1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_GC_HEAP_H_ 18 #define ART_RUNTIME_GC_HEAP_H_ 19 20 #include <iosfwd> 21 #include <string> 22 #include <unordered_set> 23 #include <vector> 24 25 #include <android-base/logging.h> 26 27 #include "allocator_type.h" 28 #include "arch/instruction_set.h" 29 #include "base/atomic.h" 30 #include "base/macros.h" 31 #include "base/mutex.h" 32 #include "base/runtime_debug.h" 33 #include "base/safe_map.h" 34 #include "base/time_utils.h" 35 #include "gc/collector/gc_type.h" 36 #include "gc/collector/iteration.h" 37 #include "gc/collector_type.h" 38 #include "gc/gc_cause.h" 39 #include "gc/space/large_object_space.h" 40 #include "globals.h" 41 #include "handle.h" 42 #include "obj_ptr.h" 43 #include "offsets.h" 44 #include "process_state.h" 45 #include "read_barrier_config.h" 46 #include "verify_object.h" 47 48 namespace art { 49 50 class ConditionVariable; 51 class IsMarkedVisitor; 52 class Mutex; 53 class RootVisitor; 54 class StackVisitor; 55 class Thread; 56 class ThreadPool; 57 class TimingLogger; 58 class VariableSizedHandleScope; 59 60 namespace mirror { 61 class Class; 62 class Object; 63 } // namespace mirror 64 65 namespace gc { 66 67 class AllocationListener; 68 class AllocRecordObjectMap; 69 class GcPauseListener; 70 class ReferenceProcessor; 71 class TaskProcessor; 72 class Verification; 73 74 namespace accounting { 75 template <typename T> class AtomicStack; 76 typedef AtomicStack<mirror::Object> ObjectStack; 77 class CardTable; 78 class HeapBitmap; 79 class ModUnionTable; 80 class ReadBarrierTable; 81 class RememberedSet; 82 } // namespace accounting 83 84 namespace collector { 85 class ConcurrentCopying; 86 class GarbageCollector; 87 class MarkCompact; 88 class MarkSweep; 89 class SemiSpace; 90 } // namespace collector 91 92 namespace allocator { 93 class RosAlloc; 94 } // namespace allocator 95 96 namespace space { 97 class AllocSpace; 98 class BumpPointerSpace; 99 class ContinuousMemMapAllocSpace; 100 class DiscontinuousSpace; 101 class DlMallocSpace; 102 class ImageSpace; 103 class LargeObjectSpace; 104 class MallocSpace; 105 class RegionSpace; 106 class RosAllocSpace; 107 class Space; 108 class ZygoteSpace; 109 } // namespace space 110 111 enum HomogeneousSpaceCompactResult { 112 // Success. 113 kSuccess, 114 // Reject due to disabled moving GC. 115 kErrorReject, 116 // Unsupported due to the current configuration. 117 kErrorUnsupported, 118 // System is shutting down. 119 kErrorVMShuttingDown, 120 }; 121 122 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace 123 static constexpr bool kUseRosAlloc = true; 124 125 // If true, use thread-local allocation stack. 126 static constexpr bool kUseThreadLocalAllocationStack = true; 127 128 class Heap { 129 public: 130 // If true, measure the total allocation time. 131 static constexpr size_t kDefaultStartingSize = kPageSize; 132 static constexpr size_t kDefaultInitialSize = 2 * MB; 133 static constexpr size_t kDefaultMaximumSize = 256 * MB; 134 static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB; 135 static constexpr size_t kDefaultMaxFree = 2 * MB; 136 static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4; 137 static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5); 138 static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100); 139 static constexpr size_t kDefaultTLABSize = 32 * KB; 140 static constexpr double kDefaultTargetUtilization = 0.5; 141 static constexpr double kDefaultHeapGrowthMultiplier = 2.0; 142 // Primitive arrays larger than this size are put in the large object space. 143 static constexpr size_t kMinLargeObjectThreshold = 3 * kPageSize; 144 static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold; 145 // Whether or not parallel GC is enabled. If not, then we never create the thread pool. 146 static constexpr bool kDefaultEnableParallelGC = false; 147 static uint8_t* const kPreferredAllocSpaceBegin; 148 149 // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR 150 // since this means that we have to use the slow msync loop in MemMap::MapAnonymous. 151 static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType = 152 USE_ART_LOW_4G_ALLOCATOR ? 153 space::LargeObjectSpaceType::kFreeList 154 : space::LargeObjectSpaceType::kMap; 155 156 // Used so that we don't overflow the allocation time atomic integer. 157 static constexpr size_t kTimeAdjust = 1024; 158 159 // How often we allow heap trimming to happen (nanoseconds). 160 static constexpr uint64_t kHeapTrimWait = MsToNs(5000); 161 // How long we wait after a transition request to perform a collector transition (nanoseconds). 162 static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000); 163 // Whether the transition-wait applies or not. Zero wait will stress the 164 // transition code and collector, but increases jank probability. 165 DECLARE_RUNTIME_DEBUG_FLAG(kStressCollectorTransition); 166 167 // Create a heap with the requested sizes. The possible empty 168 // image_file_names names specify Spaces to load based on 169 // ImageWriter output. 170 Heap(size_t initial_size, 171 size_t growth_limit, 172 size_t min_free, 173 size_t max_free, 174 double target_utilization, 175 double foreground_heap_growth_multiplier, 176 size_t capacity, 177 size_t non_moving_space_capacity, 178 const std::string& original_image_file_name, 179 InstructionSet image_instruction_set, 180 CollectorType foreground_collector_type, 181 CollectorType background_collector_type, 182 space::LargeObjectSpaceType large_object_space_type, 183 size_t large_object_threshold, 184 size_t parallel_gc_threads, 185 size_t conc_gc_threads, 186 bool low_memory_mode, 187 size_t long_pause_threshold, 188 size_t long_gc_threshold, 189 bool ignore_max_footprint, 190 bool use_tlab, 191 bool verify_pre_gc_heap, 192 bool verify_pre_sweeping_heap, 193 bool verify_post_gc_heap, 194 bool verify_pre_gc_rosalloc, 195 bool verify_pre_sweeping_rosalloc, 196 bool verify_post_gc_rosalloc, 197 bool gc_stress_mode, 198 bool measure_gc_performance, 199 bool use_homogeneous_space_compaction, 200 uint64_t min_interval_homogeneous_space_compaction_by_oom); 201 202 ~Heap(); 203 204 // Allocates and initializes storage for an object instance. 205 template <bool kInstrumented, typename PreFenceVisitor> AllocObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)206 mirror::Object* AllocObject(Thread* self, 207 ObjPtr<mirror::Class> klass, 208 size_t num_bytes, 209 const PreFenceVisitor& pre_fence_visitor) 210 REQUIRES_SHARED(Locks::mutator_lock_) 211 REQUIRES(!*gc_complete_lock_, 212 !*pending_task_lock_, 213 !*backtrace_lock_, 214 !Roles::uninterruptible_) { 215 return AllocObjectWithAllocator<kInstrumented, true>(self, 216 klass, 217 num_bytes, 218 GetCurrentAllocator(), 219 pre_fence_visitor); 220 } 221 222 template <bool kInstrumented, typename PreFenceVisitor> AllocNonMovableObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)223 mirror::Object* AllocNonMovableObject(Thread* self, 224 ObjPtr<mirror::Class> klass, 225 size_t num_bytes, 226 const PreFenceVisitor& pre_fence_visitor) 227 REQUIRES_SHARED(Locks::mutator_lock_) 228 REQUIRES(!*gc_complete_lock_, 229 !*pending_task_lock_, 230 !*backtrace_lock_, 231 !Roles::uninterruptible_) { 232 return AllocObjectWithAllocator<kInstrumented, true>(self, 233 klass, 234 num_bytes, 235 GetCurrentNonMovingAllocator(), 236 pre_fence_visitor); 237 } 238 239 template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor> 240 ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self, 241 ObjPtr<mirror::Class> klass, 242 size_t byte_count, 243 AllocatorType allocator, 244 const PreFenceVisitor& pre_fence_visitor) 245 REQUIRES_SHARED(Locks::mutator_lock_) 246 REQUIRES(!*gc_complete_lock_, 247 !*pending_task_lock_, 248 !*backtrace_lock_, 249 !Roles::uninterruptible_); 250 GetCurrentAllocator()251 AllocatorType GetCurrentAllocator() const { 252 return current_allocator_; 253 } 254 GetCurrentNonMovingAllocator()255 AllocatorType GetCurrentNonMovingAllocator() const { 256 return current_non_moving_allocator_; 257 } 258 259 // Visit all of the live objects in the heap. 260 template <typename Visitor> 261 ALWAYS_INLINE void VisitObjects(Visitor&& visitor) 262 REQUIRES_SHARED(Locks::mutator_lock_) 263 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_); 264 template <typename Visitor> 265 ALWAYS_INLINE void VisitObjectsPaused(Visitor&& visitor) 266 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 267 268 void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) 269 REQUIRES_SHARED(Locks::mutator_lock_); 270 271 void RegisterNativeAllocation(JNIEnv* env, size_t bytes) 272 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_); 273 void RegisterNativeFree(JNIEnv* env, size_t bytes); 274 275 // Change the allocator, updates entrypoints. 276 void ChangeAllocator(AllocatorType allocator) 277 REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_); 278 279 // Transition the garbage collector during runtime, may copy objects from one space to another. 280 void TransitionCollector(CollectorType collector_type) REQUIRES(!*gc_complete_lock_); 281 282 // Change the collector to be one of the possible options (MS, CMS, SS). 283 void ChangeCollector(CollectorType collector_type) 284 REQUIRES(Locks::mutator_lock_); 285 286 // The given reference is believed to be to an object in the Java heap, check the soundness of it. 287 // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a 288 // proper lock ordering for it. 289 void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS; 290 291 // Check sanity of all live references. 292 void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_); 293 // Returns how many failures occured. 294 size_t VerifyHeapReferences(bool verify_referents = true) 295 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 296 bool VerifyMissingCardMarks() 297 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 298 299 // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock, 300 // and doesn't abort on error, allowing the caller to report more 301 // meaningful diagnostics. 302 bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_); 303 304 // Faster alternative to IsHeapAddress since finding if an object is in the large object space is 305 // very slow. 306 bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const 307 REQUIRES_SHARED(Locks::mutator_lock_); 308 309 // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses). 310 // Requires the heap lock to be held. 311 bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj, 312 bool search_allocation_stack = true, 313 bool search_live_stack = true, 314 bool sorted = false) 315 REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 316 317 // Returns true if there is any chance that the object (obj) will move. 318 bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_); 319 320 // Enables us to compacting GC until objects are released. 321 void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_); 322 void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_); 323 324 // Temporarily disable thread flip for JNI critical calls. 325 void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_); 326 void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_); 327 void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_); 328 void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_); 329 330 // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits. 331 // Mutator lock is required for GetContinuousSpaces. 332 void ClearMarkedObjects() 333 REQUIRES(Locks::heap_bitmap_lock_) 334 REQUIRES_SHARED(Locks::mutator_lock_); 335 336 // Initiates an explicit garbage collection. 337 void CollectGarbage(bool clear_soft_references, GcCause cause = kGcCauseExplicit) 338 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_); 339 340 // Does a concurrent GC, should only be called by the GC daemon thread 341 // through runtime. 342 void ConcurrentGC(Thread* self, GcCause cause, bool force_full) 343 REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_, !*pending_task_lock_); 344 345 // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount. 346 // The boolean decides whether to use IsAssignableFrom or == when comparing classes. 347 void CountInstances(const std::vector<Handle<mirror::Class>>& classes, 348 bool use_is_assignable_from, 349 uint64_t* counts) 350 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_) 351 REQUIRES_SHARED(Locks::mutator_lock_); 352 353 // Implements VMDebug.getInstancesOfClasses and JDWP RT_Instances. 354 void GetInstances(VariableSizedHandleScope& scope, 355 Handle<mirror::Class> c, 356 bool use_is_assignable_from, 357 int32_t max_count, 358 std::vector<Handle<mirror::Object>>& instances) 359 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_) 360 REQUIRES_SHARED(Locks::mutator_lock_); 361 362 // Implements JDWP OR_ReferringObjects. 363 void GetReferringObjects(VariableSizedHandleScope& scope, 364 Handle<mirror::Object> o, 365 int32_t max_count, 366 std::vector<Handle<mirror::Object>>& referring_objects) 367 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_) 368 REQUIRES_SHARED(Locks::mutator_lock_); 369 370 // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to 371 // implement dalvik.system.VMRuntime.clearGrowthLimit. 372 void ClearGrowthLimit(); 373 374 // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces 375 // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit. 376 void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_); 377 378 // Target ideal heap utilization ratio, implements 379 // dalvik.system.VMRuntime.getTargetHeapUtilization. GetTargetHeapUtilization()380 double GetTargetHeapUtilization() const { 381 return target_utilization_; 382 } 383 384 // Data structure memory usage tracking. 385 void RegisterGCAllocation(size_t bytes); 386 void RegisterGCDeAllocation(size_t bytes); 387 388 // Set the heap's private space pointers to be the same as the space based on it's type. Public 389 // due to usage by tests. 390 void SetSpaceAsDefault(space::ContinuousSpace* continuous_space) 391 REQUIRES(!Locks::heap_bitmap_lock_); 392 void AddSpace(space::Space* space) 393 REQUIRES(!Locks::heap_bitmap_lock_) 394 REQUIRES(Locks::mutator_lock_); 395 void RemoveSpace(space::Space* space) 396 REQUIRES(!Locks::heap_bitmap_lock_) 397 REQUIRES(Locks::mutator_lock_); 398 399 // Set target ideal heap utilization ratio, implements 400 // dalvik.system.VMRuntime.setTargetHeapUtilization. 401 void SetTargetHeapUtilization(float target); 402 403 // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate 404 // from the system. Doesn't allow the space to exceed its growth limit. 405 void SetIdealFootprint(size_t max_allowed_footprint); 406 407 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 408 // waited for. 409 collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) REQUIRES(!*gc_complete_lock_); 410 411 // Update the heap's process state to a new value, may cause compaction to occur. 412 void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) 413 REQUIRES(!*pending_task_lock_, !*gc_complete_lock_); 414 HaveContinuousSpaces()415 bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS { 416 // No lock since vector empty is thread safe. 417 return !continuous_spaces_.empty(); 418 } 419 GetContinuousSpaces()420 const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const 421 REQUIRES_SHARED(Locks::mutator_lock_) { 422 return continuous_spaces_; 423 } 424 GetDiscontinuousSpaces()425 const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const { 426 return discontinuous_spaces_; 427 } 428 GetCurrentGcIteration()429 const collector::Iteration* GetCurrentGcIteration() const { 430 return ¤t_gc_iteration_; 431 } GetCurrentGcIteration()432 collector::Iteration* GetCurrentGcIteration() { 433 return ¤t_gc_iteration_; 434 } 435 436 // Enable verification of object references when the runtime is sufficiently initialized. EnableObjectValidation()437 void EnableObjectValidation() { 438 verify_object_mode_ = kVerifyObjectSupport; 439 if (verify_object_mode_ > kVerifyObjectModeDisabled) { 440 VerifyHeap(); 441 } 442 } 443 444 // Disable object reference verification for image writing. DisableObjectValidation()445 void DisableObjectValidation() { 446 verify_object_mode_ = kVerifyObjectModeDisabled; 447 } 448 449 // Other checks may be performed if we know the heap should be in a sane state. IsObjectValidationEnabled()450 bool IsObjectValidationEnabled() const { 451 return verify_object_mode_ > kVerifyObjectModeDisabled; 452 } 453 454 // Returns true if low memory mode is enabled. IsLowMemoryMode()455 bool IsLowMemoryMode() const { 456 return low_memory_mode_; 457 } 458 459 // Returns the heap growth multiplier, this affects how much we grow the heap after a GC. 460 // Scales heap growth, min free, and max free. 461 double HeapGrowthMultiplier() const; 462 463 // Freed bytes can be negative in cases where we copy objects from a compacted space to a 464 // free-list backed space. 465 void RecordFree(uint64_t freed_objects, int64_t freed_bytes); 466 467 // Record the bytes freed by thread-local buffer revoke. 468 void RecordFreeRevoke(); 469 470 // Must be called if a field of an Object in the heap changes, and before any GC safe-point. 471 // The call is not needed if null is stored in the field. 472 ALWAYS_INLINE void WriteBarrierField(ObjPtr<mirror::Object> dst, 473 MemberOffset offset, 474 ObjPtr<mirror::Object> new_value) 475 REQUIRES_SHARED(Locks::mutator_lock_); 476 477 // Write barrier for array operations that update many field positions 478 ALWAYS_INLINE void WriteBarrierArray(ObjPtr<mirror::Object> dst, 479 int start_offset, 480 // TODO: element_count or byte_count? 481 size_t length) 482 REQUIRES_SHARED(Locks::mutator_lock_); 483 484 ALWAYS_INLINE void WriteBarrierEveryFieldOf(ObjPtr<mirror::Object> obj) 485 REQUIRES_SHARED(Locks::mutator_lock_); 486 GetCardTable()487 accounting::CardTable* GetCardTable() const { 488 return card_table_.get(); 489 } 490 GetReadBarrierTable()491 accounting::ReadBarrierTable* GetReadBarrierTable() const { 492 return rb_table_.get(); 493 } 494 495 void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object); 496 497 // Returns the number of bytes currently allocated. GetBytesAllocated()498 size_t GetBytesAllocated() const { 499 return num_bytes_allocated_.LoadSequentiallyConsistent(); 500 } 501 502 // Returns the number of objects currently allocated. 503 size_t GetObjectsAllocated() const 504 REQUIRES(!Locks::heap_bitmap_lock_); 505 506 // Returns the total number of objects allocated since the heap was created. 507 uint64_t GetObjectsAllocatedEver() const; 508 509 // Returns the total number of bytes allocated since the heap was created. 510 uint64_t GetBytesAllocatedEver() const; 511 512 // Returns the total number of objects freed since the heap was created. GetObjectsFreedEver()513 uint64_t GetObjectsFreedEver() const { 514 return total_objects_freed_ever_; 515 } 516 517 // Returns the total number of bytes freed since the heap was created. GetBytesFreedEver()518 uint64_t GetBytesFreedEver() const { 519 return total_bytes_freed_ever_; 520 } 521 522 // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can 523 // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx 524 // were specified. Android apps start with a growth limit (small heap size) which is 525 // cleared/extended for large apps. GetMaxMemory()526 size_t GetMaxMemory() const { 527 // There is some race conditions in the allocation code that can cause bytes allocated to 528 // become larger than growth_limit_ in rare cases. 529 return std::max(GetBytesAllocated(), growth_limit_); 530 } 531 532 // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently 533 // consumed by an application. 534 size_t GetTotalMemory() const; 535 536 // Returns approximately how much free memory we have until the next GC happens. GetFreeMemoryUntilGC()537 size_t GetFreeMemoryUntilGC() const { 538 return max_allowed_footprint_ - GetBytesAllocated(); 539 } 540 541 // Returns approximately how much free memory we have until the next OOME happens. GetFreeMemoryUntilOOME()542 size_t GetFreeMemoryUntilOOME() const { 543 return growth_limit_ - GetBytesAllocated(); 544 } 545 546 // Returns how much free memory we have until we need to grow the heap to perform an allocation. 547 // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory. GetFreeMemory()548 size_t GetFreeMemory() const { 549 size_t byte_allocated = num_bytes_allocated_.LoadSequentiallyConsistent(); 550 size_t total_memory = GetTotalMemory(); 551 // Make sure we don't get a negative number. 552 return total_memory - std::min(total_memory, byte_allocated); 553 } 554 555 // Get the space that corresponds to an object's address. Current implementation searches all 556 // spaces in turn. If fail_ok is false then failing to find a space will cause an abort. 557 // TODO: consider using faster data structure like binary tree. 558 space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>, bool fail_ok) const 559 REQUIRES_SHARED(Locks::mutator_lock_); 560 561 space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const 562 REQUIRES_SHARED(Locks::mutator_lock_); 563 564 space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>, 565 bool fail_ok) const 566 REQUIRES_SHARED(Locks::mutator_lock_); 567 568 space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const 569 REQUIRES_SHARED(Locks::mutator_lock_); 570 571 space::Space* FindSpaceFromAddress(const void* ptr) const 572 REQUIRES_SHARED(Locks::mutator_lock_); 573 574 void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_); 575 576 // Do a pending collector transition. 577 void DoPendingCollectorTransition() REQUIRES(!*gc_complete_lock_, !*pending_task_lock_); 578 579 // Deflate monitors, ... and trim the spaces. 580 void Trim(Thread* self) REQUIRES(!*gc_complete_lock_); 581 582 void RevokeThreadLocalBuffers(Thread* thread); 583 void RevokeRosAllocThreadLocalBuffers(Thread* thread); 584 void RevokeAllThreadLocalBuffers(); 585 void AssertThreadLocalBuffersAreRevoked(Thread* thread); 586 void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 587 void RosAllocVerification(TimingLogger* timings, const char* name) 588 REQUIRES(Locks::mutator_lock_); 589 GetLiveBitmap()590 accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 591 return live_bitmap_.get(); 592 } 593 GetMarkBitmap()594 accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 595 return mark_bitmap_.get(); 596 } 597 GetLiveStack()598 accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 599 return live_stack_.get(); 600 } 601 602 void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS; 603 604 // Mark and empty stack. 605 void FlushAllocStack() 606 REQUIRES_SHARED(Locks::mutator_lock_) 607 REQUIRES(Locks::heap_bitmap_lock_); 608 609 // Revoke all the thread-local allocation stacks. 610 void RevokeAllThreadLocalAllocationStacks(Thread* self) 611 REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_); 612 613 // Mark all the objects in the allocation stack in the specified bitmap. 614 // TODO: Refactor? 615 void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1, 616 accounting::SpaceBitmap<kObjectAlignment>* bitmap2, 617 accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects, 618 accounting::ObjectStack* stack) 619 REQUIRES_SHARED(Locks::mutator_lock_) 620 REQUIRES(Locks::heap_bitmap_lock_); 621 622 // Mark the specified allocation stack as live. 623 void MarkAllocStackAsLive(accounting::ObjectStack* stack) 624 REQUIRES_SHARED(Locks::mutator_lock_) 625 REQUIRES(Locks::heap_bitmap_lock_); 626 627 // Unbind any bound bitmaps. 628 void UnBindBitmaps() 629 REQUIRES(Locks::heap_bitmap_lock_) 630 REQUIRES_SHARED(Locks::mutator_lock_); 631 632 // Returns the boot image spaces. There may be multiple boot image spaces. GetBootImageSpaces()633 const std::vector<space::ImageSpace*>& GetBootImageSpaces() const { 634 return boot_image_spaces_; 635 } 636 637 bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const 638 REQUIRES_SHARED(Locks::mutator_lock_); 639 640 bool IsInBootImageOatFile(const void* p) const 641 REQUIRES_SHARED(Locks::mutator_lock_); 642 643 void GetBootImagesSize(uint32_t* boot_image_begin, 644 uint32_t* boot_image_end, 645 uint32_t* boot_oat_begin, 646 uint32_t* boot_oat_end); 647 648 // Permenantly disable moving garbage collection. 649 void DisableMovingGc() REQUIRES(!*gc_complete_lock_); 650 GetDlMallocSpace()651 space::DlMallocSpace* GetDlMallocSpace() const { 652 return dlmalloc_space_; 653 } 654 GetRosAllocSpace()655 space::RosAllocSpace* GetRosAllocSpace() const { 656 return rosalloc_space_; 657 } 658 659 // Return the corresponding rosalloc space. 660 space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const 661 REQUIRES_SHARED(Locks::mutator_lock_); 662 GetNonMovingSpace()663 space::MallocSpace* GetNonMovingSpace() const { 664 return non_moving_space_; 665 } 666 GetLargeObjectsSpace()667 space::LargeObjectSpace* GetLargeObjectsSpace() const { 668 return large_object_space_; 669 } 670 671 // Returns the free list space that may contain movable objects (the 672 // one that's not the non-moving space), either rosalloc_space_ or 673 // dlmalloc_space_. GetPrimaryFreeListSpace()674 space::MallocSpace* GetPrimaryFreeListSpace() { 675 if (kUseRosAlloc) { 676 DCHECK(rosalloc_space_ != nullptr); 677 // reinterpret_cast is necessary as the space class hierarchy 678 // isn't known (#included) yet here. 679 return reinterpret_cast<space::MallocSpace*>(rosalloc_space_); 680 } else { 681 DCHECK(dlmalloc_space_ != nullptr); 682 return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_); 683 } 684 } 685 686 void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_); 687 std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_); 688 689 // GC performance measuring 690 void DumpGcPerformanceInfo(std::ostream& os) 691 REQUIRES(!*gc_complete_lock_); 692 void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_); 693 694 // Thread pool. 695 void CreateThreadPool(); 696 void DeleteThreadPool(); GetThreadPool()697 ThreadPool* GetThreadPool() { 698 return thread_pool_.get(); 699 } GetParallelGCThreadCount()700 size_t GetParallelGCThreadCount() const { 701 return parallel_gc_threads_; 702 } GetConcGCThreadCount()703 size_t GetConcGCThreadCount() const { 704 return conc_gc_threads_; 705 } 706 accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space); 707 void AddModUnionTable(accounting::ModUnionTable* mod_union_table); 708 709 accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space); 710 void AddRememberedSet(accounting::RememberedSet* remembered_set); 711 // Also deletes the remebered set. 712 void RemoveRememberedSet(space::Space* space); 713 714 bool IsCompilingBoot() const; HasBootImageSpace()715 bool HasBootImageSpace() const { 716 return !boot_image_spaces_.empty(); 717 } 718 GetReferenceProcessor()719 ReferenceProcessor* GetReferenceProcessor() { 720 return reference_processor_.get(); 721 } GetTaskProcessor()722 TaskProcessor* GetTaskProcessor() { 723 return task_processor_.get(); 724 } 725 HasZygoteSpace()726 bool HasZygoteSpace() const { 727 return zygote_space_ != nullptr; 728 } 729 ConcurrentCopyingCollector()730 collector::ConcurrentCopying* ConcurrentCopyingCollector() { 731 return concurrent_copying_collector_; 732 } 733 CurrentCollectorType()734 CollectorType CurrentCollectorType() { 735 return collector_type_; 736 } 737 IsGcConcurrentAndMoving()738 bool IsGcConcurrentAndMoving() const { 739 if (IsGcConcurrent() && IsMovingGc(collector_type_)) { 740 // Assume no transition when a concurrent moving collector is used. 741 DCHECK_EQ(collector_type_, foreground_collector_type_); 742 return true; 743 } 744 return false; 745 } 746 IsMovingGCDisabled(Thread * self)747 bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) { 748 MutexLock mu(self, *gc_complete_lock_); 749 return disable_moving_gc_count_ > 0; 750 } 751 752 // Request an asynchronous trim. 753 void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_); 754 755 // Request asynchronous GC. 756 void RequestConcurrentGC(Thread* self, GcCause cause, bool force_full) 757 REQUIRES(!*pending_task_lock_); 758 759 // Whether or not we may use a garbage collector, used so that we only create collectors we need. 760 bool MayUseCollector(CollectorType type) const; 761 762 // Used by tests to reduce timinig-dependent flakiness in OOME behavior. SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval)763 void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) { 764 min_interval_homogeneous_space_compaction_by_oom_ = interval; 765 } 766 767 // Helpers for android.os.Debug.getRuntimeStat(). 768 uint64_t GetGcCount() const; 769 uint64_t GetGcTime() const; 770 uint64_t GetBlockingGcCount() const; 771 uint64_t GetBlockingGcTime() const; 772 void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_); 773 void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_); 774 775 // Allocation tracking support 776 // Callers to this function use double-checked locking to ensure safety on allocation_records_ IsAllocTrackingEnabled()777 bool IsAllocTrackingEnabled() const { 778 return alloc_tracking_enabled_.LoadRelaxed(); 779 } 780 SetAllocTrackingEnabled(bool enabled)781 void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) { 782 alloc_tracking_enabled_.StoreRelaxed(enabled); 783 } 784 GetAllocationRecords()785 AllocRecordObjectMap* GetAllocationRecords() const 786 REQUIRES(Locks::alloc_tracker_lock_) { 787 return allocation_records_.get(); 788 } 789 790 void SetAllocationRecords(AllocRecordObjectMap* records) 791 REQUIRES(Locks::alloc_tracker_lock_); 792 793 void VisitAllocationRecords(RootVisitor* visitor) const 794 REQUIRES_SHARED(Locks::mutator_lock_) 795 REQUIRES(!Locks::alloc_tracker_lock_); 796 797 void SweepAllocationRecords(IsMarkedVisitor* visitor) const 798 REQUIRES_SHARED(Locks::mutator_lock_) 799 REQUIRES(!Locks::alloc_tracker_lock_); 800 801 void DisallowNewAllocationRecords() const 802 REQUIRES_SHARED(Locks::mutator_lock_) 803 REQUIRES(!Locks::alloc_tracker_lock_); 804 805 void AllowNewAllocationRecords() const 806 REQUIRES_SHARED(Locks::mutator_lock_) 807 REQUIRES(!Locks::alloc_tracker_lock_); 808 809 void BroadcastForNewAllocationRecords() const 810 REQUIRES(!Locks::alloc_tracker_lock_); 811 812 void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_); 813 814 // Create a new alloc space and compact default alloc space to it. 815 HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact() REQUIRES(!*gc_complete_lock_); 816 bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const; 817 818 // Install an allocation listener. 819 void SetAllocationListener(AllocationListener* l); 820 // Remove an allocation listener. Note: the listener must not be deleted, as for performance 821 // reasons, we assume it stays valid when we read it (so that we don't require a lock). 822 void RemoveAllocationListener(); 823 824 // Install a gc pause listener. 825 void SetGcPauseListener(GcPauseListener* l); 826 // Get the currently installed gc pause listener, or null. GetGcPauseListener()827 GcPauseListener* GetGcPauseListener() { 828 return gc_pause_listener_.LoadAcquire(); 829 } 830 // Remove a gc pause listener. Note: the listener must not be deleted, as for performance 831 // reasons, we assume it stays valid when we read it (so that we don't require a lock). 832 void RemoveGcPauseListener(); 833 834 const Verification* GetVerification() const; 835 836 private: 837 class ConcurrentGCTask; 838 class CollectorTransitionTask; 839 class HeapTrimTask; 840 841 // Compact source space to target space. Returns the collector used. 842 collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space, 843 space::ContinuousMemMapAllocSpace* source_space, 844 GcCause gc_cause) 845 REQUIRES(Locks::mutator_lock_); 846 847 void LogGC(GcCause gc_cause, collector::GarbageCollector* collector); 848 void StartGC(Thread* self, GcCause cause, CollectorType collector_type) 849 REQUIRES(!*gc_complete_lock_); 850 void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_); 851 852 // Create a mem map with a preferred base address. 853 static MemMap* MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin, 854 size_t capacity, std::string* out_error_str); 855 SupportHSpaceCompaction()856 bool SupportHSpaceCompaction() const { 857 // Returns true if we can do hspace compaction 858 return main_space_backup_ != nullptr; 859 } 860 AllocatorHasAllocationStack(AllocatorType allocator_type)861 static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) { 862 return 863 allocator_type != kAllocatorTypeBumpPointer && 864 allocator_type != kAllocatorTypeTLAB && 865 allocator_type != kAllocatorTypeRegion && 866 allocator_type != kAllocatorTypeRegionTLAB; 867 } AllocatorMayHaveConcurrentGC(AllocatorType allocator_type)868 static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) { 869 if (kUseReadBarrier) { 870 // Read barrier may have the TLAB allocator but is always concurrent. TODO: clean this up. 871 return true; 872 } 873 return 874 allocator_type != kAllocatorTypeBumpPointer && 875 allocator_type != kAllocatorTypeTLAB; 876 } IsMovingGc(CollectorType collector_type)877 static bool IsMovingGc(CollectorType collector_type) { 878 return 879 collector_type == kCollectorTypeSS || 880 collector_type == kCollectorTypeGSS || 881 collector_type == kCollectorTypeCC || 882 collector_type == kCollectorTypeCCBackground || 883 collector_type == kCollectorTypeMC || 884 collector_type == kCollectorTypeHomogeneousSpaceCompact; 885 } 886 bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const 887 REQUIRES_SHARED(Locks::mutator_lock_); 888 ALWAYS_INLINE void CheckConcurrentGC(Thread* self, 889 size_t new_num_bytes_allocated, 890 ObjPtr<mirror::Object>* obj) 891 REQUIRES_SHARED(Locks::mutator_lock_) 892 REQUIRES(!*pending_task_lock_, !*gc_complete_lock_); 893 GetMarkStack()894 accounting::ObjectStack* GetMarkStack() { 895 return mark_stack_.get(); 896 } 897 898 // We don't force this to be inlined since it is a slow path. 899 template <bool kInstrumented, typename PreFenceVisitor> 900 mirror::Object* AllocLargeObject(Thread* self, 901 ObjPtr<mirror::Class>* klass, 902 size_t byte_count, 903 const PreFenceVisitor& pre_fence_visitor) 904 REQUIRES_SHARED(Locks::mutator_lock_) 905 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_); 906 907 // Handles Allocate()'s slow allocation path with GC involved after 908 // an initial allocation attempt failed. 909 mirror::Object* AllocateInternalWithGc(Thread* self, 910 AllocatorType allocator, 911 bool instrumented, 912 size_t num_bytes, 913 size_t* bytes_allocated, 914 size_t* usable_size, 915 size_t* bytes_tl_bulk_allocated, 916 ObjPtr<mirror::Class>* klass) 917 REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_) 918 REQUIRES_SHARED(Locks::mutator_lock_); 919 920 // Allocate into a specific space. 921 mirror::Object* AllocateInto(Thread* self, 922 space::AllocSpace* space, 923 ObjPtr<mirror::Class> c, 924 size_t bytes) 925 REQUIRES_SHARED(Locks::mutator_lock_); 926 927 // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the 928 // wrong space. 929 void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_); 930 931 // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so 932 // that the switch statement is constant optimized in the entrypoints. 933 template <const bool kInstrumented, const bool kGrow> 934 ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, 935 AllocatorType allocator_type, 936 size_t alloc_size, 937 size_t* bytes_allocated, 938 size_t* usable_size, 939 size_t* bytes_tl_bulk_allocated) 940 REQUIRES_SHARED(Locks::mutator_lock_); 941 942 mirror::Object* AllocWithNewTLAB(Thread* self, 943 size_t alloc_size, 944 bool grow, 945 size_t* bytes_allocated, 946 size_t* usable_size, 947 size_t* bytes_tl_bulk_allocated) 948 REQUIRES_SHARED(Locks::mutator_lock_); 949 950 void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) 951 REQUIRES_SHARED(Locks::mutator_lock_); 952 953 ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, 954 size_t alloc_size, 955 bool grow); 956 957 // Run the finalizers. If timeout is non zero, then we use the VMRuntime version. 958 void RunFinalization(JNIEnv* env, uint64_t timeout); 959 960 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 961 // waited for. 962 collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self) 963 REQUIRES(gc_complete_lock_); 964 965 void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) 966 REQUIRES(!*pending_task_lock_); 967 968 void RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, ObjPtr<mirror::Object>* obj) 969 REQUIRES_SHARED(Locks::mutator_lock_) 970 REQUIRES(!*pending_task_lock_); 971 bool IsGCRequestPending() const; 972 973 // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns 974 // which type of Gc was actually ran. 975 collector::GcType CollectGarbageInternal(collector::GcType gc_plan, 976 GcCause gc_cause, 977 bool clear_soft_references) 978 REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_, 979 !*pending_task_lock_); 980 981 void PreGcVerification(collector::GarbageCollector* gc) 982 REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_); 983 void PreGcVerificationPaused(collector::GarbageCollector* gc) 984 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 985 void PrePauseRosAllocVerification(collector::GarbageCollector* gc) 986 REQUIRES(Locks::mutator_lock_); 987 void PreSweepingGcVerification(collector::GarbageCollector* gc) 988 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 989 void PostGcVerification(collector::GarbageCollector* gc) 990 REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_); 991 void PostGcVerificationPaused(collector::GarbageCollector* gc) 992 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 993 994 // Find a collector based on GC type. 995 collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type); 996 997 // Create the main free list malloc space, either a RosAlloc space or DlMalloc space. 998 void CreateMainMallocSpace(MemMap* mem_map, 999 size_t initial_size, 1000 size_t growth_limit, 1001 size_t capacity); 1002 1003 // Create a malloc space based on a mem map. Does not set the space as default. 1004 space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap* mem_map, 1005 size_t initial_size, 1006 size_t growth_limit, 1007 size_t capacity, 1008 const char* name, 1009 bool can_move_objects); 1010 1011 // Given the current contents of the alloc space, increase the allowed heap footprint to match 1012 // the target utilization ratio. This should only be called immediately after a full garbage 1013 // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which 1014 // the GC was run. 1015 void GrowForUtilization(collector::GarbageCollector* collector_ran, 1016 uint64_t bytes_allocated_before_gc = 0); 1017 1018 size_t GetPercentFree(); 1019 1020 // Swap the allocation stack with the live stack. 1021 void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_); 1022 1023 // Clear cards and update the mod union table. When process_alloc_space_cards is true, 1024 // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do 1025 // not process the alloc space if process_alloc_space_cards is false. 1026 void ProcessCards(TimingLogger* timings, 1027 bool use_rem_sets, 1028 bool process_alloc_space_cards, 1029 bool clear_alloc_space_cards) 1030 REQUIRES_SHARED(Locks::mutator_lock_); 1031 1032 // Push an object onto the allocation stack. 1033 void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj) 1034 REQUIRES_SHARED(Locks::mutator_lock_) 1035 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_); 1036 void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) 1037 REQUIRES_SHARED(Locks::mutator_lock_) 1038 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_); 1039 void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, ObjPtr<mirror::Object>* obj) 1040 REQUIRES_SHARED(Locks::mutator_lock_) 1041 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_); 1042 1043 void ClearConcurrentGCRequest(); 1044 void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_); 1045 void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_); 1046 1047 // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark 1048 // sweep GC, false for other GC types. IsGcConcurrent()1049 bool IsGcConcurrent() const ALWAYS_INLINE { 1050 return collector_type_ == kCollectorTypeCMS || 1051 collector_type_ == kCollectorTypeCC || 1052 collector_type_ == kCollectorTypeCCBackground; 1053 } 1054 1055 // Trim the managed and native spaces by releasing unused memory back to the OS. 1056 void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_); 1057 1058 // Trim 0 pages at the end of reference tables. 1059 void TrimIndirectReferenceTables(Thread* self); 1060 1061 template <typename Visitor> 1062 ALWAYS_INLINE void VisitObjectsInternal(Visitor&& visitor) 1063 REQUIRES_SHARED(Locks::mutator_lock_) 1064 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1065 template <typename Visitor> 1066 ALWAYS_INLINE void VisitObjectsInternalRegionSpace(Visitor&& visitor) 1067 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1068 1069 void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_); 1070 1071 // GC stress mode attempts to do one GC per unique backtrace. 1072 void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) 1073 REQUIRES_SHARED(Locks::mutator_lock_) 1074 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_); 1075 NonStickyGcType()1076 collector::GcType NonStickyGcType() const { 1077 return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull; 1078 } 1079 1080 // How large new_native_bytes_allocated_ can grow before we trigger a new 1081 // GC. NativeAllocationGcWatermark()1082 ALWAYS_INLINE size_t NativeAllocationGcWatermark() const { 1083 // Reuse max_free_ for the native allocation gc watermark, so that the 1084 // native heap is treated in the same way as the Java heap in the case 1085 // where the gc watermark update would exceed max_free_. Using max_free_ 1086 // instead of the target utilization means the watermark doesn't depend on 1087 // the current number of registered native allocations. 1088 return max_free_; 1089 } 1090 1091 void TraceHeapSize(size_t heap_size); 1092 1093 // Remove a vlog code from heap-inl.h which is transitively included in half the world. 1094 static void VlogHeapGrowth(size_t max_allowed_footprint, size_t new_footprint, size_t alloc_size); 1095 1096 // All-known continuous spaces, where objects lie within fixed bounds. 1097 std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_); 1098 1099 // All-known discontinuous spaces, where objects may be placed throughout virtual memory. 1100 std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_); 1101 1102 // All-known alloc spaces, where objects may be or have been allocated. 1103 std::vector<space::AllocSpace*> alloc_spaces_; 1104 1105 // A space where non-movable objects are allocated, when compaction is enabled it contains 1106 // Classes, ArtMethods, ArtFields, and non moving objects. 1107 space::MallocSpace* non_moving_space_; 1108 1109 // Space which we use for the kAllocatorTypeROSAlloc. 1110 space::RosAllocSpace* rosalloc_space_; 1111 1112 // Space which we use for the kAllocatorTypeDlMalloc. 1113 space::DlMallocSpace* dlmalloc_space_; 1114 1115 // The main space is the space which the GC copies to and from on process state updates. This 1116 // space is typically either the dlmalloc_space_ or the rosalloc_space_. 1117 space::MallocSpace* main_space_; 1118 1119 // The large object space we are currently allocating into. 1120 space::LargeObjectSpace* large_object_space_; 1121 1122 // The card table, dirtied by the write barrier. 1123 std::unique_ptr<accounting::CardTable> card_table_; 1124 1125 std::unique_ptr<accounting::ReadBarrierTable> rb_table_; 1126 1127 // A mod-union table remembers all of the references from the it's space to other spaces. 1128 AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap> 1129 mod_union_tables_; 1130 1131 // A remembered set remembers all of the references from the it's space to the target space. 1132 AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap> 1133 remembered_sets_; 1134 1135 // The current collector type. 1136 CollectorType collector_type_; 1137 // Which collector we use when the app is in the foreground. 1138 CollectorType foreground_collector_type_; 1139 // Which collector we will use when the app is notified of a transition to background. 1140 CollectorType background_collector_type_; 1141 // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_. 1142 CollectorType desired_collector_type_; 1143 1144 // Lock which guards pending tasks. 1145 Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1146 1147 // How many GC threads we may use for paused parts of garbage collection. 1148 const size_t parallel_gc_threads_; 1149 1150 // How many GC threads we may use for unpaused parts of garbage collection. 1151 const size_t conc_gc_threads_; 1152 1153 // Boolean for if we are in low memory mode. 1154 const bool low_memory_mode_; 1155 1156 // If we get a pause longer than long pause log threshold, then we print out the GC after it 1157 // finishes. 1158 const size_t long_pause_log_threshold_; 1159 1160 // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes. 1161 const size_t long_gc_log_threshold_; 1162 1163 // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is 1164 // useful for benchmarking since it reduces time spent in GC to a low %. 1165 const bool ignore_max_footprint_; 1166 1167 // Lock which guards zygote space creation. 1168 Mutex zygote_creation_lock_; 1169 1170 // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before 1171 // zygote space creation. 1172 space::ZygoteSpace* zygote_space_; 1173 1174 // Minimum allocation size of large object. 1175 size_t large_object_threshold_; 1176 1177 // Guards access to the state of GC, associated conditional variable is used to signal when a GC 1178 // completes. 1179 Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1180 std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_); 1181 1182 // Used to synchronize between JNI critical calls and the thread flip of the CC collector. 1183 Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1184 std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_); 1185 // This counter keeps track of how many threads are currently in a JNI critical section. This is 1186 // incremented once per thread even with nested enters. 1187 size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_); 1188 bool thread_flip_running_ GUARDED_BY(thread_flip_lock_); 1189 1190 // Reference processor; 1191 std::unique_ptr<ReferenceProcessor> reference_processor_; 1192 1193 // Task processor, proxies heap trim requests to the daemon threads. 1194 std::unique_ptr<TaskProcessor> task_processor_; 1195 1196 // Collector type of the running GC. 1197 volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_); 1198 1199 // Cause of the last running GC. 1200 volatile GcCause last_gc_cause_ GUARDED_BY(gc_complete_lock_); 1201 1202 // The thread currently running the GC. 1203 volatile Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_); 1204 1205 // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on. 1206 volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_); 1207 collector::GcType next_gc_type_; 1208 1209 // Maximum size that the heap can reach. 1210 size_t capacity_; 1211 1212 // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap 1213 // programs it is "cleared" making it the same as capacity. 1214 size_t growth_limit_; 1215 1216 // When the number of bytes allocated exceeds the footprint TryAllocate returns null indicating 1217 // a GC should be triggered. 1218 size_t max_allowed_footprint_; 1219 1220 // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that 1221 // it completes ahead of an allocation failing. 1222 size_t concurrent_start_bytes_; 1223 1224 // Since the heap was created, how many bytes have been freed. 1225 uint64_t total_bytes_freed_ever_; 1226 1227 // Since the heap was created, how many objects have been freed. 1228 uint64_t total_objects_freed_ever_; 1229 1230 // Number of bytes allocated. Adjusted after each allocation and free. 1231 Atomic<size_t> num_bytes_allocated_; 1232 1233 // Number of registered native bytes allocated since the last time GC was 1234 // triggered. Adjusted after each RegisterNativeAllocation and 1235 // RegisterNativeFree. Used to determine when to trigger GC for native 1236 // allocations. 1237 // See the REDESIGN section of go/understanding-register-native-allocation. 1238 Atomic<size_t> new_native_bytes_allocated_; 1239 1240 // Number of registered native bytes allocated prior to the last time GC was 1241 // triggered, for debugging purposes. The current number of registered 1242 // native bytes is determined by taking the sum of 1243 // old_native_bytes_allocated_ and new_native_bytes_allocated_. 1244 Atomic<size_t> old_native_bytes_allocated_; 1245 1246 // Number of bytes freed by thread local buffer revokes. This will 1247 // cancel out the ahead-of-time bulk counting of bytes allocated in 1248 // rosalloc thread-local buffers. It is temporarily accumulated 1249 // here to be subtracted from num_bytes_allocated_ later at the next 1250 // GC. 1251 Atomic<size_t> num_bytes_freed_revoke_; 1252 1253 // Info related to the current or previous GC iteration. 1254 collector::Iteration current_gc_iteration_; 1255 1256 // Heap verification flags. 1257 const bool verify_missing_card_marks_; 1258 const bool verify_system_weaks_; 1259 const bool verify_pre_gc_heap_; 1260 const bool verify_pre_sweeping_heap_; 1261 const bool verify_post_gc_heap_; 1262 const bool verify_mod_union_table_; 1263 bool verify_pre_gc_rosalloc_; 1264 bool verify_pre_sweeping_rosalloc_; 1265 bool verify_post_gc_rosalloc_; 1266 const bool gc_stress_mode_; 1267 1268 // RAII that temporarily disables the rosalloc verification during 1269 // the zygote fork. 1270 class ScopedDisableRosAllocVerification { 1271 private: 1272 Heap* const heap_; 1273 const bool orig_verify_pre_gc_; 1274 const bool orig_verify_pre_sweeping_; 1275 const bool orig_verify_post_gc_; 1276 1277 public: ScopedDisableRosAllocVerification(Heap * heap)1278 explicit ScopedDisableRosAllocVerification(Heap* heap) 1279 : heap_(heap), 1280 orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_), 1281 orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_), 1282 orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) { 1283 heap_->verify_pre_gc_rosalloc_ = false; 1284 heap_->verify_pre_sweeping_rosalloc_ = false; 1285 heap_->verify_post_gc_rosalloc_ = false; 1286 } ~ScopedDisableRosAllocVerification()1287 ~ScopedDisableRosAllocVerification() { 1288 heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_; 1289 heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_; 1290 heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_; 1291 } 1292 }; 1293 1294 // Parallel GC data structures. 1295 std::unique_ptr<ThreadPool> thread_pool_; 1296 1297 // A bitmap that is set corresponding to the known live objects since the last GC cycle. 1298 std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 1299 // A bitmap that is set corresponding to the marked objects in the current GC cycle. 1300 std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 1301 1302 // Mark stack that we reuse to avoid re-allocating the mark stack. 1303 std::unique_ptr<accounting::ObjectStack> mark_stack_; 1304 1305 // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us 1306 // to use the live bitmap as the old mark bitmap. 1307 const size_t max_allocation_stack_size_; 1308 std::unique_ptr<accounting::ObjectStack> allocation_stack_; 1309 1310 // Second allocation stack so that we can process allocation with the heap unlocked. 1311 std::unique_ptr<accounting::ObjectStack> live_stack_; 1312 1313 // Allocator type. 1314 AllocatorType current_allocator_; 1315 const AllocatorType current_non_moving_allocator_; 1316 1317 // Which GCs we run in order when an allocation fails. 1318 std::vector<collector::GcType> gc_plan_; 1319 1320 // Bump pointer spaces. 1321 space::BumpPointerSpace* bump_pointer_space_; 1322 // Temp space is the space which the semispace collector copies to. 1323 space::BumpPointerSpace* temp_space_; 1324 1325 // Region space, used by the concurrent collector. 1326 space::RegionSpace* region_space_; 1327 1328 // Minimum free guarantees that you always have at least min_free_ free bytes after growing for 1329 // utilization, regardless of target utilization ratio. 1330 size_t min_free_; 1331 1332 // The ideal maximum free size, when we grow the heap for utilization. 1333 size_t max_free_; 1334 1335 // Target ideal heap utilization ratio. 1336 double target_utilization_; 1337 1338 // How much more we grow the heap when we are a foreground app instead of background. 1339 double foreground_heap_growth_multiplier_; 1340 1341 // Total time which mutators are paused or waiting for GC to complete. 1342 uint64_t total_wait_time_; 1343 1344 // The current state of heap verification, may be enabled or disabled. 1345 VerifyObjectMode verify_object_mode_; 1346 1347 // Compacting GC disable count, prevents compacting GC from running iff > 0. 1348 size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_); 1349 1350 std::vector<collector::GarbageCollector*> garbage_collectors_; 1351 collector::SemiSpace* semi_space_collector_; 1352 collector::MarkCompact* mark_compact_collector_; 1353 collector::ConcurrentCopying* concurrent_copying_collector_; 1354 1355 const bool is_running_on_memory_tool_; 1356 const bool use_tlab_; 1357 1358 // Pointer to the space which becomes the new main space when we do homogeneous space compaction. 1359 // Use unique_ptr since the space is only added during the homogeneous compaction phase. 1360 std::unique_ptr<space::MallocSpace> main_space_backup_; 1361 1362 // Minimal interval allowed between two homogeneous space compactions caused by OOM. 1363 uint64_t min_interval_homogeneous_space_compaction_by_oom_; 1364 1365 // Times of the last homogeneous space compaction caused by OOM. 1366 uint64_t last_time_homogeneous_space_compaction_by_oom_; 1367 1368 // Saved OOMs by homogeneous space compaction. 1369 Atomic<size_t> count_delayed_oom_; 1370 1371 // Count for requested homogeneous space compaction. 1372 Atomic<size_t> count_requested_homogeneous_space_compaction_; 1373 1374 // Count for ignored homogeneous space compaction. 1375 Atomic<size_t> count_ignored_homogeneous_space_compaction_; 1376 1377 // Count for performed homogeneous space compaction. 1378 Atomic<size_t> count_performed_homogeneous_space_compaction_; 1379 1380 // Whether or not a concurrent GC is pending. 1381 Atomic<bool> concurrent_gc_pending_; 1382 1383 // Active tasks which we can modify (change target time, desired collector type, etc..). 1384 CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_); 1385 HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_); 1386 1387 // Whether or not we use homogeneous space compaction to avoid OOM errors. 1388 bool use_homogeneous_space_compaction_for_oom_; 1389 1390 // True if the currently running collection has made some thread wait. 1391 bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_); 1392 // The number of blocking GC runs. 1393 uint64_t blocking_gc_count_; 1394 // The total duration of blocking GC runs. 1395 uint64_t blocking_gc_time_; 1396 // The duration of the window for the GC count rate histograms. 1397 static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000); // 10s. 1398 // The last time when the GC count rate histograms were updated. 1399 // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s). 1400 uint64_t last_update_time_gc_count_rate_histograms_; 1401 // The running count of GC runs in the last window. 1402 uint64_t gc_count_last_window_; 1403 // The running count of blocking GC runs in the last window. 1404 uint64_t blocking_gc_count_last_window_; 1405 // The maximum number of buckets in the GC count rate histograms. 1406 static constexpr size_t kGcCountRateMaxBucketCount = 200; 1407 // The histogram of the number of GC invocations per window duration. 1408 Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); 1409 // The histogram of the number of blocking GC invocations per window duration. 1410 Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); 1411 1412 // Allocation tracking support 1413 Atomic<bool> alloc_tracking_enabled_; 1414 std::unique_ptr<AllocRecordObjectMap> allocation_records_; 1415 1416 // GC stress related data structures. 1417 Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1418 // Debugging variables, seen backtraces vs unique backtraces. 1419 Atomic<uint64_t> seen_backtrace_count_; 1420 Atomic<uint64_t> unique_backtrace_count_; 1421 // Stack trace hashes that we already saw, 1422 std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_); 1423 1424 // We disable GC when we are shutting down the runtime in case there are daemon threads still 1425 // allocating. 1426 bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_); 1427 1428 // Boot image spaces. 1429 std::vector<space::ImageSpace*> boot_image_spaces_; 1430 1431 // An installed allocation listener. 1432 Atomic<AllocationListener*> alloc_listener_; 1433 // An installed GC Pause listener. 1434 Atomic<GcPauseListener*> gc_pause_listener_; 1435 1436 std::unique_ptr<Verification> verification_; 1437 1438 friend class CollectorTransitionTask; 1439 friend class collector::GarbageCollector; 1440 friend class collector::MarkCompact; 1441 friend class collector::ConcurrentCopying; 1442 friend class collector::MarkSweep; 1443 friend class collector::SemiSpace; 1444 friend class ReferenceQueue; 1445 friend class ScopedGCCriticalSection; 1446 friend class VerifyReferenceCardVisitor; 1447 friend class VerifyReferenceVisitor; 1448 friend class VerifyObjectVisitor; 1449 1450 DISALLOW_IMPLICIT_CONSTRUCTORS(Heap); 1451 }; 1452 1453 } // namespace gc 1454 } // namespace art 1455 1456 #endif // ART_RUNTIME_GC_HEAP_H_ 1457