• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_GC_HEAP_H_
18 #define ART_RUNTIME_GC_HEAP_H_
19 
20 #include <iosfwd>
21 #include <string>
22 #include <unordered_set>
23 #include <vector>
24 
25 #include <android-base/logging.h>
26 
27 #include "allocator_type.h"
28 #include "arch/instruction_set.h"
29 #include "base/atomic.h"
30 #include "base/macros.h"
31 #include "base/mutex.h"
32 #include "base/runtime_debug.h"
33 #include "base/safe_map.h"
34 #include "base/time_utils.h"
35 #include "gc/collector/gc_type.h"
36 #include "gc/collector/iteration.h"
37 #include "gc/collector_type.h"
38 #include "gc/gc_cause.h"
39 #include "gc/space/large_object_space.h"
40 #include "globals.h"
41 #include "handle.h"
42 #include "obj_ptr.h"
43 #include "offsets.h"
44 #include "process_state.h"
45 #include "read_barrier_config.h"
46 #include "verify_object.h"
47 
48 namespace art {
49 
50 class ConditionVariable;
51 class IsMarkedVisitor;
52 class Mutex;
53 class RootVisitor;
54 class StackVisitor;
55 class Thread;
56 class ThreadPool;
57 class TimingLogger;
58 class VariableSizedHandleScope;
59 
60 namespace mirror {
61 class Class;
62 class Object;
63 }  // namespace mirror
64 
65 namespace gc {
66 
67 class AllocationListener;
68 class AllocRecordObjectMap;
69 class GcPauseListener;
70 class ReferenceProcessor;
71 class TaskProcessor;
72 class Verification;
73 
74 namespace accounting {
75 template <typename T> class AtomicStack;
76 typedef AtomicStack<mirror::Object> ObjectStack;
77 class CardTable;
78 class HeapBitmap;
79 class ModUnionTable;
80 class ReadBarrierTable;
81 class RememberedSet;
82 }  // namespace accounting
83 
84 namespace collector {
85 class ConcurrentCopying;
86 class GarbageCollector;
87 class MarkCompact;
88 class MarkSweep;
89 class SemiSpace;
90 }  // namespace collector
91 
92 namespace allocator {
93 class RosAlloc;
94 }  // namespace allocator
95 
96 namespace space {
97 class AllocSpace;
98 class BumpPointerSpace;
99 class ContinuousMemMapAllocSpace;
100 class DiscontinuousSpace;
101 class DlMallocSpace;
102 class ImageSpace;
103 class LargeObjectSpace;
104 class MallocSpace;
105 class RegionSpace;
106 class RosAllocSpace;
107 class Space;
108 class ZygoteSpace;
109 }  // namespace space
110 
111 enum HomogeneousSpaceCompactResult {
112   // Success.
113   kSuccess,
114   // Reject due to disabled moving GC.
115   kErrorReject,
116   // Unsupported due to the current configuration.
117   kErrorUnsupported,
118   // System is shutting down.
119   kErrorVMShuttingDown,
120 };
121 
122 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
123 static constexpr bool kUseRosAlloc = true;
124 
125 // If true, use thread-local allocation stack.
126 static constexpr bool kUseThreadLocalAllocationStack = true;
127 
128 class Heap {
129  public:
130   // If true, measure the total allocation time.
131   static constexpr size_t kDefaultStartingSize = kPageSize;
132   static constexpr size_t kDefaultInitialSize = 2 * MB;
133   static constexpr size_t kDefaultMaximumSize = 256 * MB;
134   static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB;
135   static constexpr size_t kDefaultMaxFree = 2 * MB;
136   static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
137   static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
138   static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
139   static constexpr size_t kDefaultTLABSize = 32 * KB;
140   static constexpr double kDefaultTargetUtilization = 0.5;
141   static constexpr double kDefaultHeapGrowthMultiplier = 2.0;
142   // Primitive arrays larger than this size are put in the large object space.
143   static constexpr size_t kMinLargeObjectThreshold = 3 * kPageSize;
144   static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold;
145   // Whether or not parallel GC is enabled. If not, then we never create the thread pool.
146   static constexpr bool kDefaultEnableParallelGC = false;
147   static uint8_t* const kPreferredAllocSpaceBegin;
148 
149   // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
150   // since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
151   static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType =
152       USE_ART_LOW_4G_ALLOCATOR ?
153           space::LargeObjectSpaceType::kFreeList
154         : space::LargeObjectSpaceType::kMap;
155 
156   // Used so that we don't overflow the allocation time atomic integer.
157   static constexpr size_t kTimeAdjust = 1024;
158 
159   // How often we allow heap trimming to happen (nanoseconds).
160   static constexpr uint64_t kHeapTrimWait = MsToNs(5000);
161   // How long we wait after a transition request to perform a collector transition (nanoseconds).
162   static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000);
163   // Whether the transition-wait applies or not. Zero wait will stress the
164   // transition code and collector, but increases jank probability.
165   DECLARE_RUNTIME_DEBUG_FLAG(kStressCollectorTransition);
166 
167   // Create a heap with the requested sizes. The possible empty
168   // image_file_names names specify Spaces to load based on
169   // ImageWriter output.
170   Heap(size_t initial_size,
171        size_t growth_limit,
172        size_t min_free,
173        size_t max_free,
174        double target_utilization,
175        double foreground_heap_growth_multiplier,
176        size_t capacity,
177        size_t non_moving_space_capacity,
178        const std::string& original_image_file_name,
179        InstructionSet image_instruction_set,
180        CollectorType foreground_collector_type,
181        CollectorType background_collector_type,
182        space::LargeObjectSpaceType large_object_space_type,
183        size_t large_object_threshold,
184        size_t parallel_gc_threads,
185        size_t conc_gc_threads,
186        bool low_memory_mode,
187        size_t long_pause_threshold,
188        size_t long_gc_threshold,
189        bool ignore_max_footprint,
190        bool use_tlab,
191        bool verify_pre_gc_heap,
192        bool verify_pre_sweeping_heap,
193        bool verify_post_gc_heap,
194        bool verify_pre_gc_rosalloc,
195        bool verify_pre_sweeping_rosalloc,
196        bool verify_post_gc_rosalloc,
197        bool gc_stress_mode,
198        bool measure_gc_performance,
199        bool use_homogeneous_space_compaction,
200        uint64_t min_interval_homogeneous_space_compaction_by_oom);
201 
202   ~Heap();
203 
204   // Allocates and initializes storage for an object instance.
205   template <bool kInstrumented, typename PreFenceVisitor>
AllocObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)206   mirror::Object* AllocObject(Thread* self,
207                               ObjPtr<mirror::Class> klass,
208                               size_t num_bytes,
209                               const PreFenceVisitor& pre_fence_visitor)
210       REQUIRES_SHARED(Locks::mutator_lock_)
211       REQUIRES(!*gc_complete_lock_,
212                !*pending_task_lock_,
213                !*backtrace_lock_,
214                !Roles::uninterruptible_) {
215     return AllocObjectWithAllocator<kInstrumented, true>(self,
216                                                          klass,
217                                                          num_bytes,
218                                                          GetCurrentAllocator(),
219                                                          pre_fence_visitor);
220   }
221 
222   template <bool kInstrumented, typename PreFenceVisitor>
AllocNonMovableObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)223   mirror::Object* AllocNonMovableObject(Thread* self,
224                                         ObjPtr<mirror::Class> klass,
225                                         size_t num_bytes,
226                                         const PreFenceVisitor& pre_fence_visitor)
227       REQUIRES_SHARED(Locks::mutator_lock_)
228       REQUIRES(!*gc_complete_lock_,
229                !*pending_task_lock_,
230                !*backtrace_lock_,
231                !Roles::uninterruptible_) {
232     return AllocObjectWithAllocator<kInstrumented, true>(self,
233                                                          klass,
234                                                          num_bytes,
235                                                          GetCurrentNonMovingAllocator(),
236                                                          pre_fence_visitor);
237   }
238 
239   template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
240   ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self,
241                                                          ObjPtr<mirror::Class> klass,
242                                                          size_t byte_count,
243                                                          AllocatorType allocator,
244                                                          const PreFenceVisitor& pre_fence_visitor)
245       REQUIRES_SHARED(Locks::mutator_lock_)
246       REQUIRES(!*gc_complete_lock_,
247                !*pending_task_lock_,
248                !*backtrace_lock_,
249                !Roles::uninterruptible_);
250 
GetCurrentAllocator()251   AllocatorType GetCurrentAllocator() const {
252     return current_allocator_;
253   }
254 
GetCurrentNonMovingAllocator()255   AllocatorType GetCurrentNonMovingAllocator() const {
256     return current_non_moving_allocator_;
257   }
258 
259   // Visit all of the live objects in the heap.
260   template <typename Visitor>
261   ALWAYS_INLINE void VisitObjects(Visitor&& visitor)
262       REQUIRES_SHARED(Locks::mutator_lock_)
263       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
264   template <typename Visitor>
265   ALWAYS_INLINE void VisitObjectsPaused(Visitor&& visitor)
266       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
267 
268   void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count)
269       REQUIRES_SHARED(Locks::mutator_lock_);
270 
271   void RegisterNativeAllocation(JNIEnv* env, size_t bytes)
272       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
273   void RegisterNativeFree(JNIEnv* env, size_t bytes);
274 
275   // Change the allocator, updates entrypoints.
276   void ChangeAllocator(AllocatorType allocator)
277       REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_);
278 
279   // Transition the garbage collector during runtime, may copy objects from one space to another.
280   void TransitionCollector(CollectorType collector_type) REQUIRES(!*gc_complete_lock_);
281 
282   // Change the collector to be one of the possible options (MS, CMS, SS).
283   void ChangeCollector(CollectorType collector_type)
284       REQUIRES(Locks::mutator_lock_);
285 
286   // The given reference is believed to be to an object in the Java heap, check the soundness of it.
287   // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a
288   // proper lock ordering for it.
289   void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS;
290 
291   // Check sanity of all live references.
292   void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_);
293   // Returns how many failures occured.
294   size_t VerifyHeapReferences(bool verify_referents = true)
295       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
296   bool VerifyMissingCardMarks()
297       REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
298 
299   // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
300   // and doesn't abort on error, allowing the caller to report more
301   // meaningful diagnostics.
302   bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_);
303 
304   // Faster alternative to IsHeapAddress since finding if an object is in the large object space is
305   // very slow.
306   bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const
307       REQUIRES_SHARED(Locks::mutator_lock_);
308 
309   // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
310   // Requires the heap lock to be held.
311   bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
312                           bool search_allocation_stack = true,
313                           bool search_live_stack = true,
314                           bool sorted = false)
315       REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
316 
317   // Returns true if there is any chance that the object (obj) will move.
318   bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_);
319 
320   // Enables us to compacting GC until objects are released.
321   void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
322   void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
323 
324   // Temporarily disable thread flip for JNI critical calls.
325   void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
326   void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
327   void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_);
328   void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_);
329 
330   // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits.
331   // Mutator lock is required for GetContinuousSpaces.
332   void ClearMarkedObjects()
333       REQUIRES(Locks::heap_bitmap_lock_)
334       REQUIRES_SHARED(Locks::mutator_lock_);
335 
336   // Initiates an explicit garbage collection.
337   void CollectGarbage(bool clear_soft_references, GcCause cause = kGcCauseExplicit)
338       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
339 
340   // Does a concurrent GC, should only be called by the GC daemon thread
341   // through runtime.
342   void ConcurrentGC(Thread* self, GcCause cause, bool force_full)
343       REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_, !*pending_task_lock_);
344 
345   // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
346   // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
347   void CountInstances(const std::vector<Handle<mirror::Class>>& classes,
348                       bool use_is_assignable_from,
349                       uint64_t* counts)
350       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
351       REQUIRES_SHARED(Locks::mutator_lock_);
352 
353   // Implements VMDebug.getInstancesOfClasses and JDWP RT_Instances.
354   void GetInstances(VariableSizedHandleScope& scope,
355                     Handle<mirror::Class> c,
356                     bool use_is_assignable_from,
357                     int32_t max_count,
358                     std::vector<Handle<mirror::Object>>& instances)
359       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
360       REQUIRES_SHARED(Locks::mutator_lock_);
361 
362   // Implements JDWP OR_ReferringObjects.
363   void GetReferringObjects(VariableSizedHandleScope& scope,
364                            Handle<mirror::Object> o,
365                            int32_t max_count,
366                            std::vector<Handle<mirror::Object>>& referring_objects)
367       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
368       REQUIRES_SHARED(Locks::mutator_lock_);
369 
370   // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
371   // implement dalvik.system.VMRuntime.clearGrowthLimit.
372   void ClearGrowthLimit();
373 
374   // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces
375   // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit.
376   void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_);
377 
378   // Target ideal heap utilization ratio, implements
379   // dalvik.system.VMRuntime.getTargetHeapUtilization.
GetTargetHeapUtilization()380   double GetTargetHeapUtilization() const {
381     return target_utilization_;
382   }
383 
384   // Data structure memory usage tracking.
385   void RegisterGCAllocation(size_t bytes);
386   void RegisterGCDeAllocation(size_t bytes);
387 
388   // Set the heap's private space pointers to be the same as the space based on it's type. Public
389   // due to usage by tests.
390   void SetSpaceAsDefault(space::ContinuousSpace* continuous_space)
391       REQUIRES(!Locks::heap_bitmap_lock_);
392   void AddSpace(space::Space* space)
393       REQUIRES(!Locks::heap_bitmap_lock_)
394       REQUIRES(Locks::mutator_lock_);
395   void RemoveSpace(space::Space* space)
396     REQUIRES(!Locks::heap_bitmap_lock_)
397     REQUIRES(Locks::mutator_lock_);
398 
399   // Set target ideal heap utilization ratio, implements
400   // dalvik.system.VMRuntime.setTargetHeapUtilization.
401   void SetTargetHeapUtilization(float target);
402 
403   // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
404   // from the system. Doesn't allow the space to exceed its growth limit.
405   void SetIdealFootprint(size_t max_allowed_footprint);
406 
407   // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
408   // waited for.
409   collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) REQUIRES(!*gc_complete_lock_);
410 
411   // Update the heap's process state to a new value, may cause compaction to occur.
412   void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state)
413       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_);
414 
HaveContinuousSpaces()415   bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS {
416     // No lock since vector empty is thread safe.
417     return !continuous_spaces_.empty();
418   }
419 
GetContinuousSpaces()420   const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const
421       REQUIRES_SHARED(Locks::mutator_lock_) {
422     return continuous_spaces_;
423   }
424 
GetDiscontinuousSpaces()425   const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
426     return discontinuous_spaces_;
427   }
428 
GetCurrentGcIteration()429   const collector::Iteration* GetCurrentGcIteration() const {
430     return &current_gc_iteration_;
431   }
GetCurrentGcIteration()432   collector::Iteration* GetCurrentGcIteration() {
433     return &current_gc_iteration_;
434   }
435 
436   // Enable verification of object references when the runtime is sufficiently initialized.
EnableObjectValidation()437   void EnableObjectValidation() {
438     verify_object_mode_ = kVerifyObjectSupport;
439     if (verify_object_mode_ > kVerifyObjectModeDisabled) {
440       VerifyHeap();
441     }
442   }
443 
444   // Disable object reference verification for image writing.
DisableObjectValidation()445   void DisableObjectValidation() {
446     verify_object_mode_ = kVerifyObjectModeDisabled;
447   }
448 
449   // Other checks may be performed if we know the heap should be in a sane state.
IsObjectValidationEnabled()450   bool IsObjectValidationEnabled() const {
451     return verify_object_mode_ > kVerifyObjectModeDisabled;
452   }
453 
454   // Returns true if low memory mode is enabled.
IsLowMemoryMode()455   bool IsLowMemoryMode() const {
456     return low_memory_mode_;
457   }
458 
459   // Returns the heap growth multiplier, this affects how much we grow the heap after a GC.
460   // Scales heap growth, min free, and max free.
461   double HeapGrowthMultiplier() const;
462 
463   // Freed bytes can be negative in cases where we copy objects from a compacted space to a
464   // free-list backed space.
465   void RecordFree(uint64_t freed_objects, int64_t freed_bytes);
466 
467   // Record the bytes freed by thread-local buffer revoke.
468   void RecordFreeRevoke();
469 
470   // Must be called if a field of an Object in the heap changes, and before any GC safe-point.
471   // The call is not needed if null is stored in the field.
472   ALWAYS_INLINE void WriteBarrierField(ObjPtr<mirror::Object> dst,
473                                        MemberOffset offset,
474                                        ObjPtr<mirror::Object> new_value)
475       REQUIRES_SHARED(Locks::mutator_lock_);
476 
477   // Write barrier for array operations that update many field positions
478   ALWAYS_INLINE void WriteBarrierArray(ObjPtr<mirror::Object> dst,
479                                        int start_offset,
480                                        // TODO: element_count or byte_count?
481                                        size_t length)
482       REQUIRES_SHARED(Locks::mutator_lock_);
483 
484   ALWAYS_INLINE void WriteBarrierEveryFieldOf(ObjPtr<mirror::Object> obj)
485       REQUIRES_SHARED(Locks::mutator_lock_);
486 
GetCardTable()487   accounting::CardTable* GetCardTable() const {
488     return card_table_.get();
489   }
490 
GetReadBarrierTable()491   accounting::ReadBarrierTable* GetReadBarrierTable() const {
492     return rb_table_.get();
493   }
494 
495   void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object);
496 
497   // Returns the number of bytes currently allocated.
GetBytesAllocated()498   size_t GetBytesAllocated() const {
499     return num_bytes_allocated_.LoadSequentiallyConsistent();
500   }
501 
502   // Returns the number of objects currently allocated.
503   size_t GetObjectsAllocated() const
504       REQUIRES(!Locks::heap_bitmap_lock_);
505 
506   // Returns the total number of objects allocated since the heap was created.
507   uint64_t GetObjectsAllocatedEver() const;
508 
509   // Returns the total number of bytes allocated since the heap was created.
510   uint64_t GetBytesAllocatedEver() const;
511 
512   // Returns the total number of objects freed since the heap was created.
GetObjectsFreedEver()513   uint64_t GetObjectsFreedEver() const {
514     return total_objects_freed_ever_;
515   }
516 
517   // Returns the total number of bytes freed since the heap was created.
GetBytesFreedEver()518   uint64_t GetBytesFreedEver() const {
519     return total_bytes_freed_ever_;
520   }
521 
522   // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
523   // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
524   // were specified. Android apps start with a growth limit (small heap size) which is
525   // cleared/extended for large apps.
GetMaxMemory()526   size_t GetMaxMemory() const {
527     // There is some race conditions in the allocation code that can cause bytes allocated to
528     // become larger than growth_limit_ in rare cases.
529     return std::max(GetBytesAllocated(), growth_limit_);
530   }
531 
532   // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently
533   // consumed by an application.
534   size_t GetTotalMemory() const;
535 
536   // Returns approximately how much free memory we have until the next GC happens.
GetFreeMemoryUntilGC()537   size_t GetFreeMemoryUntilGC() const {
538     return max_allowed_footprint_ - GetBytesAllocated();
539   }
540 
541   // Returns approximately how much free memory we have until the next OOME happens.
GetFreeMemoryUntilOOME()542   size_t GetFreeMemoryUntilOOME() const {
543     return growth_limit_ - GetBytesAllocated();
544   }
545 
546   // Returns how much free memory we have until we need to grow the heap to perform an allocation.
547   // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory.
GetFreeMemory()548   size_t GetFreeMemory() const {
549     size_t byte_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
550     size_t total_memory = GetTotalMemory();
551     // Make sure we don't get a negative number.
552     return total_memory - std::min(total_memory, byte_allocated);
553   }
554 
555   // Get the space that corresponds to an object's address. Current implementation searches all
556   // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
557   // TODO: consider using faster data structure like binary tree.
558   space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>, bool fail_ok) const
559       REQUIRES_SHARED(Locks::mutator_lock_);
560 
561   space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const
562       REQUIRES_SHARED(Locks::mutator_lock_);
563 
564   space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>,
565                                                               bool fail_ok) const
566       REQUIRES_SHARED(Locks::mutator_lock_);
567 
568   space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const
569       REQUIRES_SHARED(Locks::mutator_lock_);
570 
571   space::Space* FindSpaceFromAddress(const void* ptr) const
572       REQUIRES_SHARED(Locks::mutator_lock_);
573 
574   void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_);
575 
576   // Do a pending collector transition.
577   void DoPendingCollectorTransition() REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
578 
579   // Deflate monitors, ... and trim the spaces.
580   void Trim(Thread* self) REQUIRES(!*gc_complete_lock_);
581 
582   void RevokeThreadLocalBuffers(Thread* thread);
583   void RevokeRosAllocThreadLocalBuffers(Thread* thread);
584   void RevokeAllThreadLocalBuffers();
585   void AssertThreadLocalBuffersAreRevoked(Thread* thread);
586   void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
587   void RosAllocVerification(TimingLogger* timings, const char* name)
588       REQUIRES(Locks::mutator_lock_);
589 
GetLiveBitmap()590   accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
591     return live_bitmap_.get();
592   }
593 
GetMarkBitmap()594   accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
595     return mark_bitmap_.get();
596   }
597 
GetLiveStack()598   accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
599     return live_stack_.get();
600   }
601 
602   void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;
603 
604   // Mark and empty stack.
605   void FlushAllocStack()
606       REQUIRES_SHARED(Locks::mutator_lock_)
607       REQUIRES(Locks::heap_bitmap_lock_);
608 
609   // Revoke all the thread-local allocation stacks.
610   void RevokeAllThreadLocalAllocationStacks(Thread* self)
611       REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_);
612 
613   // Mark all the objects in the allocation stack in the specified bitmap.
614   // TODO: Refactor?
615   void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1,
616                       accounting::SpaceBitmap<kObjectAlignment>* bitmap2,
617                       accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects,
618                       accounting::ObjectStack* stack)
619       REQUIRES_SHARED(Locks::mutator_lock_)
620       REQUIRES(Locks::heap_bitmap_lock_);
621 
622   // Mark the specified allocation stack as live.
623   void MarkAllocStackAsLive(accounting::ObjectStack* stack)
624       REQUIRES_SHARED(Locks::mutator_lock_)
625       REQUIRES(Locks::heap_bitmap_lock_);
626 
627   // Unbind any bound bitmaps.
628   void UnBindBitmaps()
629       REQUIRES(Locks::heap_bitmap_lock_)
630       REQUIRES_SHARED(Locks::mutator_lock_);
631 
632   // Returns the boot image spaces. There may be multiple boot image spaces.
GetBootImageSpaces()633   const std::vector<space::ImageSpace*>& GetBootImageSpaces() const {
634     return boot_image_spaces_;
635   }
636 
637   bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const
638       REQUIRES_SHARED(Locks::mutator_lock_);
639 
640   bool IsInBootImageOatFile(const void* p) const
641       REQUIRES_SHARED(Locks::mutator_lock_);
642 
643   void GetBootImagesSize(uint32_t* boot_image_begin,
644                          uint32_t* boot_image_end,
645                          uint32_t* boot_oat_begin,
646                          uint32_t* boot_oat_end);
647 
648   // Permenantly disable moving garbage collection.
649   void DisableMovingGc() REQUIRES(!*gc_complete_lock_);
650 
GetDlMallocSpace()651   space::DlMallocSpace* GetDlMallocSpace() const {
652     return dlmalloc_space_;
653   }
654 
GetRosAllocSpace()655   space::RosAllocSpace* GetRosAllocSpace() const {
656     return rosalloc_space_;
657   }
658 
659   // Return the corresponding rosalloc space.
660   space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const
661       REQUIRES_SHARED(Locks::mutator_lock_);
662 
GetNonMovingSpace()663   space::MallocSpace* GetNonMovingSpace() const {
664     return non_moving_space_;
665   }
666 
GetLargeObjectsSpace()667   space::LargeObjectSpace* GetLargeObjectsSpace() const {
668     return large_object_space_;
669   }
670 
671   // Returns the free list space that may contain movable objects (the
672   // one that's not the non-moving space), either rosalloc_space_ or
673   // dlmalloc_space_.
GetPrimaryFreeListSpace()674   space::MallocSpace* GetPrimaryFreeListSpace() {
675     if (kUseRosAlloc) {
676       DCHECK(rosalloc_space_ != nullptr);
677       // reinterpret_cast is necessary as the space class hierarchy
678       // isn't known (#included) yet here.
679       return reinterpret_cast<space::MallocSpace*>(rosalloc_space_);
680     } else {
681       DCHECK(dlmalloc_space_ != nullptr);
682       return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_);
683     }
684   }
685 
686   void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_);
687   std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_);
688 
689   // GC performance measuring
690   void DumpGcPerformanceInfo(std::ostream& os)
691       REQUIRES(!*gc_complete_lock_);
692   void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_);
693 
694   // Thread pool.
695   void CreateThreadPool();
696   void DeleteThreadPool();
GetThreadPool()697   ThreadPool* GetThreadPool() {
698     return thread_pool_.get();
699   }
GetParallelGCThreadCount()700   size_t GetParallelGCThreadCount() const {
701     return parallel_gc_threads_;
702   }
GetConcGCThreadCount()703   size_t GetConcGCThreadCount() const {
704     return conc_gc_threads_;
705   }
706   accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
707   void AddModUnionTable(accounting::ModUnionTable* mod_union_table);
708 
709   accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space);
710   void AddRememberedSet(accounting::RememberedSet* remembered_set);
711   // Also deletes the remebered set.
712   void RemoveRememberedSet(space::Space* space);
713 
714   bool IsCompilingBoot() const;
HasBootImageSpace()715   bool HasBootImageSpace() const {
716     return !boot_image_spaces_.empty();
717   }
718 
GetReferenceProcessor()719   ReferenceProcessor* GetReferenceProcessor() {
720     return reference_processor_.get();
721   }
GetTaskProcessor()722   TaskProcessor* GetTaskProcessor() {
723     return task_processor_.get();
724   }
725 
HasZygoteSpace()726   bool HasZygoteSpace() const {
727     return zygote_space_ != nullptr;
728   }
729 
ConcurrentCopyingCollector()730   collector::ConcurrentCopying* ConcurrentCopyingCollector() {
731     return concurrent_copying_collector_;
732   }
733 
CurrentCollectorType()734   CollectorType CurrentCollectorType() {
735     return collector_type_;
736   }
737 
IsGcConcurrentAndMoving()738   bool IsGcConcurrentAndMoving() const {
739     if (IsGcConcurrent() && IsMovingGc(collector_type_)) {
740       // Assume no transition when a concurrent moving collector is used.
741       DCHECK_EQ(collector_type_, foreground_collector_type_);
742       return true;
743     }
744     return false;
745   }
746 
IsMovingGCDisabled(Thread * self)747   bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) {
748     MutexLock mu(self, *gc_complete_lock_);
749     return disable_moving_gc_count_ > 0;
750   }
751 
752   // Request an asynchronous trim.
753   void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_);
754 
755   // Request asynchronous GC.
756   void RequestConcurrentGC(Thread* self, GcCause cause, bool force_full)
757       REQUIRES(!*pending_task_lock_);
758 
759   // Whether or not we may use a garbage collector, used so that we only create collectors we need.
760   bool MayUseCollector(CollectorType type) const;
761 
762   // Used by tests to reduce timinig-dependent flakiness in OOME behavior.
SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval)763   void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) {
764     min_interval_homogeneous_space_compaction_by_oom_ = interval;
765   }
766 
767   // Helpers for android.os.Debug.getRuntimeStat().
768   uint64_t GetGcCount() const;
769   uint64_t GetGcTime() const;
770   uint64_t GetBlockingGcCount() const;
771   uint64_t GetBlockingGcTime() const;
772   void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
773   void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
774 
775   // Allocation tracking support
776   // Callers to this function use double-checked locking to ensure safety on allocation_records_
IsAllocTrackingEnabled()777   bool IsAllocTrackingEnabled() const {
778     return alloc_tracking_enabled_.LoadRelaxed();
779   }
780 
SetAllocTrackingEnabled(bool enabled)781   void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) {
782     alloc_tracking_enabled_.StoreRelaxed(enabled);
783   }
784 
GetAllocationRecords()785   AllocRecordObjectMap* GetAllocationRecords() const
786       REQUIRES(Locks::alloc_tracker_lock_) {
787     return allocation_records_.get();
788   }
789 
790   void SetAllocationRecords(AllocRecordObjectMap* records)
791       REQUIRES(Locks::alloc_tracker_lock_);
792 
793   void VisitAllocationRecords(RootVisitor* visitor) const
794       REQUIRES_SHARED(Locks::mutator_lock_)
795       REQUIRES(!Locks::alloc_tracker_lock_);
796 
797   void SweepAllocationRecords(IsMarkedVisitor* visitor) const
798       REQUIRES_SHARED(Locks::mutator_lock_)
799       REQUIRES(!Locks::alloc_tracker_lock_);
800 
801   void DisallowNewAllocationRecords() const
802       REQUIRES_SHARED(Locks::mutator_lock_)
803       REQUIRES(!Locks::alloc_tracker_lock_);
804 
805   void AllowNewAllocationRecords() const
806       REQUIRES_SHARED(Locks::mutator_lock_)
807       REQUIRES(!Locks::alloc_tracker_lock_);
808 
809   void BroadcastForNewAllocationRecords() const
810       REQUIRES(!Locks::alloc_tracker_lock_);
811 
812   void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_);
813 
814   // Create a new alloc space and compact default alloc space to it.
815   HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact() REQUIRES(!*gc_complete_lock_);
816   bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const;
817 
818   // Install an allocation listener.
819   void SetAllocationListener(AllocationListener* l);
820   // Remove an allocation listener. Note: the listener must not be deleted, as for performance
821   // reasons, we assume it stays valid when we read it (so that we don't require a lock).
822   void RemoveAllocationListener();
823 
824   // Install a gc pause listener.
825   void SetGcPauseListener(GcPauseListener* l);
826   // Get the currently installed gc pause listener, or null.
GetGcPauseListener()827   GcPauseListener* GetGcPauseListener() {
828     return gc_pause_listener_.LoadAcquire();
829   }
830   // Remove a gc pause listener. Note: the listener must not be deleted, as for performance
831   // reasons, we assume it stays valid when we read it (so that we don't require a lock).
832   void RemoveGcPauseListener();
833 
834   const Verification* GetVerification() const;
835 
836  private:
837   class ConcurrentGCTask;
838   class CollectorTransitionTask;
839   class HeapTrimTask;
840 
841   // Compact source space to target space. Returns the collector used.
842   collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space,
843                                        space::ContinuousMemMapAllocSpace* source_space,
844                                        GcCause gc_cause)
845       REQUIRES(Locks::mutator_lock_);
846 
847   void LogGC(GcCause gc_cause, collector::GarbageCollector* collector);
848   void StartGC(Thread* self, GcCause cause, CollectorType collector_type)
849       REQUIRES(!*gc_complete_lock_);
850   void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_);
851 
852   // Create a mem map with a preferred base address.
853   static MemMap* MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
854                                               size_t capacity, std::string* out_error_str);
855 
SupportHSpaceCompaction()856   bool SupportHSpaceCompaction() const {
857     // Returns true if we can do hspace compaction
858     return main_space_backup_ != nullptr;
859   }
860 
AllocatorHasAllocationStack(AllocatorType allocator_type)861   static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
862     return
863         allocator_type != kAllocatorTypeBumpPointer &&
864         allocator_type != kAllocatorTypeTLAB &&
865         allocator_type != kAllocatorTypeRegion &&
866         allocator_type != kAllocatorTypeRegionTLAB;
867   }
AllocatorMayHaveConcurrentGC(AllocatorType allocator_type)868   static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) {
869     if (kUseReadBarrier) {
870       // Read barrier may have the TLAB allocator but is always concurrent. TODO: clean this up.
871       return true;
872     }
873     return
874         allocator_type != kAllocatorTypeBumpPointer &&
875         allocator_type != kAllocatorTypeTLAB;
876   }
IsMovingGc(CollectorType collector_type)877   static bool IsMovingGc(CollectorType collector_type) {
878     return
879         collector_type == kCollectorTypeSS ||
880         collector_type == kCollectorTypeGSS ||
881         collector_type == kCollectorTypeCC ||
882         collector_type == kCollectorTypeCCBackground ||
883         collector_type == kCollectorTypeMC ||
884         collector_type == kCollectorTypeHomogeneousSpaceCompact;
885   }
886   bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const
887       REQUIRES_SHARED(Locks::mutator_lock_);
888   ALWAYS_INLINE void CheckConcurrentGC(Thread* self,
889                                        size_t new_num_bytes_allocated,
890                                        ObjPtr<mirror::Object>* obj)
891       REQUIRES_SHARED(Locks::mutator_lock_)
892       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_);
893 
GetMarkStack()894   accounting::ObjectStack* GetMarkStack() {
895     return mark_stack_.get();
896   }
897 
898   // We don't force this to be inlined since it is a slow path.
899   template <bool kInstrumented, typename PreFenceVisitor>
900   mirror::Object* AllocLargeObject(Thread* self,
901                                    ObjPtr<mirror::Class>* klass,
902                                    size_t byte_count,
903                                    const PreFenceVisitor& pre_fence_visitor)
904       REQUIRES_SHARED(Locks::mutator_lock_)
905       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_);
906 
907   // Handles Allocate()'s slow allocation path with GC involved after
908   // an initial allocation attempt failed.
909   mirror::Object* AllocateInternalWithGc(Thread* self,
910                                          AllocatorType allocator,
911                                          bool instrumented,
912                                          size_t num_bytes,
913                                          size_t* bytes_allocated,
914                                          size_t* usable_size,
915                                          size_t* bytes_tl_bulk_allocated,
916                                          ObjPtr<mirror::Class>* klass)
917       REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_)
918       REQUIRES_SHARED(Locks::mutator_lock_);
919 
920   // Allocate into a specific space.
921   mirror::Object* AllocateInto(Thread* self,
922                                space::AllocSpace* space,
923                                ObjPtr<mirror::Class> c,
924                                size_t bytes)
925       REQUIRES_SHARED(Locks::mutator_lock_);
926 
927   // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
928   // wrong space.
929   void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_);
930 
931   // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
932   // that the switch statement is constant optimized in the entrypoints.
933   template <const bool kInstrumented, const bool kGrow>
934   ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self,
935                                               AllocatorType allocator_type,
936                                               size_t alloc_size,
937                                               size_t* bytes_allocated,
938                                               size_t* usable_size,
939                                               size_t* bytes_tl_bulk_allocated)
940       REQUIRES_SHARED(Locks::mutator_lock_);
941 
942   mirror::Object* AllocWithNewTLAB(Thread* self,
943                                    size_t alloc_size,
944                                    bool grow,
945                                    size_t* bytes_allocated,
946                                    size_t* usable_size,
947                                    size_t* bytes_tl_bulk_allocated)
948       REQUIRES_SHARED(Locks::mutator_lock_);
949 
950   void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type)
951       REQUIRES_SHARED(Locks::mutator_lock_);
952 
953   ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type,
954                                                size_t alloc_size,
955                                                bool grow);
956 
957   // Run the finalizers. If timeout is non zero, then we use the VMRuntime version.
958   void RunFinalization(JNIEnv* env, uint64_t timeout);
959 
960   // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
961   // waited for.
962   collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self)
963       REQUIRES(gc_complete_lock_);
964 
965   void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time)
966       REQUIRES(!*pending_task_lock_);
967 
968   void RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, ObjPtr<mirror::Object>* obj)
969       REQUIRES_SHARED(Locks::mutator_lock_)
970       REQUIRES(!*pending_task_lock_);
971   bool IsGCRequestPending() const;
972 
973   // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
974   // which type of Gc was actually ran.
975   collector::GcType CollectGarbageInternal(collector::GcType gc_plan,
976                                            GcCause gc_cause,
977                                            bool clear_soft_references)
978       REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_,
979                !*pending_task_lock_);
980 
981   void PreGcVerification(collector::GarbageCollector* gc)
982       REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
983   void PreGcVerificationPaused(collector::GarbageCollector* gc)
984       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
985   void PrePauseRosAllocVerification(collector::GarbageCollector* gc)
986       REQUIRES(Locks::mutator_lock_);
987   void PreSweepingGcVerification(collector::GarbageCollector* gc)
988       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
989   void PostGcVerification(collector::GarbageCollector* gc)
990       REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
991   void PostGcVerificationPaused(collector::GarbageCollector* gc)
992       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
993 
994   // Find a collector based on GC type.
995   collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type);
996 
997   // Create the main free list malloc space, either a RosAlloc space or DlMalloc space.
998   void CreateMainMallocSpace(MemMap* mem_map,
999                              size_t initial_size,
1000                              size_t growth_limit,
1001                              size_t capacity);
1002 
1003   // Create a malloc space based on a mem map. Does not set the space as default.
1004   space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap* mem_map,
1005                                                   size_t initial_size,
1006                                                   size_t growth_limit,
1007                                                   size_t capacity,
1008                                                   const char* name,
1009                                                   bool can_move_objects);
1010 
1011   // Given the current contents of the alloc space, increase the allowed heap footprint to match
1012   // the target utilization ratio.  This should only be called immediately after a full garbage
1013   // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which
1014   // the GC was run.
1015   void GrowForUtilization(collector::GarbageCollector* collector_ran,
1016                           uint64_t bytes_allocated_before_gc = 0);
1017 
1018   size_t GetPercentFree();
1019 
1020   // Swap the allocation stack with the live stack.
1021   void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_);
1022 
1023   // Clear cards and update the mod union table. When process_alloc_space_cards is true,
1024   // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do
1025   // not process the alloc space if process_alloc_space_cards is false.
1026   void ProcessCards(TimingLogger* timings,
1027                     bool use_rem_sets,
1028                     bool process_alloc_space_cards,
1029                     bool clear_alloc_space_cards)
1030       REQUIRES_SHARED(Locks::mutator_lock_);
1031 
1032   // Push an object onto the allocation stack.
1033   void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj)
1034       REQUIRES_SHARED(Locks::mutator_lock_)
1035       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
1036   void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj)
1037       REQUIRES_SHARED(Locks::mutator_lock_)
1038       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
1039   void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, ObjPtr<mirror::Object>* obj)
1040       REQUIRES_SHARED(Locks::mutator_lock_)
1041       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
1042 
1043   void ClearConcurrentGCRequest();
1044   void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_);
1045   void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_);
1046 
1047   // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
1048   // sweep GC, false for other GC types.
IsGcConcurrent()1049   bool IsGcConcurrent() const ALWAYS_INLINE {
1050     return collector_type_ == kCollectorTypeCMS ||
1051         collector_type_ == kCollectorTypeCC ||
1052         collector_type_ == kCollectorTypeCCBackground;
1053   }
1054 
1055   // Trim the managed and native spaces by releasing unused memory back to the OS.
1056   void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_);
1057 
1058   // Trim 0 pages at the end of reference tables.
1059   void TrimIndirectReferenceTables(Thread* self);
1060 
1061   template <typename Visitor>
1062   ALWAYS_INLINE void VisitObjectsInternal(Visitor&& visitor)
1063       REQUIRES_SHARED(Locks::mutator_lock_)
1064       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
1065   template <typename Visitor>
1066   ALWAYS_INLINE void VisitObjectsInternalRegionSpace(Visitor&& visitor)
1067       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
1068 
1069   void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_);
1070 
1071   // GC stress mode attempts to do one GC per unique backtrace.
1072   void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj)
1073       REQUIRES_SHARED(Locks::mutator_lock_)
1074       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_);
1075 
NonStickyGcType()1076   collector::GcType NonStickyGcType() const {
1077     return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
1078   }
1079 
1080   // How large new_native_bytes_allocated_ can grow before we trigger a new
1081   // GC.
NativeAllocationGcWatermark()1082   ALWAYS_INLINE size_t NativeAllocationGcWatermark() const {
1083     // Reuse max_free_ for the native allocation gc watermark, so that the
1084     // native heap is treated in the same way as the Java heap in the case
1085     // where the gc watermark update would exceed max_free_. Using max_free_
1086     // instead of the target utilization means the watermark doesn't depend on
1087     // the current number of registered native allocations.
1088     return max_free_;
1089   }
1090 
1091   void TraceHeapSize(size_t heap_size);
1092 
1093   // Remove a vlog code from heap-inl.h which is transitively included in half the world.
1094   static void VlogHeapGrowth(size_t max_allowed_footprint, size_t new_footprint, size_t alloc_size);
1095 
1096   // All-known continuous spaces, where objects lie within fixed bounds.
1097   std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
1098 
1099   // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
1100   std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
1101 
1102   // All-known alloc spaces, where objects may be or have been allocated.
1103   std::vector<space::AllocSpace*> alloc_spaces_;
1104 
1105   // A space where non-movable objects are allocated, when compaction is enabled it contains
1106   // Classes, ArtMethods, ArtFields, and non moving objects.
1107   space::MallocSpace* non_moving_space_;
1108 
1109   // Space which we use for the kAllocatorTypeROSAlloc.
1110   space::RosAllocSpace* rosalloc_space_;
1111 
1112   // Space which we use for the kAllocatorTypeDlMalloc.
1113   space::DlMallocSpace* dlmalloc_space_;
1114 
1115   // The main space is the space which the GC copies to and from on process state updates. This
1116   // space is typically either the dlmalloc_space_ or the rosalloc_space_.
1117   space::MallocSpace* main_space_;
1118 
1119   // The large object space we are currently allocating into.
1120   space::LargeObjectSpace* large_object_space_;
1121 
1122   // The card table, dirtied by the write barrier.
1123   std::unique_ptr<accounting::CardTable> card_table_;
1124 
1125   std::unique_ptr<accounting::ReadBarrierTable> rb_table_;
1126 
1127   // A mod-union table remembers all of the references from the it's space to other spaces.
1128   AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap>
1129       mod_union_tables_;
1130 
1131   // A remembered set remembers all of the references from the it's space to the target space.
1132   AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap>
1133       remembered_sets_;
1134 
1135   // The current collector type.
1136   CollectorType collector_type_;
1137   // Which collector we use when the app is in the foreground.
1138   CollectorType foreground_collector_type_;
1139   // Which collector we will use when the app is notified of a transition to background.
1140   CollectorType background_collector_type_;
1141   // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_.
1142   CollectorType desired_collector_type_;
1143 
1144   // Lock which guards pending tasks.
1145   Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1146 
1147   // How many GC threads we may use for paused parts of garbage collection.
1148   const size_t parallel_gc_threads_;
1149 
1150   // How many GC threads we may use for unpaused parts of garbage collection.
1151   const size_t conc_gc_threads_;
1152 
1153   // Boolean for if we are in low memory mode.
1154   const bool low_memory_mode_;
1155 
1156   // If we get a pause longer than long pause log threshold, then we print out the GC after it
1157   // finishes.
1158   const size_t long_pause_log_threshold_;
1159 
1160   // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
1161   const size_t long_gc_log_threshold_;
1162 
1163   // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is
1164   // useful for benchmarking since it reduces time spent in GC to a low %.
1165   const bool ignore_max_footprint_;
1166 
1167   // Lock which guards zygote space creation.
1168   Mutex zygote_creation_lock_;
1169 
1170   // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before
1171   // zygote space creation.
1172   space::ZygoteSpace* zygote_space_;
1173 
1174   // Minimum allocation size of large object.
1175   size_t large_object_threshold_;
1176 
1177   // Guards access to the state of GC, associated conditional variable is used to signal when a GC
1178   // completes.
1179   Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1180   std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
1181 
1182   // Used to synchronize between JNI critical calls and the thread flip of the CC collector.
1183   Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1184   std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_);
1185   // This counter keeps track of how many threads are currently in a JNI critical section. This is
1186   // incremented once per thread even with nested enters.
1187   size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_);
1188   bool thread_flip_running_ GUARDED_BY(thread_flip_lock_);
1189 
1190   // Reference processor;
1191   std::unique_ptr<ReferenceProcessor> reference_processor_;
1192 
1193   // Task processor, proxies heap trim requests to the daemon threads.
1194   std::unique_ptr<TaskProcessor> task_processor_;
1195 
1196   // Collector type of the running GC.
1197   volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_);
1198 
1199   // Cause of the last running GC.
1200   volatile GcCause last_gc_cause_ GUARDED_BY(gc_complete_lock_);
1201 
1202   // The thread currently running the GC.
1203   volatile Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_);
1204 
1205   // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
1206   volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
1207   collector::GcType next_gc_type_;
1208 
1209   // Maximum size that the heap can reach.
1210   size_t capacity_;
1211 
1212   // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
1213   // programs it is "cleared" making it the same as capacity.
1214   size_t growth_limit_;
1215 
1216   // When the number of bytes allocated exceeds the footprint TryAllocate returns null indicating
1217   // a GC should be triggered.
1218   size_t max_allowed_footprint_;
1219 
1220   // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
1221   // it completes ahead of an allocation failing.
1222   size_t concurrent_start_bytes_;
1223 
1224   // Since the heap was created, how many bytes have been freed.
1225   uint64_t total_bytes_freed_ever_;
1226 
1227   // Since the heap was created, how many objects have been freed.
1228   uint64_t total_objects_freed_ever_;
1229 
1230   // Number of bytes allocated.  Adjusted after each allocation and free.
1231   Atomic<size_t> num_bytes_allocated_;
1232 
1233   // Number of registered native bytes allocated since the last time GC was
1234   // triggered. Adjusted after each RegisterNativeAllocation and
1235   // RegisterNativeFree. Used to determine when to trigger GC for native
1236   // allocations.
1237   // See the REDESIGN section of go/understanding-register-native-allocation.
1238   Atomic<size_t> new_native_bytes_allocated_;
1239 
1240   // Number of registered native bytes allocated prior to the last time GC was
1241   // triggered, for debugging purposes. The current number of registered
1242   // native bytes is determined by taking the sum of
1243   // old_native_bytes_allocated_ and new_native_bytes_allocated_.
1244   Atomic<size_t> old_native_bytes_allocated_;
1245 
1246   // Number of bytes freed by thread local buffer revokes. This will
1247   // cancel out the ahead-of-time bulk counting of bytes allocated in
1248   // rosalloc thread-local buffers.  It is temporarily accumulated
1249   // here to be subtracted from num_bytes_allocated_ later at the next
1250   // GC.
1251   Atomic<size_t> num_bytes_freed_revoke_;
1252 
1253   // Info related to the current or previous GC iteration.
1254   collector::Iteration current_gc_iteration_;
1255 
1256   // Heap verification flags.
1257   const bool verify_missing_card_marks_;
1258   const bool verify_system_weaks_;
1259   const bool verify_pre_gc_heap_;
1260   const bool verify_pre_sweeping_heap_;
1261   const bool verify_post_gc_heap_;
1262   const bool verify_mod_union_table_;
1263   bool verify_pre_gc_rosalloc_;
1264   bool verify_pre_sweeping_rosalloc_;
1265   bool verify_post_gc_rosalloc_;
1266   const bool gc_stress_mode_;
1267 
1268   // RAII that temporarily disables the rosalloc verification during
1269   // the zygote fork.
1270   class ScopedDisableRosAllocVerification {
1271    private:
1272     Heap* const heap_;
1273     const bool orig_verify_pre_gc_;
1274     const bool orig_verify_pre_sweeping_;
1275     const bool orig_verify_post_gc_;
1276 
1277    public:
ScopedDisableRosAllocVerification(Heap * heap)1278     explicit ScopedDisableRosAllocVerification(Heap* heap)
1279         : heap_(heap),
1280           orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_),
1281           orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_),
1282           orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) {
1283       heap_->verify_pre_gc_rosalloc_ = false;
1284       heap_->verify_pre_sweeping_rosalloc_ = false;
1285       heap_->verify_post_gc_rosalloc_ = false;
1286     }
~ScopedDisableRosAllocVerification()1287     ~ScopedDisableRosAllocVerification() {
1288       heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_;
1289       heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_;
1290       heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_;
1291     }
1292   };
1293 
1294   // Parallel GC data structures.
1295   std::unique_ptr<ThreadPool> thread_pool_;
1296 
1297   // A bitmap that is set corresponding to the known live objects since the last GC cycle.
1298   std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
1299   // A bitmap that is set corresponding to the marked objects in the current GC cycle.
1300   std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
1301 
1302   // Mark stack that we reuse to avoid re-allocating the mark stack.
1303   std::unique_ptr<accounting::ObjectStack> mark_stack_;
1304 
1305   // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
1306   // to use the live bitmap as the old mark bitmap.
1307   const size_t max_allocation_stack_size_;
1308   std::unique_ptr<accounting::ObjectStack> allocation_stack_;
1309 
1310   // Second allocation stack so that we can process allocation with the heap unlocked.
1311   std::unique_ptr<accounting::ObjectStack> live_stack_;
1312 
1313   // Allocator type.
1314   AllocatorType current_allocator_;
1315   const AllocatorType current_non_moving_allocator_;
1316 
1317   // Which GCs we run in order when an allocation fails.
1318   std::vector<collector::GcType> gc_plan_;
1319 
1320   // Bump pointer spaces.
1321   space::BumpPointerSpace* bump_pointer_space_;
1322   // Temp space is the space which the semispace collector copies to.
1323   space::BumpPointerSpace* temp_space_;
1324 
1325   // Region space, used by the concurrent collector.
1326   space::RegionSpace* region_space_;
1327 
1328   // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
1329   // utilization, regardless of target utilization ratio.
1330   size_t min_free_;
1331 
1332   // The ideal maximum free size, when we grow the heap for utilization.
1333   size_t max_free_;
1334 
1335   // Target ideal heap utilization ratio.
1336   double target_utilization_;
1337 
1338   // How much more we grow the heap when we are a foreground app instead of background.
1339   double foreground_heap_growth_multiplier_;
1340 
1341   // Total time which mutators are paused or waiting for GC to complete.
1342   uint64_t total_wait_time_;
1343 
1344   // The current state of heap verification, may be enabled or disabled.
1345   VerifyObjectMode verify_object_mode_;
1346 
1347   // Compacting GC disable count, prevents compacting GC from running iff > 0.
1348   size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_);
1349 
1350   std::vector<collector::GarbageCollector*> garbage_collectors_;
1351   collector::SemiSpace* semi_space_collector_;
1352   collector::MarkCompact* mark_compact_collector_;
1353   collector::ConcurrentCopying* concurrent_copying_collector_;
1354 
1355   const bool is_running_on_memory_tool_;
1356   const bool use_tlab_;
1357 
1358   // Pointer to the space which becomes the new main space when we do homogeneous space compaction.
1359   // Use unique_ptr since the space is only added during the homogeneous compaction phase.
1360   std::unique_ptr<space::MallocSpace> main_space_backup_;
1361 
1362   // Minimal interval allowed between two homogeneous space compactions caused by OOM.
1363   uint64_t min_interval_homogeneous_space_compaction_by_oom_;
1364 
1365   // Times of the last homogeneous space compaction caused by OOM.
1366   uint64_t last_time_homogeneous_space_compaction_by_oom_;
1367 
1368   // Saved OOMs by homogeneous space compaction.
1369   Atomic<size_t> count_delayed_oom_;
1370 
1371   // Count for requested homogeneous space compaction.
1372   Atomic<size_t> count_requested_homogeneous_space_compaction_;
1373 
1374   // Count for ignored homogeneous space compaction.
1375   Atomic<size_t> count_ignored_homogeneous_space_compaction_;
1376 
1377   // Count for performed homogeneous space compaction.
1378   Atomic<size_t> count_performed_homogeneous_space_compaction_;
1379 
1380   // Whether or not a concurrent GC is pending.
1381   Atomic<bool> concurrent_gc_pending_;
1382 
1383   // Active tasks which we can modify (change target time, desired collector type, etc..).
1384   CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_);
1385   HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_);
1386 
1387   // Whether or not we use homogeneous space compaction to avoid OOM errors.
1388   bool use_homogeneous_space_compaction_for_oom_;
1389 
1390   // True if the currently running collection has made some thread wait.
1391   bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_);
1392   // The number of blocking GC runs.
1393   uint64_t blocking_gc_count_;
1394   // The total duration of blocking GC runs.
1395   uint64_t blocking_gc_time_;
1396   // The duration of the window for the GC count rate histograms.
1397   static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000);  // 10s.
1398   // The last time when the GC count rate histograms were updated.
1399   // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s).
1400   uint64_t last_update_time_gc_count_rate_histograms_;
1401   // The running count of GC runs in the last window.
1402   uint64_t gc_count_last_window_;
1403   // The running count of blocking GC runs in the last window.
1404   uint64_t blocking_gc_count_last_window_;
1405   // The maximum number of buckets in the GC count rate histograms.
1406   static constexpr size_t kGcCountRateMaxBucketCount = 200;
1407   // The histogram of the number of GC invocations per window duration.
1408   Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
1409   // The histogram of the number of blocking GC invocations per window duration.
1410   Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
1411 
1412   // Allocation tracking support
1413   Atomic<bool> alloc_tracking_enabled_;
1414   std::unique_ptr<AllocRecordObjectMap> allocation_records_;
1415 
1416   // GC stress related data structures.
1417   Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1418   // Debugging variables, seen backtraces vs unique backtraces.
1419   Atomic<uint64_t> seen_backtrace_count_;
1420   Atomic<uint64_t> unique_backtrace_count_;
1421   // Stack trace hashes that we already saw,
1422   std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_);
1423 
1424   // We disable GC when we are shutting down the runtime in case there are daemon threads still
1425   // allocating.
1426   bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_);
1427 
1428   // Boot image spaces.
1429   std::vector<space::ImageSpace*> boot_image_spaces_;
1430 
1431   // An installed allocation listener.
1432   Atomic<AllocationListener*> alloc_listener_;
1433   // An installed GC Pause listener.
1434   Atomic<GcPauseListener*> gc_pause_listener_;
1435 
1436   std::unique_ptr<Verification> verification_;
1437 
1438   friend class CollectorTransitionTask;
1439   friend class collector::GarbageCollector;
1440   friend class collector::MarkCompact;
1441   friend class collector::ConcurrentCopying;
1442   friend class collector::MarkSweep;
1443   friend class collector::SemiSpace;
1444   friend class ReferenceQueue;
1445   friend class ScopedGCCriticalSection;
1446   friend class VerifyReferenceCardVisitor;
1447   friend class VerifyReferenceVisitor;
1448   friend class VerifyObjectVisitor;
1449 
1450   DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
1451 };
1452 
1453 }  // namespace gc
1454 }  // namespace art
1455 
1456 #endif  // ART_RUNTIME_GC_HEAP_H_
1457