1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "ssa_liveness_analysis.h"
18
19 #include "base/bit_vector-inl.h"
20 #include "code_generator.h"
21 #include "linear_order.h"
22 #include "nodes.h"
23
24 namespace art {
25
Analyze()26 void SsaLivenessAnalysis::Analyze() {
27 // Compute the linear order directly in the graph's data structure
28 // (there are no more following graph mutations).
29 LinearizeGraph(graph_, &graph_->linear_order_);
30
31 // Liveness analysis.
32 NumberInstructions();
33 ComputeLiveness();
34 }
35
NumberInstructions()36 void SsaLivenessAnalysis::NumberInstructions() {
37 int ssa_index = 0;
38 size_t lifetime_position = 0;
39 // Each instruction gets a lifetime position, and a block gets a lifetime
40 // start and end position. Non-phi instructions have a distinct lifetime position than
41 // the block they are in. Phi instructions have the lifetime start of their block as
42 // lifetime position.
43 //
44 // Because the register allocator will insert moves in the graph, we need
45 // to differentiate between the start and end of an instruction. Adding 2 to
46 // the lifetime position for each instruction ensures the start of an
47 // instruction is different than the end of the previous instruction.
48 for (HBasicBlock* block : graph_->GetLinearOrder()) {
49 block->SetLifetimeStart(lifetime_position);
50
51 for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
52 HInstruction* current = inst_it.Current();
53 codegen_->AllocateLocations(current);
54 LocationSummary* locations = current->GetLocations();
55 if (locations != nullptr && locations->Out().IsValid()) {
56 instructions_from_ssa_index_.push_back(current);
57 current->SetSsaIndex(ssa_index++);
58 current->SetLiveInterval(
59 LiveInterval::MakeInterval(allocator_, current->GetType(), current));
60 }
61 current->SetLifetimePosition(lifetime_position);
62 }
63 lifetime_position += 2;
64
65 // Add a null marker to notify we are starting a block.
66 instructions_from_lifetime_position_.push_back(nullptr);
67
68 for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
69 inst_it.Advance()) {
70 HInstruction* current = inst_it.Current();
71 codegen_->AllocateLocations(current);
72 LocationSummary* locations = current->GetLocations();
73 if (locations != nullptr && locations->Out().IsValid()) {
74 instructions_from_ssa_index_.push_back(current);
75 current->SetSsaIndex(ssa_index++);
76 current->SetLiveInterval(
77 LiveInterval::MakeInterval(allocator_, current->GetType(), current));
78 }
79 instructions_from_lifetime_position_.push_back(current);
80 current->SetLifetimePosition(lifetime_position);
81 lifetime_position += 2;
82 }
83
84 block->SetLifetimeEnd(lifetime_position);
85 }
86 number_of_ssa_values_ = ssa_index;
87 }
88
ComputeLiveness()89 void SsaLivenessAnalysis::ComputeLiveness() {
90 for (HBasicBlock* block : graph_->GetLinearOrder()) {
91 block_infos_[block->GetBlockId()] =
92 new (allocator_) BlockInfo(allocator_, *block, number_of_ssa_values_);
93 }
94
95 // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
96 // This method does not handle backward branches for the sets, therefore live_in
97 // and live_out sets are not yet correct.
98 ComputeLiveRanges();
99
100 // Do a fixed point calculation to take into account backward branches,
101 // that will update live_in of loop headers, and therefore live_out and live_in
102 // of blocks in the loop.
103 ComputeLiveInAndLiveOutSets();
104 }
105
RecursivelyProcessInputs(HInstruction * current,HInstruction * actual_user,BitVector * live_in)106 static void RecursivelyProcessInputs(HInstruction* current,
107 HInstruction* actual_user,
108 BitVector* live_in) {
109 HInputsRef inputs = current->GetInputs();
110 for (size_t i = 0; i < inputs.size(); ++i) {
111 HInstruction* input = inputs[i];
112 bool has_in_location = current->GetLocations()->InAt(i).IsValid();
113 bool has_out_location = input->GetLocations()->Out().IsValid();
114
115 if (has_in_location) {
116 DCHECK(has_out_location)
117 << "Instruction " << current->DebugName() << current->GetId()
118 << " expects an input value at index " << i << " but "
119 << input->DebugName() << input->GetId() << " does not produce one.";
120 DCHECK(input->HasSsaIndex());
121 // `input` generates a result used by `current`. Add use and update
122 // the live-in set.
123 input->GetLiveInterval()->AddUse(current, /* environment */ nullptr, i, actual_user);
124 live_in->SetBit(input->GetSsaIndex());
125 } else if (has_out_location) {
126 // `input` generates a result but it is not used by `current`.
127 } else {
128 // `input` is inlined into `current`. Walk over its inputs and record
129 // uses at `current`.
130 DCHECK(input->IsEmittedAtUseSite());
131 // Check that the inlined input is not a phi. Recursing on loop phis could
132 // lead to an infinite loop.
133 DCHECK(!input->IsPhi());
134 RecursivelyProcessInputs(input, actual_user, live_in);
135 }
136 }
137 }
138
ComputeLiveRanges()139 void SsaLivenessAnalysis::ComputeLiveRanges() {
140 // Do a post order visit, adding inputs of instructions live in the block where
141 // that instruction is defined, and killing instructions that are being visited.
142 for (HBasicBlock* block : ReverseRange(graph_->GetLinearOrder())) {
143 BitVector* kill = GetKillSet(*block);
144 BitVector* live_in = GetLiveInSet(*block);
145
146 // Set phi inputs of successors of this block corresponding to this block
147 // as live_in.
148 for (HBasicBlock* successor : block->GetSuccessors()) {
149 live_in->Union(GetLiveInSet(*successor));
150 if (successor->IsCatchBlock()) {
151 // Inputs of catch phis will be kept alive through their environment
152 // uses, allowing the runtime to copy their values to the corresponding
153 // catch phi spill slots when an exception is thrown.
154 // The only instructions which may not be recorded in the environments
155 // are constants created by the SSA builder as typed equivalents of
156 // untyped constants from the bytecode, or phis with only such constants
157 // as inputs (verified by GraphChecker). Their raw binary value must
158 // therefore be the same and we only need to keep alive one.
159 } else {
160 size_t phi_input_index = successor->GetPredecessorIndexOf(block);
161 for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
162 HInstruction* phi = phi_it.Current();
163 HInstruction* input = phi->InputAt(phi_input_index);
164 input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
165 // A phi input whose last user is the phi dies at the end of the predecessor block,
166 // and not at the phi's lifetime position.
167 live_in->SetBit(input->GetSsaIndex());
168 }
169 }
170 }
171
172 // Add a range that covers this block to all instructions live_in because of successors.
173 // Instructions defined in this block will have their start of the range adjusted.
174 for (uint32_t idx : live_in->Indexes()) {
175 HInstruction* current = GetInstructionFromSsaIndex(idx);
176 current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
177 }
178
179 for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
180 back_it.Advance()) {
181 HInstruction* current = back_it.Current();
182 if (current->HasSsaIndex()) {
183 // Kill the instruction and shorten its interval.
184 kill->SetBit(current->GetSsaIndex());
185 live_in->ClearBit(current->GetSsaIndex());
186 current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
187 }
188
189 // Process the environment first, because we know their uses come after
190 // or at the same liveness position of inputs.
191 for (HEnvironment* environment = current->GetEnvironment();
192 environment != nullptr;
193 environment = environment->GetParent()) {
194 // Handle environment uses. See statements (b) and (c) of the
195 // SsaLivenessAnalysis.
196 for (size_t i = 0, e = environment->Size(); i < e; ++i) {
197 HInstruction* instruction = environment->GetInstructionAt(i);
198 bool should_be_live = ShouldBeLiveForEnvironment(current, instruction);
199 if (should_be_live) {
200 CHECK(instruction->HasSsaIndex()) << instruction->DebugName();
201 live_in->SetBit(instruction->GetSsaIndex());
202 }
203 if (instruction != nullptr) {
204 instruction->GetLiveInterval()->AddUse(
205 current, environment, i, /* actual_user */ nullptr, should_be_live);
206 }
207 }
208 }
209
210 // Process inputs of instructions.
211 if (current->IsEmittedAtUseSite()) {
212 if (kIsDebugBuild) {
213 DCHECK(!current->GetLocations()->Out().IsValid());
214 for (const HUseListNode<HInstruction*>& use : current->GetUses()) {
215 HInstruction* user = use.GetUser();
216 size_t index = use.GetIndex();
217 DCHECK(!user->GetLocations()->InAt(index).IsValid());
218 }
219 DCHECK(!current->HasEnvironmentUses());
220 }
221 } else {
222 RecursivelyProcessInputs(current, current, live_in);
223 }
224 }
225
226 // Kill phis defined in this block.
227 for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
228 HInstruction* current = inst_it.Current();
229 if (current->HasSsaIndex()) {
230 kill->SetBit(current->GetSsaIndex());
231 live_in->ClearBit(current->GetSsaIndex());
232 LiveInterval* interval = current->GetLiveInterval();
233 DCHECK((interval->GetFirstRange() == nullptr)
234 || (interval->GetStart() == current->GetLifetimePosition()));
235 interval->SetFrom(current->GetLifetimePosition());
236 }
237 }
238
239 if (block->IsLoopHeader()) {
240 if (kIsDebugBuild) {
241 CheckNoLiveInIrreducibleLoop(*block);
242 }
243 size_t last_position = block->GetLoopInformation()->GetLifetimeEnd();
244 // For all live_in instructions at the loop header, we need to create a range
245 // that covers the full loop.
246 for (uint32_t idx : live_in->Indexes()) {
247 HInstruction* current = GetInstructionFromSsaIndex(idx);
248 current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position);
249 }
250 }
251 }
252 }
253
ComputeLiveInAndLiveOutSets()254 void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
255 bool changed;
256 do {
257 changed = false;
258
259 for (const HBasicBlock* block : graph_->GetPostOrder()) {
260 // The live_in set depends on the kill set (which does not
261 // change in this loop), and the live_out set. If the live_out
262 // set does not change, there is no need to update the live_in set.
263 if (UpdateLiveOut(*block) && UpdateLiveIn(*block)) {
264 if (kIsDebugBuild) {
265 CheckNoLiveInIrreducibleLoop(*block);
266 }
267 changed = true;
268 }
269 }
270 } while (changed);
271 }
272
UpdateLiveOut(const HBasicBlock & block)273 bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
274 BitVector* live_out = GetLiveOutSet(block);
275 bool changed = false;
276 // The live_out set of a block is the union of live_in sets of its successors.
277 for (HBasicBlock* successor : block.GetSuccessors()) {
278 if (live_out->Union(GetLiveInSet(*successor))) {
279 changed = true;
280 }
281 }
282 return changed;
283 }
284
285
UpdateLiveIn(const HBasicBlock & block)286 bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
287 BitVector* live_out = GetLiveOutSet(block);
288 BitVector* kill = GetKillSet(block);
289 BitVector* live_in = GetLiveInSet(block);
290 // If live_out is updated (because of backward branches), we need to make
291 // sure instructions in live_out are also in live_in, unless they are killed
292 // by this block.
293 return live_in->UnionIfNotIn(live_out, kill);
294 }
295
DumpWithContext(std::ostream & stream,const CodeGenerator & codegen) const296 void LiveInterval::DumpWithContext(std::ostream& stream,
297 const CodeGenerator& codegen) const {
298 Dump(stream);
299 if (IsFixed()) {
300 stream << ", register:" << GetRegister() << "(";
301 if (IsFloatingPoint()) {
302 codegen.DumpFloatingPointRegister(stream, GetRegister());
303 } else {
304 codegen.DumpCoreRegister(stream, GetRegister());
305 }
306 stream << ")";
307 } else {
308 stream << ", spill slot:" << GetSpillSlot();
309 }
310 stream << ", requires_register:" << (GetDefinedBy() != nullptr && RequiresRegister());
311 if (GetParent()->GetDefinedBy() != nullptr) {
312 stream << ", defined_by:" << GetParent()->GetDefinedBy()->GetKind();
313 stream << "(" << GetParent()->GetDefinedBy()->GetLifetimePosition() << ")";
314 }
315 }
316
RegisterOrLowRegister(Location location)317 static int RegisterOrLowRegister(Location location) {
318 return location.IsPair() ? location.low() : location.reg();
319 }
320
FindFirstRegisterHint(size_t * free_until,const SsaLivenessAnalysis & liveness) const321 int LiveInterval::FindFirstRegisterHint(size_t* free_until,
322 const SsaLivenessAnalysis& liveness) const {
323 DCHECK(!IsHighInterval());
324 if (IsTemp()) return kNoRegister;
325
326 if (GetParent() == this && defined_by_ != nullptr) {
327 // This is the first interval for the instruction. Try to find
328 // a register based on its definition.
329 DCHECK_EQ(defined_by_->GetLiveInterval(), this);
330 int hint = FindHintAtDefinition();
331 if (hint != kNoRegister && free_until[hint] > GetStart()) {
332 return hint;
333 }
334 }
335
336 if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) {
337 // If the start of this interval is at a block boundary, we look at the
338 // location of the interval in blocks preceding the block this interval
339 // starts at. If one location is a register we return it as a hint. This
340 // will avoid a move between the two blocks.
341 HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2);
342 size_t next_register_use = FirstRegisterUse();
343 for (HBasicBlock* predecessor : block->GetPredecessors()) {
344 size_t position = predecessor->GetLifetimeEnd() - 1;
345 // We know positions above GetStart() do not have a location yet.
346 if (position < GetStart()) {
347 LiveInterval* existing = GetParent()->GetSiblingAt(position);
348 if (existing != nullptr
349 && existing->HasRegister()
350 // It's worth using that register if it is available until
351 // the next use.
352 && (free_until[existing->GetRegister()] >= next_register_use)) {
353 return existing->GetRegister();
354 }
355 }
356 }
357 }
358
359 size_t start = GetStart();
360 size_t end = GetEnd();
361 for (const UsePosition& use : GetUses()) {
362 size_t use_position = use.GetPosition();
363 if (use_position > end) {
364 break;
365 }
366 if (use_position >= start && !use.IsSynthesized()) {
367 HInstruction* user = use.GetUser();
368 size_t input_index = use.GetInputIndex();
369 if (user->IsPhi()) {
370 // If the phi has a register, try to use the same.
371 Location phi_location = user->GetLiveInterval()->ToLocation();
372 if (phi_location.IsRegisterKind()) {
373 DCHECK(SameRegisterKind(phi_location));
374 int reg = RegisterOrLowRegister(phi_location);
375 if (free_until[reg] >= use_position) {
376 return reg;
377 }
378 }
379 // If the instruction dies at the phi assignment, we can try having the
380 // same register.
381 if (end == user->GetBlock()->GetPredecessors()[input_index]->GetLifetimeEnd()) {
382 HInputsRef inputs = user->GetInputs();
383 for (size_t i = 0; i < inputs.size(); ++i) {
384 if (i == input_index) {
385 continue;
386 }
387 Location location = inputs[i]->GetLiveInterval()->GetLocationAt(
388 user->GetBlock()->GetPredecessors()[i]->GetLifetimeEnd() - 1);
389 if (location.IsRegisterKind()) {
390 int reg = RegisterOrLowRegister(location);
391 if (free_until[reg] >= use_position) {
392 return reg;
393 }
394 }
395 }
396 }
397 } else {
398 // If the instruction is expected in a register, try to use it.
399 LocationSummary* locations = user->GetLocations();
400 Location expected = locations->InAt(use.GetInputIndex());
401 // We use the user's lifetime position - 1 (and not `use_position`) because the
402 // register is blocked at the beginning of the user.
403 size_t position = user->GetLifetimePosition() - 1;
404 if (expected.IsRegisterKind()) {
405 DCHECK(SameRegisterKind(expected));
406 int reg = RegisterOrLowRegister(expected);
407 if (free_until[reg] >= position) {
408 return reg;
409 }
410 }
411 }
412 }
413 }
414
415 return kNoRegister;
416 }
417
FindHintAtDefinition() const418 int LiveInterval::FindHintAtDefinition() const {
419 if (defined_by_->IsPhi()) {
420 // Try to use the same register as one of the inputs.
421 const ArenaVector<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
422 HInputsRef inputs = defined_by_->GetInputs();
423 for (size_t i = 0; i < inputs.size(); ++i) {
424 size_t end = predecessors[i]->GetLifetimeEnd();
425 LiveInterval* input_interval = inputs[i]->GetLiveInterval()->GetSiblingAt(end - 1);
426 if (input_interval->GetEnd() == end) {
427 // If the input dies at the end of the predecessor, we know its register can
428 // be reused.
429 Location input_location = input_interval->ToLocation();
430 if (input_location.IsRegisterKind()) {
431 DCHECK(SameRegisterKind(input_location));
432 return RegisterOrLowRegister(input_location);
433 }
434 }
435 }
436 } else {
437 LocationSummary* locations = GetDefinedBy()->GetLocations();
438 Location out = locations->Out();
439 if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
440 // Try to use the same register as the first input.
441 LiveInterval* input_interval =
442 GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1);
443 if (input_interval->GetEnd() == GetStart()) {
444 // If the input dies at the start of this instruction, we know its register can
445 // be reused.
446 Location location = input_interval->ToLocation();
447 if (location.IsRegisterKind()) {
448 DCHECK(SameRegisterKind(location));
449 return RegisterOrLowRegister(location);
450 }
451 }
452 }
453 }
454 return kNoRegister;
455 }
456
SameRegisterKind(Location other) const457 bool LiveInterval::SameRegisterKind(Location other) const {
458 if (IsFloatingPoint()) {
459 if (IsLowInterval() || IsHighInterval()) {
460 return other.IsFpuRegisterPair();
461 } else {
462 return other.IsFpuRegister();
463 }
464 } else {
465 if (IsLowInterval() || IsHighInterval()) {
466 return other.IsRegisterPair();
467 } else {
468 return other.IsRegister();
469 }
470 }
471 }
472
NumberOfSpillSlotsNeeded() const473 size_t LiveInterval::NumberOfSpillSlotsNeeded() const {
474 // For a SIMD operation, compute the number of needed spill slots.
475 // TODO: do through vector type?
476 HInstruction* definition = GetParent()->GetDefinedBy();
477 if (definition != nullptr && HVecOperation::ReturnsSIMDValue(definition)) {
478 if (definition->IsPhi()) {
479 definition = definition->InputAt(1); // SIMD always appears on back-edge
480 }
481 return definition->AsVecOperation()->GetVectorNumberOfBytes() / kVRegSize;
482 }
483 // Return number of needed spill slots based on type.
484 return (type_ == DataType::Type::kInt64 || type_ == DataType::Type::kFloat64) ? 2 : 1;
485 }
486
ToLocation() const487 Location LiveInterval::ToLocation() const {
488 DCHECK(!IsHighInterval());
489 if (HasRegister()) {
490 if (IsFloatingPoint()) {
491 if (HasHighInterval()) {
492 return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
493 } else {
494 return Location::FpuRegisterLocation(GetRegister());
495 }
496 } else {
497 if (HasHighInterval()) {
498 return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
499 } else {
500 return Location::RegisterLocation(GetRegister());
501 }
502 }
503 } else {
504 HInstruction* defined_by = GetParent()->GetDefinedBy();
505 if (defined_by->IsConstant()) {
506 return defined_by->GetLocations()->Out();
507 } else if (GetParent()->HasSpillSlot()) {
508 switch (NumberOfSpillSlotsNeeded()) {
509 case 1: return Location::StackSlot(GetParent()->GetSpillSlot());
510 case 2: return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
511 case 4: return Location::SIMDStackSlot(GetParent()->GetSpillSlot());
512 default: LOG(FATAL) << "Unexpected number of spill slots"; UNREACHABLE();
513 }
514 } else {
515 return Location();
516 }
517 }
518 }
519
GetLocationAt(size_t position)520 Location LiveInterval::GetLocationAt(size_t position) {
521 LiveInterval* sibling = GetSiblingAt(position);
522 DCHECK(sibling != nullptr);
523 return sibling->ToLocation();
524 }
525
GetSiblingAt(size_t position)526 LiveInterval* LiveInterval::GetSiblingAt(size_t position) {
527 LiveInterval* current = this;
528 while (current != nullptr && !current->IsDefinedAt(position)) {
529 current = current->GetNextSibling();
530 }
531 return current;
532 }
533
534 } // namespace art
535