1 /*
2 * Copyright 2017 Google Inc. All rights reserved.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef FLATBUFFERS_FLEXBUFFERS_H_
18 #define FLATBUFFERS_FLEXBUFFERS_H_
19
20 #include <map>
21 // Used to select STL variant.
22 #include "flatbuffers/base.h"
23 // We use the basic binary writing functions from the regular FlatBuffers.
24 #include "flatbuffers/util.h"
25
26 #ifdef _MSC_VER
27 #include <intrin.h>
28 #endif
29
30 #if defined(_MSC_VER)
31 #pragma warning(push)
32 #pragma warning(disable: 4127) // C4127: conditional expression is constant
33 #endif
34
35 namespace flexbuffers {
36
37 class Reference;
38 class Map;
39
40 // These are used in the lower 2 bits of a type field to determine the size of
41 // the elements (and or size field) of the item pointed to (e.g. vector).
42 enum BitWidth {
43 BIT_WIDTH_8 = 0,
44 BIT_WIDTH_16 = 1,
45 BIT_WIDTH_32 = 2,
46 BIT_WIDTH_64 = 3,
47 };
48
49 // These are used as the upper 6 bits of a type field to indicate the actual
50 // type.
51 enum Type {
52 TYPE_NULL = 0,
53 TYPE_INT = 1,
54 TYPE_UINT = 2,
55 TYPE_FLOAT = 3,
56 // Types above stored inline, types below store an offset.
57 TYPE_KEY = 4,
58 TYPE_STRING = 5,
59 TYPE_INDIRECT_INT = 6,
60 TYPE_INDIRECT_UINT = 7,
61 TYPE_INDIRECT_FLOAT = 8,
62 TYPE_MAP = 9,
63 TYPE_VECTOR = 10, // Untyped.
64 TYPE_VECTOR_INT = 11, // Typed any size (stores no type table).
65 TYPE_VECTOR_UINT = 12,
66 TYPE_VECTOR_FLOAT = 13,
67 TYPE_VECTOR_KEY = 14,
68 TYPE_VECTOR_STRING = 15,
69 TYPE_VECTOR_INT2 = 16, // Typed tuple (no type table, no size field).
70 TYPE_VECTOR_UINT2 = 17,
71 TYPE_VECTOR_FLOAT2 = 18,
72 TYPE_VECTOR_INT3 = 19, // Typed triple (no type table, no size field).
73 TYPE_VECTOR_UINT3 = 20,
74 TYPE_VECTOR_FLOAT3 = 21,
75 TYPE_VECTOR_INT4 = 22, // Typed quad (no type table, no size field).
76 TYPE_VECTOR_UINT4 = 23,
77 TYPE_VECTOR_FLOAT4 = 24,
78 TYPE_BLOB = 25,
79 TYPE_BOOL = 26,
80 TYPE_VECTOR_BOOL = 36, // To Allow the same type of conversion of type to vector type
81 };
82
IsInline(Type t)83 inline bool IsInline(Type t) { return t <= TYPE_FLOAT || t == TYPE_BOOL; }
84
IsTypedVectorElementType(Type t)85 inline bool IsTypedVectorElementType(Type t) {
86 return (t >= TYPE_INT && t <= TYPE_STRING) || t == TYPE_BOOL;
87 }
88
IsTypedVector(Type t)89 inline bool IsTypedVector(Type t) {
90 return (t >= TYPE_VECTOR_INT && t <= TYPE_VECTOR_STRING) || t == TYPE_VECTOR_BOOL;
91 }
92
IsFixedTypedVector(Type t)93 inline bool IsFixedTypedVector(Type t) {
94 return t >= TYPE_VECTOR_INT2 && t <= TYPE_VECTOR_FLOAT4;
95 }
96
97 inline Type ToTypedVector(Type t, size_t fixed_len = 0) {
98 assert(IsTypedVectorElementType(t));
99 switch (fixed_len) {
100 case 0: return static_cast<Type>(t - TYPE_INT + TYPE_VECTOR_INT);
101 case 2: return static_cast<Type>(t - TYPE_INT + TYPE_VECTOR_INT2);
102 case 3: return static_cast<Type>(t - TYPE_INT + TYPE_VECTOR_INT3);
103 case 4: return static_cast<Type>(t - TYPE_INT + TYPE_VECTOR_INT4);
104 default: assert(0); return TYPE_NULL;
105 }
106 }
107
ToTypedVectorElementType(Type t)108 inline Type ToTypedVectorElementType(Type t) {
109 assert(IsTypedVector(t));
110 return static_cast<Type>(t - TYPE_VECTOR_INT + TYPE_INT);
111 }
112
ToFixedTypedVectorElementType(Type t,uint8_t * len)113 inline Type ToFixedTypedVectorElementType(Type t, uint8_t *len) {
114 assert(IsFixedTypedVector(t));
115 auto fixed_type = t - TYPE_VECTOR_INT2;
116 *len = static_cast<uint8_t>(fixed_type / 3 + 2); // 3 types each, starting from length 2.
117 return static_cast<Type>(fixed_type % 3 + TYPE_INT);
118 }
119
120 // TODO: implement proper support for 8/16bit floats, or decide not to
121 // support them.
122 typedef int16_t half;
123 typedef int8_t quarter;
124
125 // TODO: can we do this without conditionals using intrinsics or inline asm
126 // on some platforms? Given branch prediction the method below should be
127 // decently quick, but it is the most frequently executed function.
128 // We could do an (unaligned) 64-bit read if we ifdef out the platforms for
129 // which that doesn't work (or where we'd read into un-owned memory).
130 template <typename R, typename T1, typename T2, typename T4, typename T8>
ReadSizedScalar(const uint8_t * data,uint8_t byte_width)131 R ReadSizedScalar(const uint8_t *data, uint8_t byte_width) {
132 return byte_width < 4
133 ? (byte_width < 2 ? static_cast<R>(flatbuffers::ReadScalar<T1>(data))
134 : static_cast<R>(flatbuffers::ReadScalar<T2>(data)))
135 : (byte_width < 8 ? static_cast<R>(flatbuffers::ReadScalar<T4>(data))
136 : static_cast<R>(flatbuffers::ReadScalar<T8>(data)));
137 }
138
139
ReadInt64(const uint8_t * data,uint8_t byte_width)140 inline int64_t ReadInt64(const uint8_t *data, uint8_t byte_width) {
141 return ReadSizedScalar<int64_t, int8_t, int16_t, int32_t, int64_t>(data,
142 byte_width);
143 }
144
ReadUInt64(const uint8_t * data,uint8_t byte_width)145 inline uint64_t ReadUInt64(const uint8_t *data, uint8_t byte_width) {
146 // This is the "hottest" function (all offset lookups use this), so worth
147 // optimizing if possible.
148 // TODO: GCC apparently replaces memcpy by a rep movsb, but only if count is a
149 // constant, which here it isn't. Test if memcpy is still faster than
150 // the conditionals in ReadSizedScalar. Can also use inline asm.
151 #ifdef _MSC_VER
152 uint64_t u = 0;
153 __movsb(reinterpret_cast<uint8_t *>(&u),
154 reinterpret_cast<const uint8_t *>(data), byte_width);
155 return flatbuffers::EndianScalar(u);
156 #else
157 return ReadSizedScalar<uint64_t, uint8_t, uint16_t, uint32_t, uint64_t>(
158 data, byte_width);
159 #endif
160 }
161
ReadDouble(const uint8_t * data,uint8_t byte_width)162 inline double ReadDouble(const uint8_t *data, uint8_t byte_width) {
163 return ReadSizedScalar<double, quarter, half, float, double>(data,
164 byte_width);
165 }
166
Indirect(const uint8_t * offset,uint8_t byte_width)167 inline const uint8_t *Indirect(const uint8_t *offset, uint8_t byte_width) {
168 return offset - ReadUInt64(offset, byte_width);
169 }
170
Indirect(const uint8_t * offset)171 template<typename T> const uint8_t *Indirect(const uint8_t *offset) {
172 return offset - flatbuffers::ReadScalar<T>(offset);
173 }
174
WidthU(uint64_t u)175 inline BitWidth WidthU(uint64_t u) {
176 #define FLATBUFFERS_GET_FIELD_BIT_WIDTH(value, width) { \
177 if (!((u) & ~((1ULL << (width)) - 1ULL))) return BIT_WIDTH_##width; \
178 }
179 FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 8);
180 FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 16);
181 FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 32);
182 #undef FLATBUFFERS_GET_FIELD_BIT_WIDTH
183 return BIT_WIDTH_64;
184 }
185
WidthI(int64_t i)186 inline BitWidth WidthI(int64_t i) {
187 auto u = static_cast<uint64_t>(i) << 1;
188 return WidthU(i >= 0 ? u : ~u);
189 }
190
WidthF(double f)191 inline BitWidth WidthF(double f) {
192 return static_cast<double>(static_cast<float>(f)) == f ? BIT_WIDTH_32
193 : BIT_WIDTH_64;
194 }
195
196 // Base class of all types below.
197 // Points into the data buffer and allows access to one type.
198 class Object {
199 public:
Object(const uint8_t * data,uint8_t byte_width)200 Object(const uint8_t *data, uint8_t byte_width)
201 : data_(data), byte_width_(byte_width) {}
202
203 protected:
204 const uint8_t *data_;
205 uint8_t byte_width_;
206 };
207
208 // Stores size in `byte_width_` bytes before data_ pointer.
209 class Sized : public Object {
210 public:
Sized(const uint8_t * data,uint8_t byte_width)211 Sized(const uint8_t *data, uint8_t byte_width) : Object(data, byte_width) {}
size()212 size_t size() const {
213 return static_cast<size_t>(ReadUInt64(data_ - byte_width_, byte_width_));
214 }
215 };
216
217 class String : public Sized {
218 public:
String(const uint8_t * data,uint8_t byte_width)219 String(const uint8_t *data, uint8_t byte_width)
220 : Sized(data, byte_width) {}
221
length()222 size_t length() const { return size(); }
c_str()223 const char *c_str() const { return reinterpret_cast<const char *>(data_); }
str()224 std::string str() const { return std::string(c_str(), length()); }
225
EmptyString()226 static String EmptyString() {
227 static const uint8_t empty_string[] = { 0/*len*/, 0/*terminator*/ };
228 return String(empty_string + 1, 1);
229 }
IsTheEmptyString()230 bool IsTheEmptyString() const { return data_ == EmptyString().data_; }
231 };
232
233 class Blob : public Sized {
234 public:
Blob(const uint8_t * data_buf,uint8_t byte_width)235 Blob(const uint8_t *data_buf, uint8_t byte_width)
236 : Sized(data_buf, byte_width) {}
237
EmptyBlob()238 static Blob EmptyBlob() {
239 static const uint8_t empty_blob[] = { 0/*len*/ };
240 return Blob(empty_blob + 1, 1);
241 }
IsTheEmptyBlob()242 bool IsTheEmptyBlob() const { return data_ == EmptyBlob().data_; }
data()243 const uint8_t *data() const { return data_; }
244 };
245
246 class Vector : public Sized {
247 public:
Vector(const uint8_t * data,uint8_t byte_width)248 Vector(const uint8_t *data, uint8_t byte_width)
249 : Sized(data, byte_width) {}
250
251 Reference operator[](size_t i) const;
252
EmptyVector()253 static Vector EmptyVector() {
254 static const uint8_t empty_vector[] = { 0/*len*/ };
255 return Vector(empty_vector + 1, 1);
256 }
IsTheEmptyVector()257 bool IsTheEmptyVector() const { return data_ == EmptyVector().data_; }
258 };
259
260 class TypedVector : public Sized {
261 public:
TypedVector(const uint8_t * data,uint8_t byte_width,Type element_type)262 TypedVector(const uint8_t *data, uint8_t byte_width, Type element_type)
263 : Sized(data, byte_width), type_(element_type) {}
264
265 Reference operator[](size_t i) const;
266
EmptyTypedVector()267 static TypedVector EmptyTypedVector() {
268 static const uint8_t empty_typed_vector[] = { 0/*len*/ };
269 return TypedVector(empty_typed_vector + 1, 1, TYPE_INT);
270 }
IsTheEmptyVector()271 bool IsTheEmptyVector() const {
272 return data_ == TypedVector::EmptyTypedVector().data_;
273 }
274
ElementType()275 Type ElementType() { return type_; }
276
277 private:
278 Type type_;
279
280 friend Map;
281 };
282
283 class FixedTypedVector : public Object {
284 public:
FixedTypedVector(const uint8_t * data,uint8_t byte_width,Type element_type,uint8_t len)285 FixedTypedVector(const uint8_t *data, uint8_t byte_width, Type element_type,
286 uint8_t len)
287 : Object(data, byte_width), type_(element_type), len_(len) {}
288
289 Reference operator[](size_t i) const;
290
EmptyFixedTypedVector()291 static FixedTypedVector EmptyFixedTypedVector() {
292 static const uint8_t fixed_empty_vector[] = { 0/* unused */ };
293 return FixedTypedVector(fixed_empty_vector, 1, TYPE_INT, 0);
294 }
IsTheEmptyFixedTypedVector()295 bool IsTheEmptyFixedTypedVector() const {
296 return data_ == FixedTypedVector::EmptyFixedTypedVector().data_;
297 }
298
ElementType()299 Type ElementType() { return type_; }
size()300 uint8_t size() { return len_; }
301
302 private:
303 Type type_;
304 uint8_t len_;
305 };
306
307 class Map : public Vector {
308 public:
Map(const uint8_t * data,uint8_t byte_width)309 Map(const uint8_t *data, uint8_t byte_width)
310 : Vector(data, byte_width) {}
311
312 Reference operator[](const char *key) const;
313 Reference operator[](const std::string &key) const;
314
Values()315 Vector Values() const { return Vector(data_, byte_width_); }
316
Keys()317 TypedVector Keys() const {
318 const size_t num_prefixed_fields = 3;
319 auto keys_offset = data_ - byte_width_ * num_prefixed_fields;
320 return TypedVector(Indirect(keys_offset, byte_width_),
321 static_cast<uint8_t>(
322 ReadUInt64(keys_offset + byte_width_, byte_width_)),
323 TYPE_KEY);
324 }
325
EmptyMap()326 static Map EmptyMap() {
327 static const uint8_t empty_map[] = {
328 0/*keys_len*/, 0/*keys_offset*/, 1/*keys_width*/, 0/*len*/
329 };
330 return Map(empty_map + 4, 1);
331 }
332
IsTheEmptyMap()333 bool IsTheEmptyMap() const {
334 return data_ == EmptyMap().data_;
335 }
336 };
337
338 class Reference {
339 public:
Reference(const uint8_t * data,uint8_t parent_width,uint8_t byte_width,Type type)340 Reference(const uint8_t *data, uint8_t parent_width, uint8_t byte_width,
341 Type type)
342 : data_(data), parent_width_(parent_width), byte_width_(byte_width),
343 type_(type) {}
344
Reference(const uint8_t * data,uint8_t parent_width,uint8_t packed_type)345 Reference(const uint8_t *data, uint8_t parent_width, uint8_t packed_type)
346 : data_(data), parent_width_(parent_width) {
347 byte_width_ = 1U << static_cast<BitWidth>(packed_type & 3);
348 type_ = static_cast<Type>(packed_type >> 2);
349 }
350
GetType()351 Type GetType() const { return type_; }
352
IsNull()353 bool IsNull() const { return type_ == TYPE_NULL; }
IsBool()354 bool IsBool() const { return type_ == TYPE_BOOL; }
IsInt()355 bool IsInt() const { return type_ == TYPE_INT ||
356 type_ == TYPE_INDIRECT_INT; }
IsUInt()357 bool IsUInt() const { return type_ == TYPE_UINT||
358 type_ == TYPE_INDIRECT_UINT;; }
IsIntOrUint()359 bool IsIntOrUint() const { return IsInt() || IsUInt(); }
IsFloat()360 bool IsFloat() const { return type_ == TYPE_FLOAT ||
361 type_ == TYPE_INDIRECT_FLOAT; }
IsNumeric()362 bool IsNumeric() const { return IsIntOrUint() || IsFloat(); }
IsString()363 bool IsString() const { return type_ == TYPE_STRING; }
IsKey()364 bool IsKey() const { return type_ == TYPE_KEY; }
IsVector()365 bool IsVector() const { return type_ == TYPE_VECTOR || type_ == TYPE_MAP; }
IsMap()366 bool IsMap() const { return type_ == TYPE_MAP; }
IsBlob()367 bool IsBlob() const { return type_ == TYPE_BLOB; }
368
AsBool()369 bool AsBool() const {
370 return (type_ == TYPE_BOOL ? ReadUInt64(data_, parent_width_) : AsUInt64()) != 0;
371 }
372
373 // Reads any type as a int64_t. Never fails, does most sensible conversion.
374 // Truncates floats, strings are attempted to be parsed for a number,
375 // vectors/maps return their size. Returns 0 if all else fails.
AsInt64()376 int64_t AsInt64() const {
377 if (type_ == TYPE_INT) {
378 // A fast path for the common case.
379 return ReadInt64(data_, parent_width_);
380 } else switch (type_) {
381 case TYPE_INDIRECT_INT: return ReadInt64(Indirect(), byte_width_);
382 case TYPE_UINT: return ReadUInt64(data_, parent_width_);
383 case TYPE_INDIRECT_UINT: return ReadUInt64(Indirect(), byte_width_);
384 case TYPE_FLOAT: return static_cast<int64_t>(
385 ReadDouble(data_, parent_width_));
386 case TYPE_INDIRECT_FLOAT: return static_cast<int64_t>(
387 ReadDouble(Indirect(), byte_width_));
388 case TYPE_NULL: return 0;
389 case TYPE_STRING: return flatbuffers::StringToInt(AsString().c_str());
390 case TYPE_VECTOR: return static_cast<int64_t>(AsVector().size());
391 case TYPE_BOOL: return ReadInt64(data_, parent_width_);
392 default:
393 // Convert other things to int.
394 return 0;
395 }
396 }
397
398 // TODO: could specialize these to not use AsInt64() if that saves
399 // extension ops in generated code, and use a faster op than ReadInt64.
AsInt32()400 int32_t AsInt32() const { return static_cast<int32_t>(AsInt64()); }
AsInt16()401 int16_t AsInt16() const { return static_cast<int16_t>(AsInt64()); }
AsInt8()402 int8_t AsInt8() const { return static_cast<int8_t> (AsInt64()); }
403
AsUInt64()404 uint64_t AsUInt64() const {
405 if (type_ == TYPE_UINT) {
406 // A fast path for the common case.
407 return ReadUInt64(data_, parent_width_);
408 } else switch (type_) {
409 case TYPE_INDIRECT_UINT: return ReadUInt64(Indirect(), byte_width_);
410 case TYPE_INT: return ReadInt64(data_, parent_width_);
411 case TYPE_INDIRECT_INT: return ReadInt64(Indirect(), byte_width_);
412 case TYPE_FLOAT: return static_cast<uint64_t>(
413 ReadDouble(data_, parent_width_));
414 case TYPE_INDIRECT_FLOAT: return static_cast<uint64_t>(
415 ReadDouble(Indirect(), byte_width_));
416 case TYPE_NULL: return 0;
417 case TYPE_STRING: return flatbuffers::StringToUInt(AsString().c_str());
418 case TYPE_VECTOR: return static_cast<uint64_t>(AsVector().size());
419 case TYPE_BOOL: return ReadUInt64(data_, parent_width_);
420 default:
421 // Convert other things to uint.
422 return 0;
423 }
424 }
425
AsUInt32()426 uint32_t AsUInt32() const { return static_cast<uint32_t>(AsUInt64()); }
AsUInt16()427 uint16_t AsUInt16() const { return static_cast<uint16_t>(AsUInt64()); }
AsUInt8()428 uint8_t AsUInt8() const { return static_cast<uint8_t> (AsUInt64()); }
429
AsDouble()430 double AsDouble() const {
431 if (type_ == TYPE_FLOAT) {
432 // A fast path for the common case.
433 return ReadDouble(data_, parent_width_);
434 } else switch (type_) {
435 case TYPE_INDIRECT_FLOAT: return ReadDouble(Indirect(), byte_width_);
436 case TYPE_INT: return static_cast<double>(
437 ReadInt64(data_, parent_width_));
438 case TYPE_UINT: return static_cast<double>(
439 ReadUInt64(data_, parent_width_));
440 case TYPE_INDIRECT_INT: return static_cast<double>(
441 ReadInt64(Indirect(), byte_width_));
442 case TYPE_INDIRECT_UINT: return static_cast<double>(
443 ReadUInt64(Indirect(), byte_width_));
444 case TYPE_NULL: return 0.0;
445 case TYPE_STRING: return strtod(AsString().c_str(), nullptr);
446 case TYPE_VECTOR: return static_cast<double>(AsVector().size());
447 case TYPE_BOOL: return static_cast<double>(
448 ReadUInt64(data_, parent_width_));
449 default:
450 // Convert strings and other things to float.
451 return 0;
452 }
453 }
454
AsFloat()455 float AsFloat() const { return static_cast<float>(AsDouble()); }
456
AsKey()457 const char *AsKey() const {
458 if (type_ == TYPE_KEY) {
459 return reinterpret_cast<const char *>(Indirect());
460 } else {
461 return "";
462 }
463 }
464
465 // This function returns the empty string if you try to read a not-string.
AsString()466 String AsString() const {
467 if (type_ == TYPE_STRING) {
468 return String(Indirect(), byte_width_);
469 } else {
470 return String::EmptyString();
471 }
472 }
473
474 // Unlike AsString(), this will convert any type to a std::string.
ToString()475 std::string ToString() {
476 std::string s;
477 ToString(false, false, s);
478 return s;
479 }
480
481 // Convert any type to a JSON-like string. strings_quoted determines if
482 // string values at the top level receive "" quotes (inside other values
483 // they always do). keys_quoted determines if keys are quoted, at any level.
484 // TODO(wvo): add further options to have indentation/newlines.
ToString(bool strings_quoted,bool keys_quoted,std::string & s)485 void ToString(bool strings_quoted, bool keys_quoted, std::string &s) const {
486 if (type_ == TYPE_STRING) {
487 String str(Indirect(), byte_width_);
488 if (strings_quoted) {
489 flatbuffers::EscapeString(str.c_str(), str.length(), &s, true);
490 } else {
491 s.append(str.c_str(), str.length());
492 }
493 } else if (IsKey()) {
494 auto str = AsKey();
495 if (keys_quoted) {
496 flatbuffers::EscapeString(str, strlen(str), &s, true);
497 } else {
498 s += str;
499 }
500 } else if (IsInt()) {
501 s += flatbuffers::NumToString(AsInt64());
502 } else if (IsUInt()) {
503 s += flatbuffers::NumToString(AsUInt64());
504 } else if (IsFloat()) {
505 s += flatbuffers::NumToString(AsDouble());
506 } else if (IsNull()) {
507 s += "null";
508 } else if (IsBool()) {
509 s += AsBool() ? "true" : "false";
510 } else if (IsMap()) {
511 s += "{ ";
512 auto m = AsMap();
513 auto keys = m.Keys();
514 auto vals = m.Values();
515 for (size_t i = 0; i < keys.size(); i++) {
516 keys[i].ToString(true, keys_quoted, s);
517 s += ": ";
518 vals[i].ToString(true, keys_quoted, s);
519 if (i < keys.size() - 1) s += ", ";
520 }
521 s += " }";
522 } else if (IsVector()) {
523 s += "[ ";
524 auto v = AsVector();
525 for (size_t i = 0; i < v.size(); i++) {
526 v[i].ToString(true, keys_quoted, s);
527 if (i < v.size() - 1) s += ", ";
528 }
529 s += " ]";
530 } else {
531 s += "(?)";
532 }
533 }
534
535 // This function returns the empty blob if you try to read a not-blob.
536 // Strings can be viewed as blobs too.
AsBlob()537 Blob AsBlob() const {
538 if (type_ == TYPE_BLOB || type_ == TYPE_STRING) {
539 return Blob(Indirect(), byte_width_);
540 } else {
541 return Blob::EmptyBlob();
542 }
543 }
544
545 // This function returns the empty vector if you try to read a not-vector.
546 // Maps can be viewed as vectors too.
AsVector()547 Vector AsVector() const {
548 if (type_ == TYPE_VECTOR || type_ == TYPE_MAP) {
549 return Vector(Indirect(), byte_width_);
550 } else {
551 return Vector::EmptyVector();
552 }
553 }
554
AsTypedVector()555 TypedVector AsTypedVector() const {
556 if (IsTypedVector(type_)) {
557 return TypedVector(Indirect(), byte_width_,
558 ToTypedVectorElementType(type_));
559 } else {
560 return TypedVector::EmptyTypedVector();
561 }
562 }
563
AsFixedTypedVector()564 FixedTypedVector AsFixedTypedVector() const {
565 if (IsFixedTypedVector(type_)) {
566 uint8_t len = 0;
567 auto vtype = ToFixedTypedVectorElementType(type_, &len);
568 return FixedTypedVector(Indirect(), byte_width_, vtype, len);
569 } else {
570 return FixedTypedVector::EmptyFixedTypedVector();
571 }
572 }
573
AsMap()574 Map AsMap() const {
575 if (type_ == TYPE_MAP) {
576 return Map(Indirect(), byte_width_);
577 } else {
578 return Map::EmptyMap();
579 }
580 }
581
582 template<typename T> T As();
583
584 // Experimental: Mutation functions.
585 // These allow scalars in an already created buffer to be updated in-place.
586 // Since by default scalars are stored in the smallest possible space,
587 // the new value may not fit, in which case these functions return false.
588 // To avoid this, you can construct the values you intend to mutate using
589 // Builder::ForceMinimumBitWidth.
MutateInt(int64_t i)590 bool MutateInt(int64_t i) {
591 if (type_ == TYPE_INT) {
592 return Mutate(data_, i, parent_width_, WidthI(i));
593 } else if (type_ == TYPE_INDIRECT_INT) {
594 return Mutate(Indirect(), i, byte_width_, WidthI(i));
595 } else if (type_ == TYPE_UINT) {
596 auto u = static_cast<uint64_t>(i);
597 return Mutate(data_, u, parent_width_, WidthU(u));
598 } else if (type_ == TYPE_INDIRECT_UINT) {
599 auto u = static_cast<uint64_t>(i);
600 return Mutate(Indirect(), u, byte_width_, WidthU(u));
601 } else {
602 return false;
603 }
604 }
605
MutateBool(bool b)606 bool MutateBool(bool b) {
607 return type_ == TYPE_BOOL && Mutate(data_, b, parent_width_, BIT_WIDTH_8);
608 }
609
MutateUInt(uint64_t u)610 bool MutateUInt(uint64_t u) {
611 if (type_ == TYPE_UINT) {
612 return Mutate(data_, u, parent_width_, WidthU(u));
613 } else if (type_ == TYPE_INDIRECT_UINT) {
614 return Mutate(Indirect(), u, byte_width_, WidthU(u));
615 } else if (type_ == TYPE_INT) {
616 auto i = static_cast<int64_t>(u);
617 return Mutate(data_, i, parent_width_, WidthI(i));
618 } else if (type_ == TYPE_INDIRECT_INT) {
619 auto i = static_cast<int64_t>(u);
620 return Mutate(Indirect(), i, byte_width_, WidthI(i));
621 } else {
622 return false;
623 }
624 }
625
MutateFloat(float f)626 bool MutateFloat(float f) {
627 if (type_ == TYPE_FLOAT) {
628 return MutateF(data_, f, parent_width_, BIT_WIDTH_32);
629 } else if (type_ == TYPE_INDIRECT_FLOAT) {
630 return MutateF(Indirect(), f, byte_width_, BIT_WIDTH_32);
631 } else {
632 return false;
633 }
634 }
635
MutateFloat(double d)636 bool MutateFloat(double d) {
637 if (type_ == TYPE_FLOAT) {
638 return MutateF(data_, d, parent_width_, WidthF(d));
639 } else if (type_ == TYPE_INDIRECT_FLOAT) {
640 return MutateF(Indirect(), d, byte_width_, WidthF(d));
641 } else {
642 return false;
643 }
644 }
645
MutateString(const char * str,size_t len)646 bool MutateString(const char *str, size_t len) {
647 auto s = AsString();
648 if (s.IsTheEmptyString()) return false;
649 // This is very strict, could allow shorter strings, but that creates
650 // garbage.
651 if (s.length() != len) return false;
652 memcpy(const_cast<char *>(s.c_str()), str, len);
653 return true;
654 }
MutateString(const char * str)655 bool MutateString(const char *str) {
656 return MutateString(str, strlen(str));
657 }
MutateString(const std::string & str)658 bool MutateString(const std::string &str) {
659 return MutateString(str.data(), str.length());
660 }
661
662 private:
Indirect()663 const uint8_t *Indirect() const {
664 return flexbuffers::Indirect(data_, parent_width_);
665 }
666
Mutate(const uint8_t * dest,T t,size_t byte_width,BitWidth value_width)667 template<typename T> bool Mutate(const uint8_t *dest, T t, size_t byte_width,
668 BitWidth value_width) {
669 auto fits = static_cast<size_t>(static_cast<size_t>(1U) << value_width) <= byte_width;
670 if (fits) {
671 t = flatbuffers::EndianScalar(t);
672 memcpy(const_cast<uint8_t *>(dest), &t, byte_width);
673 }
674 return fits;
675 }
676
MutateF(const uint8_t * dest,T t,size_t byte_width,BitWidth value_width)677 template<typename T> bool MutateF(const uint8_t *dest, T t, size_t byte_width,
678 BitWidth value_width) {
679 if (byte_width == sizeof(double))
680 return Mutate(dest, static_cast<double>(t), byte_width, value_width);
681 if (byte_width == sizeof(float))
682 return Mutate(dest, static_cast<float>(t), byte_width, value_width);
683 assert(false);
684 return false;
685 }
686
687 const uint8_t *data_;
688 uint8_t parent_width_;
689 uint8_t byte_width_;
690 Type type_;
691 };
692
693 // Template specialization for As().
694 template<> inline bool Reference::As<bool>() { return AsBool(); }
695
696 template<> inline int8_t Reference::As<int8_t>() { return AsInt8(); }
697 template<> inline int16_t Reference::As<int16_t>() { return AsInt16(); }
698 template<> inline int32_t Reference::As<int32_t>() { return AsInt32(); }
699 template<> inline int64_t Reference::As<int64_t>() { return AsInt64(); }
700
701 template<> inline uint8_t Reference::As<uint8_t>() { return AsUInt8(); }
702 template<> inline uint16_t Reference::As<uint16_t>() { return AsUInt16(); }
703 template<> inline uint32_t Reference::As<uint32_t>() { return AsUInt32(); }
704 template<> inline uint64_t Reference::As<uint64_t>() { return AsUInt64(); }
705
706 template<> inline double Reference::As<double>() { return AsDouble(); }
707 template<> inline float Reference::As<float>() { return AsFloat(); }
708
709 template<> inline String Reference::As<String>() { return AsString(); }
710 template<> inline std::string Reference::As<std::string>() { return AsString().str(); }
711
712 template<> inline Blob Reference::As<Blob>() { return AsBlob(); }
713 template<> inline Vector Reference::As<Vector>() { return AsVector(); }
714 template<> inline TypedVector Reference::As<TypedVector>() { return AsTypedVector(); }
715 template<> inline FixedTypedVector Reference::As<FixedTypedVector>() { return AsFixedTypedVector(); }
716 template<> inline Map Reference::As<Map>() { return AsMap(); }
717
PackedType(BitWidth bit_width,Type type)718 inline uint8_t PackedType(BitWidth bit_width, Type type) {
719 return static_cast<uint8_t>(bit_width | (type << 2));
720 }
721
NullPackedType()722 inline uint8_t NullPackedType() {
723 return PackedType(BIT_WIDTH_8, TYPE_NULL);
724 }
725
726 // Vector accessors.
727 // Note: if you try to access outside of bounds, you get a Null value back
728 // instead. Normally this would be an assert, but since this is "dynamically
729 // typed" data, you may not want that (someone sends you a 2d vector and you
730 // wanted 3d).
731 // The Null converts seamlessly into a default value for any other type.
732 // TODO(wvo): Could introduce an #ifdef that makes this into an assert?
733 inline Reference Vector::operator[](size_t i) const {
734 auto len = size();
735 if (i >= len) return Reference(nullptr, 1, NullPackedType());
736 auto packed_type = (data_ + len * byte_width_)[i];
737 auto elem = data_ + i * byte_width_;
738 return Reference(elem, byte_width_, packed_type);
739 }
740
741 inline Reference TypedVector::operator[](size_t i) const {
742 auto len = size();
743 if (i >= len) return Reference(nullptr, 1, NullPackedType());
744 auto elem = data_ + i * byte_width_;
745 return Reference(elem, byte_width_, 1, type_);
746 }
747
748 inline Reference FixedTypedVector::operator[](size_t i) const {
749 if (i >= len_) return Reference(nullptr, 1, NullPackedType());
750 auto elem = data_ + i * byte_width_;
751 return Reference(elem, byte_width_, 1, type_);
752 }
753
KeyCompare(const void * key,const void * elem)754 template<typename T> int KeyCompare(const void *key, const void *elem) {
755 auto str_elem = reinterpret_cast<const char *>(
756 Indirect<T>(reinterpret_cast<const uint8_t *>(elem)));
757 auto skey = reinterpret_cast<const char *>(key);
758 return strcmp(skey, str_elem);
759 }
760
761 inline Reference Map::operator[](const char *key) const {
762 auto keys = Keys();
763 // We can't pass keys.byte_width_ to the comparison function, so we have
764 // to pick the right one ahead of time.
765 int (*comp)(const void *, const void *) = nullptr;
766 switch (keys.byte_width_) {
767 case 1: comp = KeyCompare<uint8_t>; break;
768 case 2: comp = KeyCompare<uint16_t>; break;
769 case 4: comp = KeyCompare<uint32_t>; break;
770 case 8: comp = KeyCompare<uint64_t>; break;
771 }
772 auto res = std::bsearch(key, keys.data_, keys.size(), keys.byte_width_, comp);
773 if (!res)
774 return Reference(nullptr, 1, NullPackedType());
775 auto i = (reinterpret_cast<uint8_t *>(res) - keys.data_) / keys.byte_width_;
776 return (*static_cast<const Vector *>(this))[i];
777 }
778
779 inline Reference Map::operator[](const std::string &key) const {
780 return (*this)[key.c_str()];
781 }
782
GetRoot(const uint8_t * buffer,size_t size)783 inline Reference GetRoot(const uint8_t *buffer, size_t size) {
784 // See Finish() below for the serialization counterpart of this.
785 // The root starts at the end of the buffer, so we parse backwards from there.
786 auto end = buffer + size;
787 auto byte_width = *--end;
788 auto packed_type = *--end;
789 end -= byte_width; // The root data item.
790 return Reference(end, byte_width, packed_type);
791 }
792
GetRoot(const std::vector<uint8_t> & buffer)793 inline Reference GetRoot(const std::vector<uint8_t> &buffer) {
794 return GetRoot(flatbuffers::vector_data(buffer), buffer.size());
795 }
796
797 // Flags that configure how the Builder behaves.
798 // The "Share" flags determine if the Builder automatically tries to pool
799 // this type. Pooling can reduce the size of serialized data if there are
800 // multiple maps of the same kind, at the expense of slightly slower
801 // serialization (the cost of lookups) and more memory use (std::set).
802 // By default this is on for keys, but off for strings.
803 // Turn keys off if you have e.g. only one map.
804 // Turn strings on if you expect many non-unique string values.
805 // Additionally, sharing key vectors can save space if you have maps with
806 // identical field populations.
807 enum BuilderFlag {
808 BUILDER_FLAG_NONE = 0,
809 BUILDER_FLAG_SHARE_KEYS = 1,
810 BUILDER_FLAG_SHARE_STRINGS = 2,
811 BUILDER_FLAG_SHARE_KEYS_AND_STRINGS = 3,
812 BUILDER_FLAG_SHARE_KEY_VECTORS = 4,
813 BUILDER_FLAG_SHARE_ALL = 7,
814 };
815
816 class Builder FLATBUFFERS_FINAL_CLASS {
817 public:
818 Builder(size_t initial_size = 256,
819 BuilderFlag flags = BUILDER_FLAG_SHARE_KEYS)
buf_(initial_size)820 : buf_(initial_size), finished_(false), flags_(flags),
821 force_min_bit_width_(BIT_WIDTH_8), key_pool(KeyOffsetCompare(buf_)),
822 string_pool(StringOffsetCompare(buf_)) {
823 buf_.clear();
824 }
825
826 /// @brief Get the serialized buffer (after you call `Finish()`).
827 /// @return Returns a vector owned by this class.
GetBuffer()828 const std::vector<uint8_t> &GetBuffer() const {
829 Finished();
830 return buf_;
831 }
832
833 // Size of the buffer. Does not include unfinished values.
GetSize()834 size_t GetSize() const {
835 return buf_.size();
836 }
837
838 // Reset all state so we can re-use the buffer.
Clear()839 void Clear() {
840 buf_.clear();
841 stack_.clear();
842 finished_ = false;
843 // flags_ remains as-is;
844 force_min_bit_width_ = BIT_WIDTH_8;
845 key_pool.clear();
846 string_pool.clear();
847 }
848
849 // All value constructing functions below have two versions: one that
850 // takes a key (for placement inside a map) and one that doesn't (for inside
851 // vectors and elsewhere).
852
Null()853 void Null() { stack_.push_back(Value()); }
Null(const char * key)854 void Null(const char *key) { Key(key); Null(); }
855
Int(int64_t i)856 void Int(int64_t i) { stack_.push_back(Value(i, TYPE_INT, WidthI(i))); }
Int(const char * key,int64_t i)857 void Int(const char *key, int64_t i) { Key(key); Int(i); }
858
UInt(uint64_t u)859 void UInt(uint64_t u) { stack_.push_back(Value(u, TYPE_UINT, WidthU(u))); }
UInt(const char * key,uint64_t u)860 void UInt(const char *key, uint64_t u) { Key(key); Int(u); }
861
Float(float f)862 void Float(float f) { stack_.push_back(Value(f)); }
Float(const char * key,float f)863 void Float(const char *key, float f) { Key(key); Float(f); }
864
Double(double f)865 void Double(double f) { stack_.push_back(Value(f)); }
Double(const char * key,double d)866 void Double(const char *key, double d) { Key(key); Double(d); }
867
Bool(bool b)868 void Bool(bool b) { stack_.push_back(Value(b)); }
Bool(const char * key,bool b)869 void Bool(const char *key, bool b) { Key(key); Bool(b); }
870
IndirectInt(int64_t i)871 void IndirectInt(int64_t i) {
872 PushIndirect(i, TYPE_INDIRECT_INT, WidthI(i));
873 }
IndirectInt(const char * key,int64_t i)874 void IndirectInt(const char *key, int64_t i) {
875 Key(key);
876 IndirectInt(i);
877 }
878
IndirectUInt(uint64_t u)879 void IndirectUInt(uint64_t u) {
880 PushIndirect(u, TYPE_INDIRECT_UINT, WidthU(u));
881 }
IndirectUInt(const char * key,uint64_t u)882 void IndirectUInt(const char *key, uint64_t u) {
883 Key(key);
884 IndirectUInt(u);
885 }
886
IndirectFloat(float f)887 void IndirectFloat(float f) {
888 PushIndirect(f, TYPE_INDIRECT_FLOAT, BIT_WIDTH_32);
889 }
IndirectFloat(const char * key,float f)890 void IndirectFloat(const char *key, float f) {
891 Key(key);
892 IndirectFloat(f);
893 }
894
IndirectDouble(double f)895 void IndirectDouble(double f) {
896 PushIndirect(f, TYPE_INDIRECT_FLOAT, WidthF(f));
897 }
IndirectDouble(const char * key,double d)898 void IndirectDouble(const char *key, double d) {
899 Key(key);
900 IndirectDouble(d);
901 }
902
Key(const char * str,size_t len)903 size_t Key(const char *str, size_t len) {
904 auto sloc = buf_.size();
905 WriteBytes(str, len + 1);
906 if (flags_ & BUILDER_FLAG_SHARE_KEYS) {
907 auto it = key_pool.find(sloc);
908 if (it != key_pool.end()) {
909 // Already in the buffer. Remove key we just serialized, and use
910 // existing offset instead.
911 buf_.resize(sloc);
912 sloc = *it;
913 } else {
914 key_pool.insert(sloc);
915 }
916 }
917 stack_.push_back(Value(static_cast<uint64_t>(sloc), TYPE_KEY, BIT_WIDTH_8));
918 return sloc;
919 }
920
Key(const char * str)921 size_t Key(const char *str) { return Key(str, strlen(str)); }
Key(const std::string & str)922 size_t Key(const std::string &str) { return Key(str.c_str(), str.size()); }
923
String(const char * str,size_t len)924 size_t String(const char *str, size_t len) {
925 auto reset_to = buf_.size();
926 auto sloc = CreateBlob(str, len, 1, TYPE_STRING);
927 if (flags_ & BUILDER_FLAG_SHARE_STRINGS) {
928 StringOffset so(sloc, len);
929 auto it = string_pool.find(so);
930 if (it != string_pool.end()) {
931 // Already in the buffer. Remove string we just serialized, and use
932 // existing offset instead.
933 buf_.resize(reset_to);
934 sloc = it->first;
935 stack_.back().u_ = sloc;
936 } else {
937 string_pool.insert(so);
938 }
939 }
940 return sloc;
941 }
String(const char * str)942 size_t String(const char *str) {
943 return String(str, strlen(str));
944 }
String(const std::string & str)945 size_t String(const std::string &str) {
946 return String(str.c_str(), str.size());
947 }
String(const flexbuffers::String & str)948 void String(const flexbuffers::String &str) {
949 String(str.c_str(), str.length());
950 }
951
String(const char * key,const char * str)952 void String(const char *key, const char *str) {
953 Key(key);
954 String(str);
955 }
String(const char * key,const std::string & str)956 void String(const char *key, const std::string &str) {
957 Key(key);
958 String(str);
959 }
String(const char * key,const flexbuffers::String & str)960 void String(const char *key, const flexbuffers::String &str) {
961 Key(key);
962 String(str);
963 }
964
Blob(const void * data,size_t len)965 size_t Blob(const void *data, size_t len) {
966 return CreateBlob(data, len, 0, TYPE_BLOB);
967 }
Blob(const std::vector<uint8_t> & v)968 size_t Blob(const std::vector<uint8_t> &v) {
969 return CreateBlob(flatbuffers::vector_data(v), v.size(), 0, TYPE_BLOB);
970 }
971
972 // TODO(wvo): support all the FlexBuffer types (like flexbuffers::String),
973 // e.g. Vector etc. Also in overloaded versions.
974 // Also some FlatBuffers types?
975
StartVector()976 size_t StartVector() { return stack_.size(); }
StartVector(const char * key)977 size_t StartVector(const char *key) { Key(key); return stack_.size(); }
StartMap()978 size_t StartMap() { return stack_.size(); }
StartMap(const char * key)979 size_t StartMap(const char *key) { Key(key); return stack_.size(); }
980
981 // TODO(wvo): allow this to specify an aligment greater than the natural
982 // alignment.
EndVector(size_t start,bool typed,bool fixed)983 size_t EndVector(size_t start, bool typed, bool fixed) {
984 auto vec = CreateVector(start, stack_.size() - start, 1, typed, fixed);
985 // Remove temp elements and return vector.
986 stack_.resize(start);
987 stack_.push_back(vec);
988 return static_cast<size_t>(vec.u_);
989 }
990
EndMap(size_t start)991 size_t EndMap(size_t start) {
992 // We should have interleaved keys and values on the stack.
993 // Make sure it is an even number:
994 auto len = stack_.size() - start;
995 assert(!(len & 1));
996 len /= 2;
997 // Make sure keys are all strings:
998 for (auto key = start; key < stack_.size(); key += 2) {
999 assert(stack_[key].type_ == TYPE_KEY);
1000 }
1001 // Now sort values, so later we can do a binary seach lookup.
1002 // We want to sort 2 array elements at a time.
1003 struct TwoValue { Value key; Value val; };
1004 // TODO(wvo): strict aliasing?
1005 // TODO(wvo): allow the caller to indicate the data is already sorted
1006 // for maximum efficiency? With an assert to check sortedness to make sure
1007 // we're not breaking binary search.
1008 // Or, we can track if the map is sorted as keys are added which would be
1009 // be quite cheap (cheaper than checking it here), so we can skip this
1010 // step automatically when appliccable, and encourage people to write in
1011 // sorted fashion.
1012 // std::sort is typically already a lot faster on sorted data though.
1013 auto dict =
1014 reinterpret_cast<TwoValue *>(flatbuffers::vector_data(stack_) +
1015 start);
1016 std::sort(dict, dict + len,
1017 [&](const TwoValue &a, const TwoValue &b) -> bool {
1018 auto as = reinterpret_cast<const char *>(
1019 flatbuffers::vector_data(buf_) + a.key.u_);
1020 auto bs = reinterpret_cast<const char *>(
1021 flatbuffers::vector_data(buf_) + b.key.u_);
1022 auto comp = strcmp(as, bs);
1023 // If this assertion hits, you've added two keys with the same value to
1024 // this map.
1025 // TODO: Have to check for pointer equality, as some sort implementation
1026 // apparently call this function with the same element?? Why?
1027 assert(comp || &a == &b);
1028 return comp < 0;
1029 });
1030 // First create a vector out of all keys.
1031 // TODO(wvo): if kBuilderFlagShareKeyVectors is true, see if we can share
1032 // the first vector.
1033 auto keys = CreateVector(start, len, 2, true, false);
1034 auto vec = CreateVector(start + 1, len, 2, false, false, &keys);
1035 // Remove temp elements and return map.
1036 stack_.resize(start);
1037 stack_.push_back(vec);
1038 return static_cast<size_t>(vec.u_);
1039 }
1040
Vector(F f)1041 template<typename F> size_t Vector(F f) {
1042 auto start = StartVector();
1043 f();
1044 return EndVector(start, false, false);
1045 }
Vector(F f,T & state)1046 template <typename F, typename T> size_t Vector(F f, T &state) {
1047 auto start = StartVector();
1048 f(state);
1049 return EndVector(start, false, false);
1050 }
Vector(const char * key,F f)1051 template<typename F> size_t Vector(const char *key, F f) {
1052 auto start = StartVector(key);
1053 f();
1054 return EndVector(start, false, false);
1055 }
Vector(const char * key,F f,T & state)1056 template <typename F, typename T> size_t Vector(const char *key, F f,
1057 T &state) {
1058 auto start = StartVector(key);
1059 f(state);
1060 return EndVector(start, false, false);
1061 }
1062
Vector(const T * elems,size_t len)1063 template<typename T> void Vector(const T *elems, size_t len) {
1064 if (flatbuffers::is_scalar<T>::value) {
1065 // This path should be a lot quicker and use less space.
1066 ScalarVector(elems, len, false);
1067 } else {
1068 auto start = StartVector();
1069 for (size_t i = 0; i < len; i++) Add(elems[i]);
1070 EndVector(start, false, false);
1071 }
1072 }
Vector(const char * key,const T * elems,size_t len)1073 template<typename T> void Vector(const char *key, const T *elems,
1074 size_t len) {
1075 Key(key);
1076 Vector(elems, len);
1077 }
Vector(const std::vector<T> & vec)1078 template<typename T> void Vector(const std::vector<T> &vec) {
1079 Vector(flatbuffers::vector_data(vec), vec.size());
1080 }
1081
TypedVector(F f)1082 template<typename F> size_t TypedVector(F f) {
1083 auto start = StartVector();
1084 f();
1085 return EndVector(start, true, false);
1086 }
TypedVector(F f,T & state)1087 template <typename F, typename T> size_t TypedVector(F f, T &state) {
1088 auto start = StartVector();
1089 f(state);
1090 return EndVector(start, true, false);
1091 }
TypedVector(const char * key,F f)1092 template<typename F> size_t TypedVector(const char *key, F f) {
1093 auto start = StartVector(key);
1094 f();
1095 return EndVector(start, true, false);
1096 }
TypedVector(const char * key,F f,T & state)1097 template <typename F, typename T> size_t TypedVector(const char *key, F f,
1098 T &state) {
1099 auto start = StartVector(key);
1100 f(state);
1101 return EndVector(start, true, false);
1102 }
1103
FixedTypedVector(const T * elems,size_t len)1104 template<typename T> size_t FixedTypedVector(const T *elems, size_t len) {
1105 // We only support a few fixed vector lengths. Anything bigger use a
1106 // regular typed vector.
1107 assert(len >= 2 && len <= 4);
1108 // And only scalar values.
1109 assert(flatbuffers::is_scalar<T>::value);
1110 return ScalarVector(elems, len, true);
1111 }
1112
FixedTypedVector(const char * key,const T * elems,size_t len)1113 template<typename T> size_t FixedTypedVector(const char *key, const T *elems,
1114 size_t len) {
1115 Key(key);
1116 return FixedTypedVector(elems, len);
1117 }
1118
Map(F f)1119 template<typename F> size_t Map(F f) {
1120 auto start = StartMap();
1121 f();
1122 return EndMap(start);
1123 }
Map(F f,T & state)1124 template <typename F, typename T> size_t Map(F f, T &state) {
1125 auto start = StartMap();
1126 f(state);
1127 return EndMap(start);
1128 }
Map(const char * key,F f)1129 template<typename F> size_t Map(const char *key, F f) {
1130 auto start = StartMap(key);
1131 f();
1132 return EndMap(start);
1133 }
Map(const char * key,F f,T & state)1134 template <typename F, typename T> size_t Map(const char *key, F f,
1135 T &state) {
1136 auto start = StartMap(key);
1137 f(state);
1138 return EndMap(start);
1139 }
Map(const std::map<std::string,T> & map)1140 template<typename T> void Map(const std::map<std::string, T> &map) {
1141 auto start = StartMap();
1142 for (auto it = map.begin(); it != map.end(); ++it)
1143 Add(it->first.c_str(), it->second);
1144 EndMap(start);
1145 }
1146
1147 // Overloaded Add that tries to call the correct function above.
Add(int8_t i)1148 void Add(int8_t i) { Int(i); }
Add(int16_t i)1149 void Add(int16_t i) { Int(i); }
Add(int32_t i)1150 void Add(int32_t i) { Int(i); }
Add(int64_t i)1151 void Add(int64_t i) { Int(i); }
Add(uint8_t u)1152 void Add(uint8_t u) { UInt(u); }
Add(uint16_t u)1153 void Add(uint16_t u) { UInt(u); }
Add(uint32_t u)1154 void Add(uint32_t u) { UInt(u); }
Add(uint64_t u)1155 void Add(uint64_t u) { UInt(u); }
Add(float f)1156 void Add(float f) { Float(f); }
Add(double d)1157 void Add(double d) { Double(d); }
Add(bool b)1158 void Add(bool b) { Bool(b); }
Add(const char * str)1159 void Add(const char *str) { String(str); }
Add(const std::string & str)1160 void Add(const std::string &str) { String(str); }
Add(const flexbuffers::String & str)1161 void Add(const flexbuffers::String &str) { String(str); }
1162
Add(const std::vector<T> & vec)1163 template<typename T> void Add(const std::vector<T> &vec) {
1164 Vector(vec);
1165 }
1166
Add(const char * key,const T & t)1167 template<typename T> void Add(const char *key, const T &t) {
1168 Key(key);
1169 Add(t);
1170 }
1171
Add(const std::map<std::string,T> & map)1172 template<typename T> void Add(const std::map<std::string, T> &map) {
1173 Map(map);
1174 }
1175
1176 template<typename T> void operator+=(const T &t) {
1177 Add(t);
1178 }
1179
1180 // This function is useful in combination with the Mutate* functions above.
1181 // It forces elements of vectors and maps to have a minimum size, such that
1182 // they can later be updated without failing.
1183 // Call with no arguments to reset.
1184 void ForceMinimumBitWidth(BitWidth bw = BIT_WIDTH_8) {
1185 force_min_bit_width_ = bw;
1186 }
1187
Finish()1188 void Finish() {
1189 // If you hit this assert, you likely have objects that were never included
1190 // in a parent. You need to have exactly one root to finish a buffer.
1191 // Check your Start/End calls are matched, and all objects are inside
1192 // some other object.
1193 assert(stack_.size() == 1);
1194
1195 // Write root value.
1196 auto byte_width = Align(stack_[0].ElemWidth(buf_.size(), 0));
1197 WriteAny(stack_[0], byte_width);
1198 // Write root type.
1199 Write(stack_[0].StoredPackedType(), 1);
1200 // Write root size. Normally determined by parent, but root has no parent :)
1201 Write(byte_width, 1);
1202
1203 finished_ = true;
1204 }
1205
1206 private:
Finished()1207 void Finished() const {
1208 // If you get this assert, you're attempting to get access a buffer
1209 // which hasn't been finished yet. Be sure to call
1210 // Builder::Finish with your root object.
1211 assert(finished_);
1212 }
1213
1214 // Align to prepare for writing a scalar with a certain size.
Align(BitWidth alignment)1215 uint8_t Align(BitWidth alignment) {
1216 auto byte_width = 1U << alignment;
1217 buf_.insert(buf_.end(), flatbuffers::PaddingBytes(buf_.size(), byte_width),
1218 0);
1219 return static_cast<uint8_t>(byte_width);
1220 }
1221
WriteBytes(const void * val,size_t size)1222 void WriteBytes(const void *val, size_t size) {
1223 buf_.insert(buf_.end(),
1224 reinterpret_cast<const uint8_t *>(val),
1225 reinterpret_cast<const uint8_t *>(val) + size);
1226 }
1227
Write(T val,size_t byte_width)1228 template<typename T> void Write(T val, size_t byte_width) {
1229 assert(sizeof(T) >= byte_width);
1230 val = flatbuffers::EndianScalar(val);
1231 WriteBytes(&val, byte_width);
1232 }
1233
WriteDouble(double f,uint8_t byte_width)1234 void WriteDouble(double f, uint8_t byte_width) {
1235 switch (byte_width) {
1236 case 8: Write(f, byte_width); break;
1237 case 4: Write(static_cast<float>(f), byte_width); break;
1238 //case 2: Write(static_cast<half>(f), byte_width); break;
1239 //case 1: Write(static_cast<quarter>(f), byte_width); break;
1240 default: assert(0);
1241 }
1242 }
1243
WriteOffset(uint64_t o,uint8_t byte_width)1244 void WriteOffset(uint64_t o, uint8_t byte_width) {
1245 auto reloff = buf_.size() - o;
1246 assert(reloff < 1ULL << (byte_width * 8) || byte_width == 8);
1247 Write(reloff, byte_width);
1248 }
1249
PushIndirect(T val,Type type,BitWidth bit_width)1250 template<typename T> void PushIndirect(T val, Type type, BitWidth bit_width) {
1251 auto byte_width = Align(bit_width);
1252 auto iloc = buf_.size();
1253 Write(val, byte_width);
1254 stack_.push_back(Value(static_cast<uint64_t>(iloc), type, bit_width));
1255 }
1256
WidthB(size_t byte_width)1257 static BitWidth WidthB(size_t byte_width) {
1258 switch (byte_width) {
1259 case 1: return BIT_WIDTH_8;
1260 case 2: return BIT_WIDTH_16;
1261 case 4: return BIT_WIDTH_32;
1262 case 8: return BIT_WIDTH_64;
1263 default: assert(false); return BIT_WIDTH_64;
1264 }
1265 }
1266
GetScalarType()1267 template<typename T> static Type GetScalarType() {
1268 assert(flatbuffers::is_scalar<T>::value);
1269 return flatbuffers::is_floating_point<T>::value
1270 ? TYPE_FLOAT
1271 : flatbuffers::is_same<T, bool>::value ? TYPE_BOOL
1272 : (flatbuffers::is_unsigned<T>::value ? TYPE_UINT : TYPE_INT);
1273 }
1274
1275 struct Value {
1276 union {
1277 int64_t i_;
1278 uint64_t u_;
1279 double f_;
1280 };
1281
1282 Type type_;
1283
1284 // For scalars: of itself, for vector: of its elements, for string: length.
1285 BitWidth min_bit_width_;
1286
ValueValue1287 Value() : i_(0), type_(TYPE_NULL), min_bit_width_(BIT_WIDTH_8) {}
1288
ValueValue1289 Value(bool b) : u_(static_cast<uint64_t>(b)), type_(TYPE_BOOL), min_bit_width_(BIT_WIDTH_8) {}
1290
ValueValue1291 Value(int64_t i, Type t, BitWidth bw)
1292 : i_(i), type_(t), min_bit_width_(bw) {}
ValueValue1293 Value(uint64_t u, Type t, BitWidth bw)
1294 : u_(u), type_(t), min_bit_width_(bw) {}
1295
ValueValue1296 Value(float f)
1297 : f_(f), type_(TYPE_FLOAT), min_bit_width_(BIT_WIDTH_32) {}
ValueValue1298 Value(double f)
1299 : f_(f), type_(TYPE_FLOAT), min_bit_width_(WidthF(f)) {}
1300
1301 uint8_t StoredPackedType(BitWidth parent_bit_width_= BIT_WIDTH_8) const {
1302 return PackedType(StoredWidth(parent_bit_width_), type_);
1303 }
1304
ElemWidthValue1305 BitWidth ElemWidth(size_t buf_size, size_t elem_index) const {
1306 if (IsInline(type_)) {
1307 return min_bit_width_;
1308 } else {
1309 // We have an absolute offset, but want to store a relative offset
1310 // elem_index elements beyond the current buffer end. Since whether
1311 // the relative offset fits in a certain byte_width depends on
1312 // the size of the elements before it (and their alignment), we have
1313 // to test for each size in turn.
1314 for (size_t byte_width = 1;
1315 byte_width <= sizeof(flatbuffers::largest_scalar_t);
1316 byte_width *= 2) {
1317 // Where are we going to write this offset?
1318 auto offset_loc =
1319 buf_size +
1320 flatbuffers::PaddingBytes(buf_size, byte_width) +
1321 elem_index * byte_width;
1322 // Compute relative offset.
1323 auto offset = offset_loc - u_;
1324 // Does it fit?
1325 auto bit_width = WidthU(offset);
1326 if (static_cast<size_t>(static_cast<size_t>(1U) << bit_width) == byte_width)
1327 return bit_width;
1328 }
1329 assert(false); // Must match one of the sizes above.
1330 return BIT_WIDTH_64;
1331 }
1332 }
1333
1334 BitWidth StoredWidth(BitWidth parent_bit_width_ = BIT_WIDTH_8) const {
1335 if (IsInline(type_)) {
1336 return (std::max)(min_bit_width_, parent_bit_width_);
1337 } else {
1338 return min_bit_width_;
1339 }
1340 }
1341 };
1342
WriteAny(const Value & val,uint8_t byte_width)1343 void WriteAny(const Value &val, uint8_t byte_width) {
1344 switch (val.type_) {
1345 case TYPE_NULL:
1346 case TYPE_INT:
1347 Write(val.i_, byte_width);
1348 break;
1349 case TYPE_BOOL:
1350 case TYPE_UINT:
1351 Write(val.u_, byte_width);
1352 break;
1353 case TYPE_FLOAT:
1354 WriteDouble(val.f_, byte_width);
1355 break;
1356 default:
1357 WriteOffset(val.u_, byte_width);
1358 break;
1359 }
1360 }
1361
CreateBlob(const void * data,size_t len,size_t trailing,Type type)1362 size_t CreateBlob(const void *data, size_t len, size_t trailing, Type type) {
1363 auto bit_width = WidthU(len);
1364 auto byte_width = Align(bit_width);
1365 Write<uint64_t>(len, byte_width);
1366 auto sloc = buf_.size();
1367 WriteBytes(data, len + trailing);
1368 stack_.push_back(Value(static_cast<uint64_t>(sloc), type, bit_width));
1369 return sloc;
1370 }
1371
ScalarVector(const T * elems,size_t len,bool fixed)1372 template<typename T> size_t ScalarVector(const T *elems, size_t len,
1373 bool fixed) {
1374 auto vector_type = GetScalarType<T>();
1375 auto byte_width = sizeof(T);
1376 auto bit_width = WidthB(byte_width);
1377 // If you get this assert, you're trying to write a vector with a size
1378 // field that is bigger than the scalars you're trying to write (e.g. a
1379 // byte vector > 255 elements). For such types, write a "blob" instead.
1380 // TODO: instead of asserting, could write vector with larger elements
1381 // instead, though that would be wasteful.
1382 assert(WidthU(len) <= bit_width);
1383 if (!fixed) Write<uint64_t>(len, byte_width);
1384 auto vloc = buf_.size();
1385 for (size_t i = 0; i < len; i++) Write(elems[i], byte_width);
1386 stack_.push_back(Value(static_cast<uint64_t>(vloc),
1387 ToTypedVector(vector_type, fixed ? len : 0),
1388 bit_width));
1389 return vloc;
1390 }
1391
1392 Value CreateVector(size_t start, size_t vec_len, size_t step, bool typed,
1393 bool fixed, const Value *keys = nullptr) {
1394 // Figure out smallest bit width we can store this vector with.
1395 auto bit_width = (std::max)(force_min_bit_width_, WidthU(vec_len));
1396 auto prefix_elems = 1;
1397 if (keys) {
1398 // If this vector is part of a map, we will pre-fix an offset to the keys
1399 // to this vector.
1400 bit_width = (std::max)(bit_width, keys->ElemWidth(buf_.size(), 0));
1401 prefix_elems += 2;
1402 }
1403 Type vector_type = TYPE_KEY;
1404 // Check bit widths and types for all elements.
1405 for (size_t i = start; i < stack_.size(); i += step) {
1406 auto elem_width = stack_[i].ElemWidth(buf_.size(), i + prefix_elems);
1407 bit_width = (std::max)(bit_width, elem_width);
1408 if (typed) {
1409 if (i == start) {
1410 vector_type = stack_[i].type_;
1411 } else {
1412 // If you get this assert, you are writing a typed vector with
1413 // elements that are not all the same type.
1414 assert(vector_type == stack_[i].type_);
1415 }
1416 }
1417 }
1418 // If you get this assert, your fixed types are not one of:
1419 // Int / UInt / Float / Key.
1420 assert(IsTypedVectorElementType(vector_type));
1421 auto byte_width = Align(bit_width);
1422 // Write vector. First the keys width/offset if available, and size.
1423 if (keys) {
1424 WriteOffset(keys->u_, byte_width);
1425 Write<uint64_t>(1ULL << keys->min_bit_width_, byte_width);
1426 }
1427 if (!fixed) Write<uint64_t>(vec_len, byte_width);
1428 // Then the actual data.
1429 auto vloc = buf_.size();
1430 for (size_t i = start; i < stack_.size(); i += step) {
1431 WriteAny(stack_[i], byte_width);
1432 }
1433 // Then the types.
1434 if (!typed) {
1435 for (size_t i = start; i < stack_.size(); i += step) {
1436 buf_.push_back(stack_[i].StoredPackedType(bit_width));
1437 }
1438 }
1439 return Value(static_cast<uint64_t>(vloc), keys
1440 ? TYPE_MAP
1441 : (typed
1442 ? ToTypedVector(vector_type, fixed ? vec_len : 0)
1443 : TYPE_VECTOR),
1444 bit_width);
1445 }
1446
1447 // You shouldn't really be copying instances of this class.
1448 Builder(const Builder &);
1449 Builder &operator=(const Builder &);
1450
1451 std::vector<uint8_t> buf_;
1452 std::vector<Value> stack_;
1453
1454 bool finished_;
1455
1456 BuilderFlag flags_;
1457
1458 BitWidth force_min_bit_width_;
1459
1460 struct KeyOffsetCompare {
KeyOffsetCompareKeyOffsetCompare1461 KeyOffsetCompare(const std::vector<uint8_t> &buf) : buf_(&buf) {}
operatorKeyOffsetCompare1462 bool operator()(size_t a, size_t b) const {
1463 auto stra =
1464 reinterpret_cast<const char *>(flatbuffers::vector_data(*buf_) + a);
1465 auto strb =
1466 reinterpret_cast<const char *>(flatbuffers::vector_data(*buf_) + b);
1467 return strcmp(stra, strb) < 0;
1468 }
1469 const std::vector<uint8_t> *buf_;
1470 };
1471
1472 typedef std::pair<size_t, size_t> StringOffset;
1473 struct StringOffsetCompare {
StringOffsetCompareStringOffsetCompare1474 StringOffsetCompare(const std::vector<uint8_t> &buf) : buf_(&buf) {}
operatorStringOffsetCompare1475 bool operator()(const StringOffset &a, const StringOffset &b) const {
1476 auto stra = reinterpret_cast<const char *>(flatbuffers::vector_data(*buf_) +
1477 a.first);
1478 auto strb = reinterpret_cast<const char *>(flatbuffers::vector_data(*buf_) +
1479 b.first);
1480 return strncmp(stra, strb, (std::min)(a.second, b.second) + 1) < 0;
1481 }
1482 const std::vector<uint8_t> *buf_;
1483 };
1484
1485 typedef std::set<size_t, KeyOffsetCompare> KeyOffsetMap;
1486 typedef std::set<StringOffset, StringOffsetCompare> StringOffsetMap;
1487
1488 KeyOffsetMap key_pool;
1489 StringOffsetMap string_pool;
1490 };
1491
1492 } // namespace flexbuffers
1493
1494 #if defined(_MSC_VER)
1495 #pragma warning(pop)
1496 #endif
1497
1498 #endif // FLATBUFFERS_FLEXBUFFERS_H_
1499