1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef LIBTEXTCLASSIFIER_TYPES_H_
18 #define LIBTEXTCLASSIFIER_TYPES_H_
19
20 #include <algorithm>
21 #include <cmath>
22 #include <functional>
23 #include <set>
24 #include <string>
25 #include <utility>
26 #include <vector>
27 #include "util/base/integral_types.h"
28
29 #include "util/base/logging.h"
30
31 namespace libtextclassifier2 {
32
33 constexpr int kInvalidIndex = -1;
34
35 // Index for a 0-based array of tokens.
36 using TokenIndex = int;
37
38 // Index for a 0-based array of codepoints.
39 using CodepointIndex = int;
40
41 // Marks a span in a sequence of codepoints. The first element is the index of
42 // the first codepoint of the span, and the second element is the index of the
43 // codepoint one past the end of the span.
44 // TODO(b/71982294): Make it a struct.
45 using CodepointSpan = std::pair<CodepointIndex, CodepointIndex>;
46
SpansOverlap(const CodepointSpan & a,const CodepointSpan & b)47 inline bool SpansOverlap(const CodepointSpan& a, const CodepointSpan& b) {
48 return a.first < b.second && b.first < a.second;
49 }
50
ValidNonEmptySpan(const CodepointSpan & span)51 inline bool ValidNonEmptySpan(const CodepointSpan& span) {
52 return span.first < span.second && span.first >= 0 && span.second >= 0;
53 }
54
55 template <typename T>
DoesCandidateConflict(const int considered_candidate,const std::vector<T> & candidates,const std::set<int,std::function<bool (int,int)>> & chosen_indices_set)56 bool DoesCandidateConflict(
57 const int considered_candidate, const std::vector<T>& candidates,
58 const std::set<int, std::function<bool(int, int)>>& chosen_indices_set) {
59 if (chosen_indices_set.empty()) {
60 return false;
61 }
62
63 auto conflicting_it = chosen_indices_set.lower_bound(considered_candidate);
64 // Check conflict on the right.
65 if (conflicting_it != chosen_indices_set.end() &&
66 SpansOverlap(candidates[considered_candidate].span,
67 candidates[*conflicting_it].span)) {
68 return true;
69 }
70
71 // Check conflict on the left.
72 // If we can't go more left, there can't be a conflict:
73 if (conflicting_it == chosen_indices_set.begin()) {
74 return false;
75 }
76 // Otherwise move one span left and insert if it doesn't overlap with the
77 // candidate.
78 --conflicting_it;
79 if (!SpansOverlap(candidates[considered_candidate].span,
80 candidates[*conflicting_it].span)) {
81 return false;
82 }
83
84 return true;
85 }
86
87 // Marks a span in a sequence of tokens. The first element is the index of the
88 // first token in the span, and the second element is the index of the token one
89 // past the end of the span.
90 // TODO(b/71982294): Make it a struct.
91 using TokenSpan = std::pair<TokenIndex, TokenIndex>;
92
93 // Returns the size of the token span. Assumes that the span is valid.
TokenSpanSize(const TokenSpan & token_span)94 inline int TokenSpanSize(const TokenSpan& token_span) {
95 return token_span.second - token_span.first;
96 }
97
98 // Returns a token span consisting of one token.
SingleTokenSpan(int token_index)99 inline TokenSpan SingleTokenSpan(int token_index) {
100 return {token_index, token_index + 1};
101 }
102
103 // Returns an intersection of two token spans. Assumes that both spans are valid
104 // and overlapping.
IntersectTokenSpans(const TokenSpan & token_span1,const TokenSpan & token_span2)105 inline TokenSpan IntersectTokenSpans(const TokenSpan& token_span1,
106 const TokenSpan& token_span2) {
107 return {std::max(token_span1.first, token_span2.first),
108 std::min(token_span1.second, token_span2.second)};
109 }
110
111 // Returns and expanded token span by adding a certain number of tokens on its
112 // left and on its right.
ExpandTokenSpan(const TokenSpan & token_span,int num_tokens_left,int num_tokens_right)113 inline TokenSpan ExpandTokenSpan(const TokenSpan& token_span,
114 int num_tokens_left, int num_tokens_right) {
115 return {token_span.first - num_tokens_left,
116 token_span.second + num_tokens_right};
117 }
118
119 // Token holds a token, its position in the original string and whether it was
120 // part of the input span.
121 struct Token {
122 std::string value;
123 CodepointIndex start;
124 CodepointIndex end;
125
126 // Whether the token is a padding token.
127 bool is_padding;
128
129 // Default constructor constructs the padding-token.
TokenToken130 Token()
131 : value(""), start(kInvalidIndex), end(kInvalidIndex), is_padding(true) {}
132
TokenToken133 Token(const std::string& arg_value, CodepointIndex arg_start,
134 CodepointIndex arg_end)
135 : value(arg_value), start(arg_start), end(arg_end), is_padding(false) {}
136
137 bool operator==(const Token& other) const {
138 return value == other.value && start == other.start && end == other.end &&
139 is_padding == other.is_padding;
140 }
141
IsContainedInSpanToken142 bool IsContainedInSpan(CodepointSpan span) const {
143 return start >= span.first && end <= span.second;
144 }
145 };
146
147 // Pretty-printing function for Token.
148 inline logging::LoggingStringStream& operator<<(
149 logging::LoggingStringStream& stream, const Token& token) {
150 if (!token.is_padding) {
151 return stream << "Token(\"" << token.value << "\", " << token.start << ", "
152 << token.end << ")";
153 } else {
154 return stream << "Token()";
155 }
156 }
157
158 enum DatetimeGranularity {
159 GRANULARITY_UNKNOWN = -1, // GRANULARITY_UNKNOWN is used as a proxy for this
160 // structure being uninitialized.
161 GRANULARITY_YEAR = 0,
162 GRANULARITY_MONTH = 1,
163 GRANULARITY_WEEK = 2,
164 GRANULARITY_DAY = 3,
165 GRANULARITY_HOUR = 4,
166 GRANULARITY_MINUTE = 5,
167 GRANULARITY_SECOND = 6
168 };
169
170 struct DatetimeParseResult {
171 // The absolute time in milliseconds since the epoch in UTC. This is derived
172 // from the reference time and the fields specified in the text - so it may
173 // be imperfect where the time was ambiguous. (e.g. "at 7:30" may be am or pm)
174 int64 time_ms_utc;
175
176 // The precision of the estimate then in to calculating the milliseconds
177 DatetimeGranularity granularity;
178
DatetimeParseResultDatetimeParseResult179 DatetimeParseResult() : time_ms_utc(0), granularity(GRANULARITY_UNKNOWN) {}
180
DatetimeParseResultDatetimeParseResult181 DatetimeParseResult(int64 arg_time_ms_utc,
182 DatetimeGranularity arg_granularity)
183 : time_ms_utc(arg_time_ms_utc), granularity(arg_granularity) {}
184
IsSetDatetimeParseResult185 bool IsSet() const { return granularity != GRANULARITY_UNKNOWN; }
186
187 bool operator==(const DatetimeParseResult& other) const {
188 return granularity == other.granularity && time_ms_utc == other.time_ms_utc;
189 }
190 };
191
192 const float kFloatCompareEpsilon = 1e-5;
193
194 struct DatetimeParseResultSpan {
195 CodepointSpan span;
196 DatetimeParseResult data;
197 float target_classification_score;
198 float priority_score;
199
200 bool operator==(const DatetimeParseResultSpan& other) const {
201 return span == other.span && data.granularity == other.data.granularity &&
202 data.time_ms_utc == other.data.time_ms_utc &&
203 std::abs(target_classification_score -
204 other.target_classification_score) < kFloatCompareEpsilon &&
205 std::abs(priority_score - other.priority_score) <
206 kFloatCompareEpsilon;
207 }
208 };
209
210 // Pretty-printing function for DatetimeParseResultSpan.
211 inline logging::LoggingStringStream& operator<<(
212 logging::LoggingStringStream& stream,
213 const DatetimeParseResultSpan& value) {
214 return stream << "DatetimeParseResultSpan({" << value.span.first << ", "
215 << value.span.second << "}, {/*time_ms_utc=*/ "
216 << value.data.time_ms_utc << ", /*granularity=*/ "
217 << value.data.granularity << "})";
218 }
219
220 struct ClassificationResult {
221 std::string collection;
222 float score;
223 DatetimeParseResult datetime_parse_result;
224
225 // Internal score used for conflict resolution.
226 float priority_score;
227
ClassificationResultClassificationResult228 explicit ClassificationResult() : score(-1.0f), priority_score(-1.0) {}
229
ClassificationResultClassificationResult230 ClassificationResult(const std::string& arg_collection, float arg_score)
231 : collection(arg_collection),
232 score(arg_score),
233 priority_score(arg_score) {}
234
ClassificationResultClassificationResult235 ClassificationResult(const std::string& arg_collection, float arg_score,
236 float arg_priority_score)
237 : collection(arg_collection),
238 score(arg_score),
239 priority_score(arg_priority_score) {}
240 };
241
242 // Pretty-printing function for ClassificationResult.
243 inline logging::LoggingStringStream& operator<<(
244 logging::LoggingStringStream& stream, const ClassificationResult& result) {
245 return stream << "ClassificationResult(" << result.collection << ", "
246 << result.score << ")";
247 }
248
249 // Pretty-printing function for std::vector<ClassificationResult>.
250 inline logging::LoggingStringStream& operator<<(
251 logging::LoggingStringStream& stream,
252 const std::vector<ClassificationResult>& results) {
253 stream = stream << "{\n";
254 for (const ClassificationResult& result : results) {
255 stream = stream << " " << result << "\n";
256 }
257 stream = stream << "}";
258 return stream;
259 }
260
261 // Represents a result of Annotate call.
262 struct AnnotatedSpan {
263 // Unicode codepoint indices in the input string.
264 CodepointSpan span = {kInvalidIndex, kInvalidIndex};
265
266 // Classification result for the span.
267 std::vector<ClassificationResult> classification;
268 };
269
270 // Pretty-printing function for AnnotatedSpan.
271 inline logging::LoggingStringStream& operator<<(
272 logging::LoggingStringStream& stream, const AnnotatedSpan& span) {
273 std::string best_class;
274 float best_score = -1;
275 if (!span.classification.empty()) {
276 best_class = span.classification[0].collection;
277 best_score = span.classification[0].score;
278 }
279 return stream << "Span(" << span.span.first << ", " << span.span.second
280 << ", " << best_class << ", " << best_score << ")";
281 }
282
283 // StringPiece analogue for std::vector<T>.
284 template <class T>
285 class VectorSpan {
286 public:
VectorSpan()287 VectorSpan() : begin_(), end_() {}
VectorSpan(const std::vector<T> & v)288 VectorSpan(const std::vector<T>& v) // NOLINT(runtime/explicit)
289 : begin_(v.begin()), end_(v.end()) {}
VectorSpan(typename std::vector<T>::const_iterator begin,typename std::vector<T>::const_iterator end)290 VectorSpan(typename std::vector<T>::const_iterator begin,
291 typename std::vector<T>::const_iterator end)
292 : begin_(begin), end_(end) {}
293
294 const T& operator[](typename std::vector<T>::size_type i) const {
295 return *(begin_ + i);
296 }
297
size()298 int size() const { return end_ - begin_; }
begin()299 typename std::vector<T>::const_iterator begin() const { return begin_; }
end()300 typename std::vector<T>::const_iterator end() const { return end_; }
data()301 const float* data() const { return &(*begin_); }
302
303 private:
304 typename std::vector<T>::const_iterator begin_;
305 typename std::vector<T>::const_iterator end_;
306 };
307
308 struct DateParseData {
309 enum Relation {
310 NEXT = 1,
311 NEXT_OR_SAME = 2,
312 LAST = 3,
313 NOW = 4,
314 TOMORROW = 5,
315 YESTERDAY = 6,
316 PAST = 7,
317 FUTURE = 8
318 };
319
320 enum RelationType {
321 MONDAY = 1,
322 TUESDAY = 2,
323 WEDNESDAY = 3,
324 THURSDAY = 4,
325 FRIDAY = 5,
326 SATURDAY = 6,
327 SUNDAY = 7,
328 DAY = 8,
329 WEEK = 9,
330 MONTH = 10,
331 YEAR = 11
332 };
333
334 enum Fields {
335 YEAR_FIELD = 1 << 0,
336 MONTH_FIELD = 1 << 1,
337 DAY_FIELD = 1 << 2,
338 HOUR_FIELD = 1 << 3,
339 MINUTE_FIELD = 1 << 4,
340 SECOND_FIELD = 1 << 5,
341 AMPM_FIELD = 1 << 6,
342 ZONE_OFFSET_FIELD = 1 << 7,
343 DST_OFFSET_FIELD = 1 << 8,
344 RELATION_FIELD = 1 << 9,
345 RELATION_TYPE_FIELD = 1 << 10,
346 RELATION_DISTANCE_FIELD = 1 << 11
347 };
348
349 enum AMPM { AM = 0, PM = 1 };
350
351 enum TimeUnit {
352 DAYS = 1,
353 WEEKS = 2,
354 MONTHS = 3,
355 HOURS = 4,
356 MINUTES = 5,
357 SECONDS = 6,
358 YEARS = 7
359 };
360
361 // Bit mask of fields which have been set on the struct
362 int field_set_mask;
363
364 // Fields describing absolute date fields.
365 // Year of the date seen in the text match.
366 int year;
367 // Month of the year starting with January = 1.
368 int month;
369 // Day of the month starting with 1.
370 int day_of_month;
371 // Hour of the day with a range of 0-23,
372 // values less than 12 need the AMPM field below or heuristics
373 // to definitively determine the time.
374 int hour;
375 // Hour of the day with a range of 0-59.
376 int minute;
377 // Hour of the day with a range of 0-59.
378 int second;
379 // 0 == AM, 1 == PM
380 int ampm;
381 // Number of hours offset from UTC this date time is in.
382 int zone_offset;
383 // Number of hours offest for DST
384 int dst_offset;
385
386 // The permutation from now that was made to find the date time.
387 Relation relation;
388 // The unit of measure of the change to the date time.
389 RelationType relation_type;
390 // The number of units of change that were made.
391 int relation_distance;
392 };
393
394 } // namespace libtextclassifier2
395
396 #endif // LIBTEXTCLASSIFIER_TYPES_H_
397