1 //===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the execution dependency fix pass.
11 //
12 // Some X86 SSE instructions like mov, and, or, xor are available in different
13 // variants for different operand types. These variant instructions are
14 // equivalent, but on Nehalem and newer cpus there is extra latency
15 // transferring data between integer and floating point domains. ARM cores
16 // have similar issues when they are configured with both VFP and NEON
17 // pipelines.
18 //
19 // This pass changes the variant instructions to minimize domain crossings.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/ADT/PostOrderIterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/CodeGen/LivePhysRegs.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/Support/Allocator.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetSubtargetInfo.h"
34
35 using namespace llvm;
36
37 #define DEBUG_TYPE "execution-fix"
38
39 /// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track
40 /// of execution domains.
41 ///
42 /// An open DomainValue represents a set of instructions that can still switch
43 /// execution domain. Multiple registers may refer to the same open
44 /// DomainValue - they will eventually be collapsed to the same execution
45 /// domain.
46 ///
47 /// A collapsed DomainValue represents a single register that has been forced
48 /// into one of more execution domains. There is a separate collapsed
49 /// DomainValue for each register, but it may contain multiple execution
50 /// domains. A register value is initially created in a single execution
51 /// domain, but if we were forced to pay the penalty of a domain crossing, we
52 /// keep track of the fact that the register is now available in multiple
53 /// domains.
54 namespace {
55 struct DomainValue {
56 // Basic reference counting.
57 unsigned Refs;
58
59 // Bitmask of available domains. For an open DomainValue, it is the still
60 // possible domains for collapsing. For a collapsed DomainValue it is the
61 // domains where the register is available for free.
62 unsigned AvailableDomains;
63
64 // Pointer to the next DomainValue in a chain. When two DomainValues are
65 // merged, Victim.Next is set to point to Victor, so old DomainValue
66 // references can be updated by following the chain.
67 DomainValue *Next;
68
69 // Twiddleable instructions using or defining these registers.
70 SmallVector<MachineInstr*, 8> Instrs;
71
72 // A collapsed DomainValue has no instructions to twiddle - it simply keeps
73 // track of the domains where the registers are already available.
isCollapsed__anon6fda9a9a0111::DomainValue74 bool isCollapsed() const { return Instrs.empty(); }
75
76 // Is domain available?
hasDomain__anon6fda9a9a0111::DomainValue77 bool hasDomain(unsigned domain) const {
78 assert(domain <
79 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
80 "undefined behavior");
81 return AvailableDomains & (1u << domain);
82 }
83
84 // Mark domain as available.
addDomain__anon6fda9a9a0111::DomainValue85 void addDomain(unsigned domain) {
86 AvailableDomains |= 1u << domain;
87 }
88
89 // Restrict to a single domain available.
setSingleDomain__anon6fda9a9a0111::DomainValue90 void setSingleDomain(unsigned domain) {
91 AvailableDomains = 1u << domain;
92 }
93
94 // Return bitmask of domains that are available and in mask.
getCommonDomains__anon6fda9a9a0111::DomainValue95 unsigned getCommonDomains(unsigned mask) const {
96 return AvailableDomains & mask;
97 }
98
99 // First domain available.
getFirstDomain__anon6fda9a9a0111::DomainValue100 unsigned getFirstDomain() const {
101 return countTrailingZeros(AvailableDomains);
102 }
103
DomainValue__anon6fda9a9a0111::DomainValue104 DomainValue() : Refs(0) { clear(); }
105
106 // Clear this DomainValue and point to next which has all its data.
clear__anon6fda9a9a0111::DomainValue107 void clear() {
108 AvailableDomains = 0;
109 Next = nullptr;
110 Instrs.clear();
111 }
112 };
113 }
114
115 namespace {
116 /// Information about a live register.
117 struct LiveReg {
118 /// Value currently in this register, or NULL when no value is being tracked.
119 /// This counts as a DomainValue reference.
120 DomainValue *Value;
121
122 /// Instruction that defined this register, relative to the beginning of the
123 /// current basic block. When a LiveReg is used to represent a live-out
124 /// register, this value is relative to the end of the basic block, so it
125 /// will be a negative number.
126 int Def;
127 };
128 } // anonymous namespace
129
130 namespace {
131 class ExeDepsFix : public MachineFunctionPass {
132 static char ID;
133 SpecificBumpPtrAllocator<DomainValue> Allocator;
134 SmallVector<DomainValue*,16> Avail;
135
136 const TargetRegisterClass *const RC;
137 MachineFunction *MF;
138 const TargetInstrInfo *TII;
139 const TargetRegisterInfo *TRI;
140 std::vector<SmallVector<int, 1>> AliasMap;
141 const unsigned NumRegs;
142 LiveReg *LiveRegs;
143 typedef DenseMap<MachineBasicBlock*, LiveReg*> LiveOutMap;
144 LiveOutMap LiveOuts;
145
146 /// List of undefined register reads in this block in forward order.
147 std::vector<std::pair<MachineInstr*, unsigned> > UndefReads;
148
149 /// Storage for register unit liveness.
150 LivePhysRegs LiveRegSet;
151
152 /// Current instruction number.
153 /// The first instruction in each basic block is 0.
154 int CurInstr;
155
156 /// True when the current block has a predecessor that hasn't been visited
157 /// yet.
158 bool SeenUnknownBackEdge;
159
160 public:
ExeDepsFix(const TargetRegisterClass * rc)161 ExeDepsFix(const TargetRegisterClass *rc)
162 : MachineFunctionPass(ID), RC(rc), NumRegs(RC->getNumRegs()) {}
163
getAnalysisUsage(AnalysisUsage & AU) const164 void getAnalysisUsage(AnalysisUsage &AU) const override {
165 AU.setPreservesAll();
166 MachineFunctionPass::getAnalysisUsage(AU);
167 }
168
169 bool runOnMachineFunction(MachineFunction &MF) override;
170
getRequiredProperties() const171 MachineFunctionProperties getRequiredProperties() const override {
172 return MachineFunctionProperties().set(
173 MachineFunctionProperties::Property::AllVRegsAllocated);
174 }
175
getPassName() const176 const char *getPassName() const override {
177 return "Execution dependency fix";
178 }
179
180 private:
181 iterator_range<SmallVectorImpl<int>::const_iterator>
182 regIndices(unsigned Reg) const;
183
184 // DomainValue allocation.
185 DomainValue *alloc(int domain = -1);
retain(DomainValue * DV)186 DomainValue *retain(DomainValue *DV) {
187 if (DV) ++DV->Refs;
188 return DV;
189 }
190 void release(DomainValue*);
191 DomainValue *resolve(DomainValue*&);
192
193 // LiveRegs manipulations.
194 void setLiveReg(int rx, DomainValue *DV);
195 void kill(int rx);
196 void force(int rx, unsigned domain);
197 void collapse(DomainValue *dv, unsigned domain);
198 bool merge(DomainValue *A, DomainValue *B);
199
200 void enterBasicBlock(MachineBasicBlock*);
201 void leaveBasicBlock(MachineBasicBlock*);
202 void visitInstr(MachineInstr*);
203 void processDefs(MachineInstr*, bool Kill);
204 void visitSoftInstr(MachineInstr*, unsigned mask);
205 void visitHardInstr(MachineInstr*, unsigned domain);
206 bool shouldBreakDependence(MachineInstr*, unsigned OpIdx, unsigned Pref);
207 void processUndefReads(MachineBasicBlock*);
208 };
209 }
210
211 char ExeDepsFix::ID = 0;
212
213 /// Translate TRI register number to a list of indices into our smaller tables
214 /// of interesting registers.
215 iterator_range<SmallVectorImpl<int>::const_iterator>
regIndices(unsigned Reg) const216 ExeDepsFix::regIndices(unsigned Reg) const {
217 assert(Reg < AliasMap.size() && "Invalid register");
218 const auto &Entry = AliasMap[Reg];
219 return make_range(Entry.begin(), Entry.end());
220 }
221
alloc(int domain)222 DomainValue *ExeDepsFix::alloc(int domain) {
223 DomainValue *dv = Avail.empty() ?
224 new(Allocator.Allocate()) DomainValue :
225 Avail.pop_back_val();
226 if (domain >= 0)
227 dv->addDomain(domain);
228 assert(dv->Refs == 0 && "Reference count wasn't cleared");
229 assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
230 return dv;
231 }
232
233 /// Release a reference to DV. When the last reference is released,
234 /// collapse if needed.
release(DomainValue * DV)235 void ExeDepsFix::release(DomainValue *DV) {
236 while (DV) {
237 assert(DV->Refs && "Bad DomainValue");
238 if (--DV->Refs)
239 return;
240
241 // There are no more DV references. Collapse any contained instructions.
242 if (DV->AvailableDomains && !DV->isCollapsed())
243 collapse(DV, DV->getFirstDomain());
244
245 DomainValue *Next = DV->Next;
246 DV->clear();
247 Avail.push_back(DV);
248 // Also release the next DomainValue in the chain.
249 DV = Next;
250 }
251 }
252
253 /// Follow the chain of dead DomainValues until a live DomainValue is reached.
254 /// Update the referenced pointer when necessary.
resolve(DomainValue * & DVRef)255 DomainValue *ExeDepsFix::resolve(DomainValue *&DVRef) {
256 DomainValue *DV = DVRef;
257 if (!DV || !DV->Next)
258 return DV;
259
260 // DV has a chain. Find the end.
261 do DV = DV->Next;
262 while (DV->Next);
263
264 // Update DVRef to point to DV.
265 retain(DV);
266 release(DVRef);
267 DVRef = DV;
268 return DV;
269 }
270
271 /// Set LiveRegs[rx] = dv, updating reference counts.
setLiveReg(int rx,DomainValue * dv)272 void ExeDepsFix::setLiveReg(int rx, DomainValue *dv) {
273 assert(unsigned(rx) < NumRegs && "Invalid index");
274 assert(LiveRegs && "Must enter basic block first.");
275
276 if (LiveRegs[rx].Value == dv)
277 return;
278 if (LiveRegs[rx].Value)
279 release(LiveRegs[rx].Value);
280 LiveRegs[rx].Value = retain(dv);
281 }
282
283 // Kill register rx, recycle or collapse any DomainValue.
kill(int rx)284 void ExeDepsFix::kill(int rx) {
285 assert(unsigned(rx) < NumRegs && "Invalid index");
286 assert(LiveRegs && "Must enter basic block first.");
287 if (!LiveRegs[rx].Value)
288 return;
289
290 release(LiveRegs[rx].Value);
291 LiveRegs[rx].Value = nullptr;
292 }
293
294 /// Force register rx into domain.
force(int rx,unsigned domain)295 void ExeDepsFix::force(int rx, unsigned domain) {
296 assert(unsigned(rx) < NumRegs && "Invalid index");
297 assert(LiveRegs && "Must enter basic block first.");
298 if (DomainValue *dv = LiveRegs[rx].Value) {
299 if (dv->isCollapsed())
300 dv->addDomain(domain);
301 else if (dv->hasDomain(domain))
302 collapse(dv, domain);
303 else {
304 // This is an incompatible open DomainValue. Collapse it to whatever and
305 // force the new value into domain. This costs a domain crossing.
306 collapse(dv, dv->getFirstDomain());
307 assert(LiveRegs[rx].Value && "Not live after collapse?");
308 LiveRegs[rx].Value->addDomain(domain);
309 }
310 } else {
311 // Set up basic collapsed DomainValue.
312 setLiveReg(rx, alloc(domain));
313 }
314 }
315
316 /// Collapse open DomainValue into given domain. If there are multiple
317 /// registers using dv, they each get a unique collapsed DomainValue.
collapse(DomainValue * dv,unsigned domain)318 void ExeDepsFix::collapse(DomainValue *dv, unsigned domain) {
319 assert(dv->hasDomain(domain) && "Cannot collapse");
320
321 // Collapse all the instructions.
322 while (!dv->Instrs.empty())
323 TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain);
324 dv->setSingleDomain(domain);
325
326 // If there are multiple users, give them new, unique DomainValues.
327 if (LiveRegs && dv->Refs > 1)
328 for (unsigned rx = 0; rx != NumRegs; ++rx)
329 if (LiveRegs[rx].Value == dv)
330 setLiveReg(rx, alloc(domain));
331 }
332
333 /// All instructions and registers in B are moved to A, and B is released.
merge(DomainValue * A,DomainValue * B)334 bool ExeDepsFix::merge(DomainValue *A, DomainValue *B) {
335 assert(!A->isCollapsed() && "Cannot merge into collapsed");
336 assert(!B->isCollapsed() && "Cannot merge from collapsed");
337 if (A == B)
338 return true;
339 // Restrict to the domains that A and B have in common.
340 unsigned common = A->getCommonDomains(B->AvailableDomains);
341 if (!common)
342 return false;
343 A->AvailableDomains = common;
344 A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
345
346 // Clear the old DomainValue so we won't try to swizzle instructions twice.
347 B->clear();
348 // All uses of B are referred to A.
349 B->Next = retain(A);
350
351 for (unsigned rx = 0; rx != NumRegs; ++rx) {
352 assert(LiveRegs && "no space allocated for live registers");
353 if (LiveRegs[rx].Value == B)
354 setLiveReg(rx, A);
355 }
356 return true;
357 }
358
359 /// Set up LiveRegs by merging predecessor live-out values.
enterBasicBlock(MachineBasicBlock * MBB)360 void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
361 // Detect back-edges from predecessors we haven't processed yet.
362 SeenUnknownBackEdge = false;
363
364 // Reset instruction counter in each basic block.
365 CurInstr = 0;
366
367 // Set up UndefReads to track undefined register reads.
368 UndefReads.clear();
369 LiveRegSet.clear();
370
371 // Set up LiveRegs to represent registers entering MBB.
372 if (!LiveRegs)
373 LiveRegs = new LiveReg[NumRegs];
374
375 // Default values are 'nothing happened a long time ago'.
376 for (unsigned rx = 0; rx != NumRegs; ++rx) {
377 LiveRegs[rx].Value = nullptr;
378 LiveRegs[rx].Def = -(1 << 20);
379 }
380
381 // This is the entry block.
382 if (MBB->pred_empty()) {
383 for (const auto &LI : MBB->liveins()) {
384 for (int rx : regIndices(LI.PhysReg)) {
385 // Treat function live-ins as if they were defined just before the first
386 // instruction. Usually, function arguments are set up immediately
387 // before the call.
388 LiveRegs[rx].Def = -1;
389 }
390 }
391 DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n");
392 return;
393 }
394
395 // Try to coalesce live-out registers from predecessors.
396 for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
397 pe = MBB->pred_end(); pi != pe; ++pi) {
398 LiveOutMap::const_iterator fi = LiveOuts.find(*pi);
399 if (fi == LiveOuts.end()) {
400 SeenUnknownBackEdge = true;
401 continue;
402 }
403 assert(fi->second && "Can't have NULL entries");
404
405 for (unsigned rx = 0; rx != NumRegs; ++rx) {
406 // Use the most recent predecessor def for each register.
407 LiveRegs[rx].Def = std::max(LiveRegs[rx].Def, fi->second[rx].Def);
408
409 DomainValue *pdv = resolve(fi->second[rx].Value);
410 if (!pdv)
411 continue;
412 if (!LiveRegs[rx].Value) {
413 setLiveReg(rx, pdv);
414 continue;
415 }
416
417 // We have a live DomainValue from more than one predecessor.
418 if (LiveRegs[rx].Value->isCollapsed()) {
419 // We are already collapsed, but predecessor is not. Force it.
420 unsigned Domain = LiveRegs[rx].Value->getFirstDomain();
421 if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
422 collapse(pdv, Domain);
423 continue;
424 }
425
426 // Currently open, merge in predecessor.
427 if (!pdv->isCollapsed())
428 merge(LiveRegs[rx].Value, pdv);
429 else
430 force(rx, pdv->getFirstDomain());
431 }
432 }
433 DEBUG(dbgs() << "BB#" << MBB->getNumber()
434 << (SeenUnknownBackEdge ? ": incomplete\n" : ": all preds known\n"));
435 }
436
leaveBasicBlock(MachineBasicBlock * MBB)437 void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
438 assert(LiveRegs && "Must enter basic block first.");
439 // Save live registers at end of MBB - used by enterBasicBlock().
440 // Also use LiveOuts as a visited set to detect back-edges.
441 bool First = LiveOuts.insert(std::make_pair(MBB, LiveRegs)).second;
442
443 if (First) {
444 // LiveRegs was inserted in LiveOuts. Adjust all defs to be relative to
445 // the end of this block instead of the beginning.
446 for (unsigned i = 0, e = NumRegs; i != e; ++i)
447 LiveRegs[i].Def -= CurInstr;
448 } else {
449 // Insertion failed, this must be the second pass.
450 // Release all the DomainValues instead of keeping them.
451 for (unsigned i = 0, e = NumRegs; i != e; ++i)
452 release(LiveRegs[i].Value);
453 delete[] LiveRegs;
454 }
455 LiveRegs = nullptr;
456 }
457
visitInstr(MachineInstr * MI)458 void ExeDepsFix::visitInstr(MachineInstr *MI) {
459 if (MI->isDebugValue())
460 return;
461
462 // Update instructions with explicit execution domains.
463 std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI);
464 if (DomP.first) {
465 if (DomP.second)
466 visitSoftInstr(MI, DomP.second);
467 else
468 visitHardInstr(MI, DomP.first);
469 }
470
471 // Process defs to track register ages, and kill values clobbered by generic
472 // instructions.
473 processDefs(MI, !DomP.first);
474 }
475
476 /// \brief Return true to if it makes sense to break dependence on a partial def
477 /// or undef use.
shouldBreakDependence(MachineInstr * MI,unsigned OpIdx,unsigned Pref)478 bool ExeDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
479 unsigned Pref) {
480 unsigned reg = MI->getOperand(OpIdx).getReg();
481 for (int rx : regIndices(reg)) {
482 unsigned Clearance = CurInstr - LiveRegs[rx].Def;
483 DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
484
485 if (Pref > Clearance) {
486 DEBUG(dbgs() << ": Break dependency.\n");
487 continue;
488 }
489 // The current clearance seems OK, but we may be ignoring a def from a
490 // back-edge.
491 if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) {
492 DEBUG(dbgs() << ": OK .\n");
493 return false;
494 }
495 // A def from an unprocessed back-edge may make us break this dependency.
496 DEBUG(dbgs() << ": Wait for back-edge to resolve.\n");
497 return false;
498 }
499 return true;
500 }
501
502 // Update def-ages for registers defined by MI.
503 // If Kill is set, also kill off DomainValues clobbered by the defs.
504 //
505 // Also break dependencies on partial defs and undef uses.
processDefs(MachineInstr * MI,bool Kill)506 void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
507 assert(!MI->isDebugValue() && "Won't process debug values");
508
509 // Break dependence on undef uses. Do this before updating LiveRegs below.
510 unsigned OpNum;
511 unsigned Pref = TII->getUndefRegClearance(*MI, OpNum, TRI);
512 if (Pref) {
513 if (shouldBreakDependence(MI, OpNum, Pref))
514 UndefReads.push_back(std::make_pair(MI, OpNum));
515 }
516 const MCInstrDesc &MCID = MI->getDesc();
517 for (unsigned i = 0,
518 e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
519 i != e; ++i) {
520 MachineOperand &MO = MI->getOperand(i);
521 if (!MO.isReg())
522 continue;
523 if (MO.isImplicit())
524 break;
525 if (MO.isUse())
526 continue;
527 for (int rx : regIndices(MO.getReg())) {
528 // This instruction explicitly defines rx.
529 DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
530 << '\t' << *MI);
531
532 // Check clearance before partial register updates.
533 // Call breakDependence before setting LiveRegs[rx].Def.
534 unsigned Pref = TII->getPartialRegUpdateClearance(*MI, i, TRI);
535 if (Pref && shouldBreakDependence(MI, i, Pref))
536 TII->breakPartialRegDependency(*MI, i, TRI);
537
538 // How many instructions since rx was last written?
539 LiveRegs[rx].Def = CurInstr;
540
541 // Kill off domains redefined by generic instructions.
542 if (Kill)
543 kill(rx);
544 }
545 }
546 ++CurInstr;
547 }
548
549 /// \break Break false dependencies on undefined register reads.
550 ///
551 /// Walk the block backward computing precise liveness. This is expensive, so we
552 /// only do it on demand. Note that the occurrence of undefined register reads
553 /// that should be broken is very rare, but when they occur we may have many in
554 /// a single block.
processUndefReads(MachineBasicBlock * MBB)555 void ExeDepsFix::processUndefReads(MachineBasicBlock *MBB) {
556 if (UndefReads.empty())
557 return;
558
559 // Collect this block's live out register units.
560 LiveRegSet.init(TRI);
561 // We do not need to care about pristine registers as they are just preserved
562 // but not actually used in the function.
563 LiveRegSet.addLiveOutsNoPristines(*MBB);
564
565 MachineInstr *UndefMI = UndefReads.back().first;
566 unsigned OpIdx = UndefReads.back().second;
567
568 for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) {
569 // Update liveness, including the current instruction's defs.
570 LiveRegSet.stepBackward(I);
571
572 if (UndefMI == &I) {
573 if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg()))
574 TII->breakPartialRegDependency(*UndefMI, OpIdx, TRI);
575
576 UndefReads.pop_back();
577 if (UndefReads.empty())
578 return;
579
580 UndefMI = UndefReads.back().first;
581 OpIdx = UndefReads.back().second;
582 }
583 }
584 }
585
586 // A hard instruction only works in one domain. All input registers will be
587 // forced into that domain.
visitHardInstr(MachineInstr * mi,unsigned domain)588 void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
589 // Collapse all uses.
590 for (unsigned i = mi->getDesc().getNumDefs(),
591 e = mi->getDesc().getNumOperands(); i != e; ++i) {
592 MachineOperand &mo = mi->getOperand(i);
593 if (!mo.isReg()) continue;
594 for (int rx : regIndices(mo.getReg())) {
595 force(rx, domain);
596 }
597 }
598
599 // Kill all defs and force them.
600 for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
601 MachineOperand &mo = mi->getOperand(i);
602 if (!mo.isReg()) continue;
603 for (int rx : regIndices(mo.getReg())) {
604 kill(rx);
605 force(rx, domain);
606 }
607 }
608 }
609
610 // A soft instruction can be changed to work in other domains given by mask.
visitSoftInstr(MachineInstr * mi,unsigned mask)611 void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
612 // Bitmask of available domains for this instruction after taking collapsed
613 // operands into account.
614 unsigned available = mask;
615
616 // Scan the explicit use operands for incoming domains.
617 SmallVector<int, 4> used;
618 if (LiveRegs)
619 for (unsigned i = mi->getDesc().getNumDefs(),
620 e = mi->getDesc().getNumOperands(); i != e; ++i) {
621 MachineOperand &mo = mi->getOperand(i);
622 if (!mo.isReg()) continue;
623 for (int rx : regIndices(mo.getReg())) {
624 DomainValue *dv = LiveRegs[rx].Value;
625 if (dv == nullptr)
626 continue;
627 // Bitmask of domains that dv and available have in common.
628 unsigned common = dv->getCommonDomains(available);
629 // Is it possible to use this collapsed register for free?
630 if (dv->isCollapsed()) {
631 // Restrict available domains to the ones in common with the operand.
632 // If there are no common domains, we must pay the cross-domain
633 // penalty for this operand.
634 if (common) available = common;
635 } else if (common)
636 // Open DomainValue is compatible, save it for merging.
637 used.push_back(rx);
638 else
639 // Open DomainValue is not compatible with instruction. It is useless
640 // now.
641 kill(rx);
642 }
643 }
644
645 // If the collapsed operands force a single domain, propagate the collapse.
646 if (isPowerOf2_32(available)) {
647 unsigned domain = countTrailingZeros(available);
648 TII->setExecutionDomain(*mi, domain);
649 visitHardInstr(mi, domain);
650 return;
651 }
652
653 // Kill off any remaining uses that don't match available, and build a list of
654 // incoming DomainValues that we want to merge.
655 SmallVector<LiveReg, 4> Regs;
656 for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
657 int rx = *i;
658 assert(LiveRegs && "no space allocated for live registers");
659 const LiveReg &LR = LiveRegs[rx];
660 // This useless DomainValue could have been missed above.
661 if (!LR.Value->getCommonDomains(available)) {
662 kill(rx);
663 continue;
664 }
665 // Sorted insertion.
666 bool Inserted = false;
667 for (SmallVectorImpl<LiveReg>::iterator i = Regs.begin(), e = Regs.end();
668 i != e && !Inserted; ++i) {
669 if (LR.Def < i->Def) {
670 Inserted = true;
671 Regs.insert(i, LR);
672 }
673 }
674 if (!Inserted)
675 Regs.push_back(LR);
676 }
677
678 // doms are now sorted in order of appearance. Try to merge them all, giving
679 // priority to the latest ones.
680 DomainValue *dv = nullptr;
681 while (!Regs.empty()) {
682 if (!dv) {
683 dv = Regs.pop_back_val().Value;
684 // Force the first dv to match the current instruction.
685 dv->AvailableDomains = dv->getCommonDomains(available);
686 assert(dv->AvailableDomains && "Domain should have been filtered");
687 continue;
688 }
689
690 DomainValue *Latest = Regs.pop_back_val().Value;
691 // Skip already merged values.
692 if (Latest == dv || Latest->Next)
693 continue;
694 if (merge(dv, Latest))
695 continue;
696
697 // If latest didn't merge, it is useless now. Kill all registers using it.
698 for (int i : used) {
699 assert(LiveRegs && "no space allocated for live registers");
700 if (LiveRegs[i].Value == Latest)
701 kill(i);
702 }
703 }
704
705 // dv is the DomainValue we are going to use for this instruction.
706 if (!dv) {
707 dv = alloc();
708 dv->AvailableDomains = available;
709 }
710 dv->Instrs.push_back(mi);
711
712 // Finally set all defs and non-collapsed uses to dv. We must iterate through
713 // all the operators, including imp-def ones.
714 for (MachineInstr::mop_iterator ii = mi->operands_begin(),
715 ee = mi->operands_end();
716 ii != ee; ++ii) {
717 MachineOperand &mo = *ii;
718 if (!mo.isReg()) continue;
719 for (int rx : regIndices(mo.getReg())) {
720 if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
721 kill(rx);
722 setLiveReg(rx, dv);
723 }
724 }
725 }
726 }
727
runOnMachineFunction(MachineFunction & mf)728 bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
729 if (skipFunction(*mf.getFunction()))
730 return false;
731 MF = &mf;
732 TII = MF->getSubtarget().getInstrInfo();
733 TRI = MF->getSubtarget().getRegisterInfo();
734 LiveRegs = nullptr;
735 assert(NumRegs == RC->getNumRegs() && "Bad regclass");
736
737 DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: "
738 << TRI->getRegClassName(RC) << " **********\n");
739
740 // If no relevant registers are used in the function, we can skip it
741 // completely.
742 bool anyregs = false;
743 const MachineRegisterInfo &MRI = mf.getRegInfo();
744 for (unsigned Reg : *RC) {
745 if (MRI.isPhysRegUsed(Reg)) {
746 anyregs = true;
747 break;
748 }
749 }
750 if (!anyregs) return false;
751
752 // Initialize the AliasMap on the first use.
753 if (AliasMap.empty()) {
754 // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
755 // therefore the LiveRegs array.
756 AliasMap.resize(TRI->getNumRegs());
757 for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
758 for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true);
759 AI.isValid(); ++AI)
760 AliasMap[*AI].push_back(i);
761 }
762
763 MachineBasicBlock *Entry = &*MF->begin();
764 ReversePostOrderTraversal<MachineBasicBlock*> RPOT(Entry);
765 SmallVector<MachineBasicBlock*, 16> Loops;
766 for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
767 MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
768 MachineBasicBlock *MBB = *MBBI;
769 enterBasicBlock(MBB);
770 if (SeenUnknownBackEdge)
771 Loops.push_back(MBB);
772 for (MachineInstr &MI : *MBB)
773 visitInstr(&MI);
774 processUndefReads(MBB);
775 leaveBasicBlock(MBB);
776 }
777
778 // Visit all the loop blocks again in order to merge DomainValues from
779 // back-edges.
780 for (MachineBasicBlock *MBB : Loops) {
781 enterBasicBlock(MBB);
782 for (MachineInstr &MI : *MBB)
783 if (!MI.isDebugValue())
784 processDefs(&MI, false);
785 processUndefReads(MBB);
786 leaveBasicBlock(MBB);
787 }
788
789 // Clear the LiveOuts vectors and collapse any remaining DomainValues.
790 for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
791 MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
792 LiveOutMap::const_iterator FI = LiveOuts.find(*MBBI);
793 if (FI == LiveOuts.end() || !FI->second)
794 continue;
795 for (unsigned i = 0, e = NumRegs; i != e; ++i)
796 if (FI->second[i].Value)
797 release(FI->second[i].Value);
798 delete[] FI->second;
799 }
800 LiveOuts.clear();
801 UndefReads.clear();
802 Avail.clear();
803 Allocator.DestroyAll();
804
805 return false;
806 }
807
808 FunctionPass *
createExecutionDependencyFixPass(const TargetRegisterClass * RC)809 llvm::createExecutionDependencyFixPass(const TargetRegisterClass *RC) {
810 return new ExeDepsFix(RC);
811 }
812