• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ssa_liveness_analysis.h"
18 
19 #include "base/bit_vector-inl.h"
20 #include "code_generator.h"
21 #include "linear_order.h"
22 #include "nodes.h"
23 
24 namespace art {
25 
Analyze()26 void SsaLivenessAnalysis::Analyze() {
27   // Compute the linear order directly in the graph's data structure
28   // (there are no more following graph mutations).
29   LinearizeGraph(graph_, &graph_->linear_order_);
30 
31   // Liveness analysis.
32   NumberInstructions();
33   ComputeLiveness();
34 }
35 
NumberInstructions()36 void SsaLivenessAnalysis::NumberInstructions() {
37   int ssa_index = 0;
38   size_t lifetime_position = 0;
39   // Each instruction gets a lifetime position, and a block gets a lifetime
40   // start and end position. Non-phi instructions have a distinct lifetime position than
41   // the block they are in. Phi instructions have the lifetime start of their block as
42   // lifetime position.
43   //
44   // Because the register allocator will insert moves in the graph, we need
45   // to differentiate between the start and end of an instruction. Adding 2 to
46   // the lifetime position for each instruction ensures the start of an
47   // instruction is different than the end of the previous instruction.
48   for (HBasicBlock* block : graph_->GetLinearOrder()) {
49     block->SetLifetimeStart(lifetime_position);
50 
51     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
52       HInstruction* current = inst_it.Current();
53       codegen_->AllocateLocations(current);
54       LocationSummary* locations = current->GetLocations();
55       if (locations != nullptr && locations->Out().IsValid()) {
56         instructions_from_ssa_index_.push_back(current);
57         current->SetSsaIndex(ssa_index++);
58         current->SetLiveInterval(
59             LiveInterval::MakeInterval(allocator_, current->GetType(), current));
60       }
61       current->SetLifetimePosition(lifetime_position);
62     }
63     lifetime_position += 2;
64 
65     // Add a null marker to notify we are starting a block.
66     instructions_from_lifetime_position_.push_back(nullptr);
67 
68     for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
69          inst_it.Advance()) {
70       HInstruction* current = inst_it.Current();
71       codegen_->AllocateLocations(current);
72       LocationSummary* locations = current->GetLocations();
73       if (locations != nullptr && locations->Out().IsValid()) {
74         instructions_from_ssa_index_.push_back(current);
75         current->SetSsaIndex(ssa_index++);
76         current->SetLiveInterval(
77             LiveInterval::MakeInterval(allocator_, current->GetType(), current));
78       }
79       instructions_from_lifetime_position_.push_back(current);
80       current->SetLifetimePosition(lifetime_position);
81       lifetime_position += 2;
82     }
83 
84     block->SetLifetimeEnd(lifetime_position);
85   }
86   number_of_ssa_values_ = ssa_index;
87 }
88 
ComputeLiveness()89 void SsaLivenessAnalysis::ComputeLiveness() {
90   for (HBasicBlock* block : graph_->GetLinearOrder()) {
91     block_infos_[block->GetBlockId()] =
92         new (allocator_) BlockInfo(allocator_, *block, number_of_ssa_values_);
93   }
94 
95   // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
96   // This method does not handle backward branches for the sets, therefore live_in
97   // and live_out sets are not yet correct.
98   ComputeLiveRanges();
99 
100   // Do a fixed point calculation to take into account backward branches,
101   // that will update live_in of loop headers, and therefore live_out and live_in
102   // of blocks in the loop.
103   ComputeLiveInAndLiveOutSets();
104 }
105 
RecursivelyProcessInputs(HInstruction * current,HInstruction * actual_user,BitVector * live_in)106 static void RecursivelyProcessInputs(HInstruction* current,
107                                      HInstruction* actual_user,
108                                      BitVector* live_in) {
109   HInputsRef inputs = current->GetInputs();
110   for (size_t i = 0; i < inputs.size(); ++i) {
111     HInstruction* input = inputs[i];
112     bool has_in_location = current->GetLocations()->InAt(i).IsValid();
113     bool has_out_location = input->GetLocations()->Out().IsValid();
114 
115     if (has_in_location) {
116       DCHECK(has_out_location)
117           << "Instruction " << current->DebugName() << current->GetId()
118           << " expects an input value at index " << i << " but "
119           << input->DebugName() << input->GetId() << " does not produce one.";
120       DCHECK(input->HasSsaIndex());
121       // `input` generates a result used by `current`. Add use and update
122       // the live-in set.
123       input->GetLiveInterval()->AddUse(current, /* environment */ nullptr, i, actual_user);
124       live_in->SetBit(input->GetSsaIndex());
125     } else if (has_out_location) {
126       // `input` generates a result but it is not used by `current`.
127     } else {
128       // `input` is inlined into `current`. Walk over its inputs and record
129       // uses at `current`.
130       DCHECK(input->IsEmittedAtUseSite());
131       // Check that the inlined input is not a phi. Recursing on loop phis could
132       // lead to an infinite loop.
133       DCHECK(!input->IsPhi());
134       RecursivelyProcessInputs(input, actual_user, live_in);
135     }
136   }
137 }
138 
ComputeLiveRanges()139 void SsaLivenessAnalysis::ComputeLiveRanges() {
140   // Do a post order visit, adding inputs of instructions live in the block where
141   // that instruction is defined, and killing instructions that are being visited.
142   for (HBasicBlock* block : ReverseRange(graph_->GetLinearOrder())) {
143     BitVector* kill = GetKillSet(*block);
144     BitVector* live_in = GetLiveInSet(*block);
145 
146     // Set phi inputs of successors of this block corresponding to this block
147     // as live_in.
148     for (HBasicBlock* successor : block->GetSuccessors()) {
149       live_in->Union(GetLiveInSet(*successor));
150       if (successor->IsCatchBlock()) {
151         // Inputs of catch phis will be kept alive through their environment
152         // uses, allowing the runtime to copy their values to the corresponding
153         // catch phi spill slots when an exception is thrown.
154         // The only instructions which may not be recorded in the environments
155         // are constants created by the SSA builder as typed equivalents of
156         // untyped constants from the bytecode, or phis with only such constants
157         // as inputs (verified by GraphChecker). Their raw binary value must
158         // therefore be the same and we only need to keep alive one.
159       } else {
160         size_t phi_input_index = successor->GetPredecessorIndexOf(block);
161         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
162           HInstruction* phi = phi_it.Current();
163           HInstruction* input = phi->InputAt(phi_input_index);
164           input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
165           // A phi input whose last user is the phi dies at the end of the predecessor block,
166           // and not at the phi's lifetime position.
167           live_in->SetBit(input->GetSsaIndex());
168         }
169       }
170     }
171 
172     // Add a range that covers this block to all instructions live_in because of successors.
173     // Instructions defined in this block will have their start of the range adjusted.
174     for (uint32_t idx : live_in->Indexes()) {
175       HInstruction* current = GetInstructionFromSsaIndex(idx);
176       current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
177     }
178 
179     for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
180          back_it.Advance()) {
181       HInstruction* current = back_it.Current();
182       if (current->HasSsaIndex()) {
183         // Kill the instruction and shorten its interval.
184         kill->SetBit(current->GetSsaIndex());
185         live_in->ClearBit(current->GetSsaIndex());
186         current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
187       }
188 
189       // Process the environment first, because we know their uses come after
190       // or at the same liveness position of inputs.
191       for (HEnvironment* environment = current->GetEnvironment();
192            environment != nullptr;
193            environment = environment->GetParent()) {
194         // Handle environment uses. See statements (b) and (c) of the
195         // SsaLivenessAnalysis.
196         for (size_t i = 0, e = environment->Size(); i < e; ++i) {
197           HInstruction* instruction = environment->GetInstructionAt(i);
198           bool should_be_live = ShouldBeLiveForEnvironment(current, instruction);
199           if (should_be_live) {
200             CHECK(instruction->HasSsaIndex()) << instruction->DebugName();
201             live_in->SetBit(instruction->GetSsaIndex());
202           }
203           if (instruction != nullptr) {
204             instruction->GetLiveInterval()->AddUse(
205                 current, environment, i, /* actual_user */ nullptr, should_be_live);
206           }
207         }
208       }
209 
210       // Process inputs of instructions.
211       if (current->IsEmittedAtUseSite()) {
212         if (kIsDebugBuild) {
213           DCHECK(!current->GetLocations()->Out().IsValid());
214           for (const HUseListNode<HInstruction*>& use : current->GetUses()) {
215             HInstruction* user = use.GetUser();
216             size_t index = use.GetIndex();
217             DCHECK(!user->GetLocations()->InAt(index).IsValid());
218           }
219           DCHECK(!current->HasEnvironmentUses());
220         }
221       } else {
222         RecursivelyProcessInputs(current, current, live_in);
223       }
224     }
225 
226     // Kill phis defined in this block.
227     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
228       HInstruction* current = inst_it.Current();
229       if (current->HasSsaIndex()) {
230         kill->SetBit(current->GetSsaIndex());
231         live_in->ClearBit(current->GetSsaIndex());
232         LiveInterval* interval = current->GetLiveInterval();
233         DCHECK((interval->GetFirstRange() == nullptr)
234                || (interval->GetStart() == current->GetLifetimePosition()));
235         interval->SetFrom(current->GetLifetimePosition());
236       }
237     }
238 
239     if (block->IsLoopHeader()) {
240       if (kIsDebugBuild) {
241         CheckNoLiveInIrreducibleLoop(*block);
242       }
243       size_t last_position = block->GetLoopInformation()->GetLifetimeEnd();
244       // For all live_in instructions at the loop header, we need to create a range
245       // that covers the full loop.
246       for (uint32_t idx : live_in->Indexes()) {
247         HInstruction* current = GetInstructionFromSsaIndex(idx);
248         current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position);
249       }
250     }
251   }
252 }
253 
ComputeLiveInAndLiveOutSets()254 void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
255   bool changed;
256   do {
257     changed = false;
258 
259     for (const HBasicBlock* block : graph_->GetPostOrder()) {
260       // The live_in set depends on the kill set (which does not
261       // change in this loop), and the live_out set.  If the live_out
262       // set does not change, there is no need to update the live_in set.
263       if (UpdateLiveOut(*block) && UpdateLiveIn(*block)) {
264         if (kIsDebugBuild) {
265           CheckNoLiveInIrreducibleLoop(*block);
266         }
267         changed = true;
268       }
269     }
270   } while (changed);
271 }
272 
UpdateLiveOut(const HBasicBlock & block)273 bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
274   BitVector* live_out = GetLiveOutSet(block);
275   bool changed = false;
276   // The live_out set of a block is the union of live_in sets of its successors.
277   for (HBasicBlock* successor : block.GetSuccessors()) {
278     if (live_out->Union(GetLiveInSet(*successor))) {
279       changed = true;
280     }
281   }
282   return changed;
283 }
284 
285 
UpdateLiveIn(const HBasicBlock & block)286 bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
287   BitVector* live_out = GetLiveOutSet(block);
288   BitVector* kill = GetKillSet(block);
289   BitVector* live_in = GetLiveInSet(block);
290   // If live_out is updated (because of backward branches), we need to make
291   // sure instructions in live_out are also in live_in, unless they are killed
292   // by this block.
293   return live_in->UnionIfNotIn(live_out, kill);
294 }
295 
DumpWithContext(std::ostream & stream,const CodeGenerator & codegen) const296 void LiveInterval::DumpWithContext(std::ostream& stream,
297                                    const CodeGenerator& codegen) const {
298   Dump(stream);
299   if (IsFixed()) {
300     stream << ", register:" << GetRegister() << "(";
301     if (IsFloatingPoint()) {
302       codegen.DumpFloatingPointRegister(stream, GetRegister());
303     } else {
304       codegen.DumpCoreRegister(stream, GetRegister());
305     }
306     stream << ")";
307   } else {
308     stream << ", spill slot:" << GetSpillSlot();
309   }
310   stream << ", requires_register:" << (GetDefinedBy() != nullptr && RequiresRegister());
311   if (GetParent()->GetDefinedBy() != nullptr) {
312     stream << ", defined_by:" << GetParent()->GetDefinedBy()->GetKind();
313     stream << "(" << GetParent()->GetDefinedBy()->GetLifetimePosition() << ")";
314   }
315 }
316 
RegisterOrLowRegister(Location location)317 static int RegisterOrLowRegister(Location location) {
318   return location.IsPair() ? location.low() : location.reg();
319 }
320 
FindFirstRegisterHint(size_t * free_until,const SsaLivenessAnalysis & liveness) const321 int LiveInterval::FindFirstRegisterHint(size_t* free_until,
322                                         const SsaLivenessAnalysis& liveness) const {
323   DCHECK(!IsHighInterval());
324   if (IsTemp()) return kNoRegister;
325 
326   if (GetParent() == this && defined_by_ != nullptr) {
327     // This is the first interval for the instruction. Try to find
328     // a register based on its definition.
329     DCHECK_EQ(defined_by_->GetLiveInterval(), this);
330     int hint = FindHintAtDefinition();
331     if (hint != kNoRegister && free_until[hint] > GetStart()) {
332       return hint;
333     }
334   }
335 
336   if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) {
337     // If the start of this interval is at a block boundary, we look at the
338     // location of the interval in blocks preceding the block this interval
339     // starts at. If one location is a register we return it as a hint. This
340     // will avoid a move between the two blocks.
341     HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2);
342     size_t next_register_use = FirstRegisterUse();
343     for (HBasicBlock* predecessor : block->GetPredecessors()) {
344       size_t position = predecessor->GetLifetimeEnd() - 1;
345       // We know positions above GetStart() do not have a location yet.
346       if (position < GetStart()) {
347         LiveInterval* existing = GetParent()->GetSiblingAt(position);
348         if (existing != nullptr
349             && existing->HasRegister()
350             // It's worth using that register if it is available until
351             // the next use.
352             && (free_until[existing->GetRegister()] >= next_register_use)) {
353           return existing->GetRegister();
354         }
355       }
356     }
357   }
358 
359   size_t start = GetStart();
360   size_t end = GetEnd();
361   for (const UsePosition& use : GetUses()) {
362     size_t use_position = use.GetPosition();
363     if (use_position > end) {
364       break;
365     }
366     if (use_position >= start && !use.IsSynthesized()) {
367       HInstruction* user = use.GetUser();
368       size_t input_index = use.GetInputIndex();
369       if (user->IsPhi()) {
370         // If the phi has a register, try to use the same.
371         Location phi_location = user->GetLiveInterval()->ToLocation();
372         if (phi_location.IsRegisterKind()) {
373           DCHECK(SameRegisterKind(phi_location));
374           int reg = RegisterOrLowRegister(phi_location);
375           if (free_until[reg] >= use_position) {
376             return reg;
377           }
378         }
379         // If the instruction dies at the phi assignment, we can try having the
380         // same register.
381         if (end == user->GetBlock()->GetPredecessors()[input_index]->GetLifetimeEnd()) {
382           HInputsRef inputs = user->GetInputs();
383           for (size_t i = 0; i < inputs.size(); ++i) {
384             if (i == input_index) {
385               continue;
386             }
387             Location location = inputs[i]->GetLiveInterval()->GetLocationAt(
388                 user->GetBlock()->GetPredecessors()[i]->GetLifetimeEnd() - 1);
389             if (location.IsRegisterKind()) {
390               int reg = RegisterOrLowRegister(location);
391               if (free_until[reg] >= use_position) {
392                 return reg;
393               }
394             }
395           }
396         }
397       } else {
398         // If the instruction is expected in a register, try to use it.
399         LocationSummary* locations = user->GetLocations();
400         Location expected = locations->InAt(use.GetInputIndex());
401         // We use the user's lifetime position - 1 (and not `use_position`) because the
402         // register is blocked at the beginning of the user.
403         size_t position = user->GetLifetimePosition() - 1;
404         if (expected.IsRegisterKind()) {
405           DCHECK(SameRegisterKind(expected));
406           int reg = RegisterOrLowRegister(expected);
407           if (free_until[reg] >= position) {
408             return reg;
409           }
410         }
411       }
412     }
413   }
414 
415   return kNoRegister;
416 }
417 
FindHintAtDefinition() const418 int LiveInterval::FindHintAtDefinition() const {
419   if (defined_by_->IsPhi()) {
420     // Try to use the same register as one of the inputs.
421     const ArenaVector<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
422     HInputsRef inputs = defined_by_->GetInputs();
423     for (size_t i = 0; i < inputs.size(); ++i) {
424       size_t end = predecessors[i]->GetLifetimeEnd();
425       LiveInterval* input_interval = inputs[i]->GetLiveInterval()->GetSiblingAt(end - 1);
426       if (input_interval->GetEnd() == end) {
427         // If the input dies at the end of the predecessor, we know its register can
428         // be reused.
429         Location input_location = input_interval->ToLocation();
430         if (input_location.IsRegisterKind()) {
431           DCHECK(SameRegisterKind(input_location));
432           return RegisterOrLowRegister(input_location);
433         }
434       }
435     }
436   } else {
437     LocationSummary* locations = GetDefinedBy()->GetLocations();
438     Location out = locations->Out();
439     if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
440       // Try to use the same register as the first input.
441       LiveInterval* input_interval =
442           GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1);
443       if (input_interval->GetEnd() == GetStart()) {
444         // If the input dies at the start of this instruction, we know its register can
445         // be reused.
446         Location location = input_interval->ToLocation();
447         if (location.IsRegisterKind()) {
448           DCHECK(SameRegisterKind(location));
449           return RegisterOrLowRegister(location);
450         }
451       }
452     }
453   }
454   return kNoRegister;
455 }
456 
SameRegisterKind(Location other) const457 bool LiveInterval::SameRegisterKind(Location other) const {
458   if (IsFloatingPoint()) {
459     if (IsLowInterval() || IsHighInterval()) {
460       return other.IsFpuRegisterPair();
461     } else {
462       return other.IsFpuRegister();
463     }
464   } else {
465     if (IsLowInterval() || IsHighInterval()) {
466       return other.IsRegisterPair();
467     } else {
468       return other.IsRegister();
469     }
470   }
471 }
472 
NumberOfSpillSlotsNeeded() const473 size_t LiveInterval::NumberOfSpillSlotsNeeded() const {
474   // For a SIMD operation, compute the number of needed spill slots.
475   // TODO: do through vector type?
476   HInstruction* definition = GetParent()->GetDefinedBy();
477   if (definition != nullptr && HVecOperation::ReturnsSIMDValue(definition)) {
478     if (definition->IsPhi()) {
479       definition = definition->InputAt(1);  // SIMD always appears on back-edge
480     }
481     return definition->AsVecOperation()->GetVectorNumberOfBytes() / kVRegSize;
482   }
483   // Return number of needed spill slots based on type.
484   return (type_ == DataType::Type::kInt64 || type_ == DataType::Type::kFloat64) ? 2 : 1;
485 }
486 
ToLocation() const487 Location LiveInterval::ToLocation() const {
488   DCHECK(!IsHighInterval());
489   if (HasRegister()) {
490     if (IsFloatingPoint()) {
491       if (HasHighInterval()) {
492         return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
493       } else {
494         return Location::FpuRegisterLocation(GetRegister());
495       }
496     } else {
497       if (HasHighInterval()) {
498         return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
499       } else {
500         return Location::RegisterLocation(GetRegister());
501       }
502     }
503   } else {
504     HInstruction* defined_by = GetParent()->GetDefinedBy();
505     if (defined_by->IsConstant()) {
506       return defined_by->GetLocations()->Out();
507     } else if (GetParent()->HasSpillSlot()) {
508       switch (NumberOfSpillSlotsNeeded()) {
509         case 1: return Location::StackSlot(GetParent()->GetSpillSlot());
510         case 2: return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
511         case 4: return Location::SIMDStackSlot(GetParent()->GetSpillSlot());
512         default: LOG(FATAL) << "Unexpected number of spill slots"; UNREACHABLE();
513       }
514     } else {
515       return Location();
516     }
517   }
518 }
519 
GetLocationAt(size_t position)520 Location LiveInterval::GetLocationAt(size_t position) {
521   LiveInterval* sibling = GetSiblingAt(position);
522   DCHECK(sibling != nullptr);
523   return sibling->ToLocation();
524 }
525 
GetSiblingAt(size_t position)526 LiveInterval* LiveInterval::GetSiblingAt(size_t position) {
527   LiveInterval* current = this;
528   while (current != nullptr && !current->IsDefinedAt(position)) {
529     current = current->GetNextSibling();
530   }
531   return current;
532 }
533 
534 }  // namespace art
535