245 int EVP_DecodedLength(size_t *out_len, size_t len) {
246   if (len % 4 != 0) {
247     return 0;
248   }
249 
250   *out_len = (len / 4) * 3;
251   return 1;
252 }
253 
EVP_DecodeInit(EVP_ENCODE_CTX * ctx)254 void EVP_DecodeInit(EVP_ENCODE_CTX *ctx) {
255   OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX));
256 }
257 
base64_ascii_to_bin(uint8_t a)258 static uint8_t base64_ascii_to_bin(uint8_t a) {
259   // Since PEM is sometimes used to carry private keys, we decode base64 data
260   // itself in constant-time.
261   const uint8_t is_upper = constant_time_in_range_8(a, 'A', 'Z');
262   const uint8_t is_lower = constant_time_in_range_8(a, 'a', 'z');
263   const uint8_t is_digit = constant_time_in_range_8(a, '0', '9');
264   const uint8_t is_plus = constant_time_eq_8(a, '+');
265   const uint8_t is_slash = constant_time_eq_8(a, '/');
266   const uint8_t is_equals = constant_time_eq_8(a, '=');
267 
268   uint8_t ret = 0xff;  // 0xff signals invalid.
269   ret = constant_time_select_8(is_upper, a - 'A', ret);       // [0,26)
270   ret = constant_time_select_8(is_lower, a - 'a' + 26, ret);  // [26,52)
271   ret = constant_time_select_8(is_digit, a - '0' + 52, ret);  // [52,62)
272   ret = constant_time_select_8(is_plus, 62, ret);
273   ret = constant_time_select_8(is_slash, 63, ret);
274   // Padding maps to zero, to be further handled by the caller.
275   ret = constant_time_select_8(is_equals, 0, ret);
276   return ret;
277 }
278 
279 // base64_decode_quad decodes a single “quad” (i.e. four characters) of base64
280 // data and writes up to three bytes to |out|. It sets |*out_num_bytes| to the
281 // number of bytes written, which will be less than three if the quad ended
282 // with padding.  It returns one on success or zero on error.
base64_decode_quad(uint8_t * out,size_t * out_num_bytes,const uint8_t * in)283 static int base64_decode_quad(uint8_t *out, size_t *out_num_bytes,
284                               const uint8_t *in) {
285   const uint8_t a = base64_ascii_to_bin(in[0]);
286   const uint8_t b = base64_ascii_to_bin(in[1]);
287   const uint8_t c = base64_ascii_to_bin(in[2]);
288   const uint8_t d = base64_ascii_to_bin(in[3]);
289   if (a == 0xff || b == 0xff || c == 0xff || d == 0xff) {
290     return 0;
291   }
292 
293   const uint32_t v = ((uint32_t)a) << 18 | ((uint32_t)b) << 12 |
294                      ((uint32_t)c) << 6 | (uint32_t)d;
295 
296   const unsigned padding_pattern = (in[0] == '=') << 3 |
297                                    (in[1] == '=') << 2 |
298                                    (in[2] == '=') << 1 |
299                                    (in[3] == '=');
300 
301   switch (padding_pattern) {
302     case 0:
303       // The common case of no padding.
304       *out_num_bytes = 3;
305       out[0] = v >> 16;
306       out[1] = v >> 8;
307       out[2] = v;
308       break;
309 
310     case 1:  // xxx=
311       *out_num_bytes = 2;
312       out[0] = v >> 16;
313       out[1] = v >> 8;
314       break;
315 
316     case 3:  // xx==
317       *out_num_bytes = 1;
318       out[0] = v >> 16;
319       break;
320 
321     default:
322       return 0;
323   }
324 
325   return 1;
326 }
327 
EVP_DecodeUpdate(EVP_ENCODE_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,size_t in_len)328 int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len,
329                      const uint8_t *in, size_t in_len) {
330   *out_len = 0;
331 
332   if (ctx->error_encountered) {
333     return -1;
334   }
335 
336   size_t bytes_out = 0, i;
337   for (i = 0; i < in_len; i++) {
338     const char c = in[i];
339     switch (c) {
340       case ' ':
341       case '\t':
342       case '\r':
343       case '\n':
344         continue;
345     }
346 
347     if (ctx->eof_seen) {
348       ctx->error_encountered = 1;
349       return -1;
350     }
351 
352     ctx->data[ctx->data_used++] = c;
353     if (ctx->data_used == 4) {
354       size_t num_bytes_resulting;
355       if (!base64_decode_quad(out, &num_bytes_resulting, ctx->data)) {
356         ctx->error_encountered = 1;
357         return -1;
358       }
359 
360       ctx->data_used = 0;
361       bytes_out += num_bytes_resulting;
362       out += num_bytes_resulting;
363 
364       if (num_bytes_resulting < 3) {
365         ctx->eof_seen = 1;
366       }
367     }
368   }
369 
370   if (bytes_out > INT_MAX) {
371     ctx->error_encountered = 1;
372     *out_len = 0;
373     return -1;
374   }
375   *out_len = (int)bytes_out;
376 
377   if (ctx->eof_seen) {
378     return 0;
379   }
380 
381   return 1;
382 }
383 
EVP_DecodeFinal(EVP_ENCODE_CTX * ctx,uint8_t * out,int * out_len)384 int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) {
385   *out_len = 0;
386   if (ctx->error_encountered || ctx->data_used != 0) {
387     return -1;
388   }
389 
390   return 1;
391 }
392 
EVP_DecodeBase64(uint8_t * out,size_t * out_len,size_t max_out,const uint8_t * in,size_t in_len)393 int EVP_DecodeBase64(uint8_t *out, size_t *out_len, size_t max_out,
394                      const uint8_t *in, size_t in_len) {
395   *out_len = 0;
396 
397   if (in_len % 4 != 0) {
398     return 0;
399   }
400 
401   size_t max_len;
402   if (!EVP_DecodedLength(&max_len, in_len) ||
403       max_out < max_len) {
404     return 0;
405   }
406 
407   size_t i, bytes_out = 0;
408   for (i = 0; i < in_len; i += 4) {
409     size_t num_bytes_resulting;
410 
411     if (!base64_decode_quad(out, &num_bytes_resulting, &in[i])) {
412       return 0;
413     }
414 
415     bytes_out += num_bytes_resulting;
416     out += num_bytes_resulting;
417     if (num_bytes_resulting != 3 && i != in_len - 4) {
418       return 0;
419     }
420   }
421 
422   *out_len = bytes_out;
423   return 1;
424 }
425 
EVP_DecodeBlock(uint8_t * dst,const uint8_t * src,size_t src_len)426 int EVP_DecodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) {
427   // Trim spaces and tabs from the beginning of the input.
428   while (src_len > 0) {
429     if (src[0] != ' ' && src[0] != '\t') {
430       break;
431     }
432 
433     src++;
434     src_len--;
435   }
436 
437   // Trim newlines, spaces and tabs from the end of the line.
438   while (src_len > 0) {
439     switch (src[src_len-1]) {
440       case ' ':
441       case '\t':
442       case '\r':
443       case '\n':
444         src_len--;
445         continue;
446     }
447 
448     break;
449   }
450 
451   size_t dst_len;
452   if (!EVP_DecodedLength(&dst_len, src_len) ||
453       dst_len > INT_MAX ||
454       !EVP_DecodeBase64(dst, &dst_len, dst_len, src, src_len)) {
455     return -1;
456   }
457 
458   // EVP_DecodeBlock does not take padding into account, so put the
459   // NULs back in... so the caller can strip them back out.
460   while (dst_len % 3 != 0) {
461     dst[dst_len++] = '\0';
462   }
463   assert(dst_len <= INT_MAX);
464 
465   return (int)dst_len;
466 }
467