1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/RecyclingAllocator.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetSubtargetInfo.h"
30 using namespace llvm;
31
32 #define DEBUG_TYPE "machine-cse"
33
34 STATISTIC(NumCoalesces, "Number of copies coalesced");
35 STATISTIC(NumCSEs, "Number of common subexpression eliminated");
36 STATISTIC(NumPhysCSEs,
37 "Number of physreg referencing common subexpr eliminated");
38 STATISTIC(NumCrossBBCSEs,
39 "Number of cross-MBB physreg referencing CS eliminated");
40 STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
41
42 namespace {
43 class MachineCSE : public MachineFunctionPass {
44 const TargetInstrInfo *TII;
45 const TargetRegisterInfo *TRI;
46 AliasAnalysis *AA;
47 MachineDominatorTree *DT;
48 MachineRegisterInfo *MRI;
49 public:
50 static char ID; // Pass identification
MachineCSE()51 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(0), CurrVN(0) {
52 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
53 }
54
55 bool runOnMachineFunction(MachineFunction &MF) override;
56
getAnalysisUsage(AnalysisUsage & AU) const57 void getAnalysisUsage(AnalysisUsage &AU) const override {
58 AU.setPreservesCFG();
59 MachineFunctionPass::getAnalysisUsage(AU);
60 AU.addRequired<AAResultsWrapperPass>();
61 AU.addPreservedID(MachineLoopInfoID);
62 AU.addRequired<MachineDominatorTree>();
63 AU.addPreserved<MachineDominatorTree>();
64 }
65
releaseMemory()66 void releaseMemory() override {
67 ScopeMap.clear();
68 Exps.clear();
69 }
70
71 private:
72 unsigned LookAheadLimit;
73 typedef RecyclingAllocator<BumpPtrAllocator,
74 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
75 typedef ScopedHashTable<MachineInstr*, unsigned,
76 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
77 typedef ScopedHTType::ScopeTy ScopeType;
78 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
79 ScopedHTType VNT;
80 SmallVector<MachineInstr*, 64> Exps;
81 unsigned CurrVN;
82
83 bool PerformTrivialCopyPropagation(MachineInstr *MI,
84 MachineBasicBlock *MBB);
85 bool isPhysDefTriviallyDead(unsigned Reg,
86 MachineBasicBlock::const_iterator I,
87 MachineBasicBlock::const_iterator E) const;
88 bool hasLivePhysRegDefUses(const MachineInstr *MI,
89 const MachineBasicBlock *MBB,
90 SmallSet<unsigned,8> &PhysRefs,
91 SmallVectorImpl<unsigned> &PhysDefs,
92 bool &PhysUseDef) const;
93 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
94 SmallSet<unsigned,8> &PhysRefs,
95 SmallVectorImpl<unsigned> &PhysDefs,
96 bool &NonLocal) const;
97 bool isCSECandidate(MachineInstr *MI);
98 bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
99 MachineInstr *CSMI, MachineInstr *MI);
100 void EnterScope(MachineBasicBlock *MBB);
101 void ExitScope(MachineBasicBlock *MBB);
102 bool ProcessBlock(MachineBasicBlock *MBB);
103 void ExitScopeIfDone(MachineDomTreeNode *Node,
104 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
105 bool PerformCSE(MachineDomTreeNode *Node);
106 };
107 } // end anonymous namespace
108
109 char MachineCSE::ID = 0;
110 char &llvm::MachineCSEID = MachineCSE::ID;
111 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
112 "Machine Common Subexpression Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)113 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
114 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
115 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
116 "Machine Common Subexpression Elimination", false, false)
117
118 /// The source register of a COPY machine instruction can be propagated to all
119 /// its users, and this propagation could increase the probability of finding
120 /// common subexpressions. If the COPY has only one user, the COPY itself can
121 /// be removed.
122 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
123 MachineBasicBlock *MBB) {
124 bool Changed = false;
125 for (MachineOperand &MO : MI->operands()) {
126 if (!MO.isReg() || !MO.isUse())
127 continue;
128 unsigned Reg = MO.getReg();
129 if (!TargetRegisterInfo::isVirtualRegister(Reg))
130 continue;
131 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
132 MachineInstr *DefMI = MRI->getVRegDef(Reg);
133 if (!DefMI->isCopy())
134 continue;
135 unsigned SrcReg = DefMI->getOperand(1).getReg();
136 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
137 continue;
138 if (DefMI->getOperand(0).getSubReg())
139 continue;
140 // FIXME: We should trivially coalesce subregister copies to expose CSE
141 // opportunities on instructions with truncated operands (see
142 // cse-add-with-overflow.ll). This can be done here as follows:
143 // if (SrcSubReg)
144 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
145 // SrcSubReg);
146 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
147 //
148 // The 2-addr pass has been updated to handle coalesced subregs. However,
149 // some machine-specific code still can't handle it.
150 // To handle it properly we also need a way find a constrained subregister
151 // class given a super-reg class and subreg index.
152 if (DefMI->getOperand(1).getSubReg())
153 continue;
154 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
155 if (!MRI->constrainRegClass(SrcReg, RC))
156 continue;
157 DEBUG(dbgs() << "Coalescing: " << *DefMI);
158 DEBUG(dbgs() << "*** to: " << *MI);
159 // Propagate SrcReg of copies to MI.
160 MO.setReg(SrcReg);
161 MRI->clearKillFlags(SrcReg);
162 // Coalesce single use copies.
163 if (OnlyOneUse) {
164 DefMI->eraseFromParent();
165 ++NumCoalesces;
166 }
167 Changed = true;
168 }
169
170 return Changed;
171 }
172
173 bool
isPhysDefTriviallyDead(unsigned Reg,MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator E) const174 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
175 MachineBasicBlock::const_iterator I,
176 MachineBasicBlock::const_iterator E) const {
177 unsigned LookAheadLeft = LookAheadLimit;
178 while (LookAheadLeft) {
179 // Skip over dbg_value's.
180 while (I != E && I->isDebugValue())
181 ++I;
182
183 if (I == E)
184 // Reached end of block, register is obviously dead.
185 return true;
186
187 bool SeenDef = false;
188 for (const MachineOperand &MO : I->operands()) {
189 if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
190 SeenDef = true;
191 if (!MO.isReg() || !MO.getReg())
192 continue;
193 if (!TRI->regsOverlap(MO.getReg(), Reg))
194 continue;
195 if (MO.isUse())
196 // Found a use!
197 return false;
198 SeenDef = true;
199 }
200 if (SeenDef)
201 // See a def of Reg (or an alias) before encountering any use, it's
202 // trivially dead.
203 return true;
204
205 --LookAheadLeft;
206 ++I;
207 }
208 return false;
209 }
210
211 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
212 /// physical registers (except for dead defs of physical registers). It also
213 /// returns the physical register def by reference if it's the only one and the
214 /// instruction does not uses a physical register.
hasLivePhysRegDefUses(const MachineInstr * MI,const MachineBasicBlock * MBB,SmallSet<unsigned,8> & PhysRefs,SmallVectorImpl<unsigned> & PhysDefs,bool & PhysUseDef) const215 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
216 const MachineBasicBlock *MBB,
217 SmallSet<unsigned,8> &PhysRefs,
218 SmallVectorImpl<unsigned> &PhysDefs,
219 bool &PhysUseDef) const{
220 // First, add all uses to PhysRefs.
221 for (const MachineOperand &MO : MI->operands()) {
222 if (!MO.isReg() || MO.isDef())
223 continue;
224 unsigned Reg = MO.getReg();
225 if (!Reg)
226 continue;
227 if (TargetRegisterInfo::isVirtualRegister(Reg))
228 continue;
229 // Reading constant physregs is ok.
230 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
231 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
232 PhysRefs.insert(*AI);
233 }
234
235 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
236 // (which currently contains only uses), set the PhysUseDef flag.
237 PhysUseDef = false;
238 MachineBasicBlock::const_iterator I = MI; I = std::next(I);
239 for (const MachineOperand &MO : MI->operands()) {
240 if (!MO.isReg() || !MO.isDef())
241 continue;
242 unsigned Reg = MO.getReg();
243 if (!Reg)
244 continue;
245 if (TargetRegisterInfo::isVirtualRegister(Reg))
246 continue;
247 // Check against PhysRefs even if the def is "dead".
248 if (PhysRefs.count(Reg))
249 PhysUseDef = true;
250 // If the def is dead, it's ok. But the def may not marked "dead". That's
251 // common since this pass is run before livevariables. We can scan
252 // forward a few instructions and check if it is obviously dead.
253 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
254 PhysDefs.push_back(Reg);
255 }
256
257 // Finally, add all defs to PhysRefs as well.
258 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
259 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
260 PhysRefs.insert(*AI);
261
262 return !PhysRefs.empty();
263 }
264
PhysRegDefsReach(MachineInstr * CSMI,MachineInstr * MI,SmallSet<unsigned,8> & PhysRefs,SmallVectorImpl<unsigned> & PhysDefs,bool & NonLocal) const265 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
266 SmallSet<unsigned,8> &PhysRefs,
267 SmallVectorImpl<unsigned> &PhysDefs,
268 bool &NonLocal) const {
269 // For now conservatively returns false if the common subexpression is
270 // not in the same basic block as the given instruction. The only exception
271 // is if the common subexpression is in the sole predecessor block.
272 const MachineBasicBlock *MBB = MI->getParent();
273 const MachineBasicBlock *CSMBB = CSMI->getParent();
274
275 bool CrossMBB = false;
276 if (CSMBB != MBB) {
277 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
278 return false;
279
280 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
281 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
282 // Avoid extending live range of physical registers if they are
283 //allocatable or reserved.
284 return false;
285 }
286 CrossMBB = true;
287 }
288 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
289 MachineBasicBlock::const_iterator E = MI;
290 MachineBasicBlock::const_iterator EE = CSMBB->end();
291 unsigned LookAheadLeft = LookAheadLimit;
292 while (LookAheadLeft) {
293 // Skip over dbg_value's.
294 while (I != E && I != EE && I->isDebugValue())
295 ++I;
296
297 if (I == EE) {
298 assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
299 (void)CrossMBB;
300 CrossMBB = false;
301 NonLocal = true;
302 I = MBB->begin();
303 EE = MBB->end();
304 continue;
305 }
306
307 if (I == E)
308 return true;
309
310 for (const MachineOperand &MO : I->operands()) {
311 // RegMasks go on instructions like calls that clobber lots of physregs.
312 // Don't attempt to CSE across such an instruction.
313 if (MO.isRegMask())
314 return false;
315 if (!MO.isReg() || !MO.isDef())
316 continue;
317 unsigned MOReg = MO.getReg();
318 if (TargetRegisterInfo::isVirtualRegister(MOReg))
319 continue;
320 if (PhysRefs.count(MOReg))
321 return false;
322 }
323
324 --LookAheadLeft;
325 ++I;
326 }
327
328 return false;
329 }
330
isCSECandidate(MachineInstr * MI)331 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
332 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
333 MI->isInlineAsm() || MI->isDebugValue())
334 return false;
335
336 // Ignore copies.
337 if (MI->isCopyLike())
338 return false;
339
340 // Ignore stuff that we obviously can't move.
341 if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
342 MI->hasUnmodeledSideEffects())
343 return false;
344
345 if (MI->mayLoad()) {
346 // Okay, this instruction does a load. As a refinement, we allow the target
347 // to decide whether the loaded value is actually a constant. If so, we can
348 // actually use it as a load.
349 if (!MI->isInvariantLoad(AA))
350 // FIXME: we should be able to hoist loads with no other side effects if
351 // there are no other instructions which can change memory in this loop.
352 // This is a trivial form of alias analysis.
353 return false;
354 }
355
356 // Ignore stack guard loads, otherwise the register that holds CSEed value may
357 // be spilled and get loaded back with corrupted data.
358 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
359 return false;
360
361 return true;
362 }
363
364 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
365 /// common expression that defines Reg.
isProfitableToCSE(unsigned CSReg,unsigned Reg,MachineInstr * CSMI,MachineInstr * MI)366 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
367 MachineInstr *CSMI, MachineInstr *MI) {
368 // FIXME: Heuristics that works around the lack the live range splitting.
369
370 // If CSReg is used at all uses of Reg, CSE should not increase register
371 // pressure of CSReg.
372 bool MayIncreasePressure = true;
373 if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
374 TargetRegisterInfo::isVirtualRegister(Reg)) {
375 MayIncreasePressure = false;
376 SmallPtrSet<MachineInstr*, 8> CSUses;
377 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
378 CSUses.insert(&MI);
379 }
380 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
381 if (!CSUses.count(&MI)) {
382 MayIncreasePressure = true;
383 break;
384 }
385 }
386 }
387 if (!MayIncreasePressure) return true;
388
389 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
390 // an immediate predecessor. We don't want to increase register pressure and
391 // end up causing other computation to be spilled.
392 if (TII->isAsCheapAsAMove(*MI)) {
393 MachineBasicBlock *CSBB = CSMI->getParent();
394 MachineBasicBlock *BB = MI->getParent();
395 if (CSBB != BB && !CSBB->isSuccessor(BB))
396 return false;
397 }
398
399 // Heuristics #2: If the expression doesn't not use a vr and the only use
400 // of the redundant computation are copies, do not cse.
401 bool HasVRegUse = false;
402 for (const MachineOperand &MO : MI->operands()) {
403 if (MO.isReg() && MO.isUse() &&
404 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
405 HasVRegUse = true;
406 break;
407 }
408 }
409 if (!HasVRegUse) {
410 bool HasNonCopyUse = false;
411 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
412 // Ignore copies.
413 if (!MI.isCopyLike()) {
414 HasNonCopyUse = true;
415 break;
416 }
417 }
418 if (!HasNonCopyUse)
419 return false;
420 }
421
422 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
423 // it unless the defined value is already used in the BB of the new use.
424 bool HasPHI = false;
425 SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
426 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
427 HasPHI |= MI.isPHI();
428 CSBBs.insert(MI.getParent());
429 }
430
431 if (!HasPHI)
432 return true;
433 return CSBBs.count(MI->getParent());
434 }
435
EnterScope(MachineBasicBlock * MBB)436 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
437 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
438 ScopeType *Scope = new ScopeType(VNT);
439 ScopeMap[MBB] = Scope;
440 }
441
ExitScope(MachineBasicBlock * MBB)442 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
443 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
444 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
445 assert(SI != ScopeMap.end());
446 delete SI->second;
447 ScopeMap.erase(SI);
448 }
449
ProcessBlock(MachineBasicBlock * MBB)450 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
451 bool Changed = false;
452
453 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
454 SmallVector<unsigned, 2> ImplicitDefsToUpdate;
455 SmallVector<unsigned, 2> ImplicitDefs;
456 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
457 MachineInstr *MI = &*I;
458 ++I;
459
460 if (!isCSECandidate(MI))
461 continue;
462
463 bool FoundCSE = VNT.count(MI);
464 if (!FoundCSE) {
465 // Using trivial copy propagation to find more CSE opportunities.
466 if (PerformTrivialCopyPropagation(MI, MBB)) {
467 Changed = true;
468
469 // After coalescing MI itself may become a copy.
470 if (MI->isCopyLike())
471 continue;
472
473 // Try again to see if CSE is possible.
474 FoundCSE = VNT.count(MI);
475 }
476 }
477
478 // Commute commutable instructions.
479 bool Commuted = false;
480 if (!FoundCSE && MI->isCommutable()) {
481 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
482 Commuted = true;
483 FoundCSE = VNT.count(NewMI);
484 if (NewMI != MI) {
485 // New instruction. It doesn't need to be kept.
486 NewMI->eraseFromParent();
487 Changed = true;
488 } else if (!FoundCSE)
489 // MI was changed but it didn't help, commute it back!
490 (void)TII->commuteInstruction(*MI);
491 }
492 }
493
494 // If the instruction defines physical registers and the values *may* be
495 // used, then it's not safe to replace it with a common subexpression.
496 // It's also not safe if the instruction uses physical registers.
497 bool CrossMBBPhysDef = false;
498 SmallSet<unsigned, 8> PhysRefs;
499 SmallVector<unsigned, 2> PhysDefs;
500 bool PhysUseDef = false;
501 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
502 PhysDefs, PhysUseDef)) {
503 FoundCSE = false;
504
505 // ... Unless the CS is local or is in the sole predecessor block
506 // and it also defines the physical register which is not clobbered
507 // in between and the physical register uses were not clobbered.
508 // This can never be the case if the instruction both uses and
509 // defines the same physical register, which was detected above.
510 if (!PhysUseDef) {
511 unsigned CSVN = VNT.lookup(MI);
512 MachineInstr *CSMI = Exps[CSVN];
513 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
514 FoundCSE = true;
515 }
516 }
517
518 if (!FoundCSE) {
519 VNT.insert(MI, CurrVN++);
520 Exps.push_back(MI);
521 continue;
522 }
523
524 // Found a common subexpression, eliminate it.
525 unsigned CSVN = VNT.lookup(MI);
526 MachineInstr *CSMI = Exps[CSVN];
527 DEBUG(dbgs() << "Examining: " << *MI);
528 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
529
530 // Check if it's profitable to perform this CSE.
531 bool DoCSE = true;
532 unsigned NumDefs = MI->getDesc().getNumDefs() +
533 MI->getDesc().getNumImplicitDefs();
534
535 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
536 MachineOperand &MO = MI->getOperand(i);
537 if (!MO.isReg() || !MO.isDef())
538 continue;
539 unsigned OldReg = MO.getReg();
540 unsigned NewReg = CSMI->getOperand(i).getReg();
541
542 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
543 // we should make sure it is not dead at CSMI.
544 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
545 ImplicitDefsToUpdate.push_back(i);
546
547 // Keep track of implicit defs of CSMI and MI, to clear possibly
548 // made-redundant kill flags.
549 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
550 ImplicitDefs.push_back(OldReg);
551
552 if (OldReg == NewReg) {
553 --NumDefs;
554 continue;
555 }
556
557 assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
558 TargetRegisterInfo::isVirtualRegister(NewReg) &&
559 "Do not CSE physical register defs!");
560
561 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
562 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
563 DoCSE = false;
564 break;
565 }
566
567 // Don't perform CSE if the result of the old instruction cannot exist
568 // within the register class of the new instruction.
569 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
570 if (!MRI->constrainRegClass(NewReg, OldRC)) {
571 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
572 DoCSE = false;
573 break;
574 }
575
576 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
577 --NumDefs;
578 }
579
580 // Actually perform the elimination.
581 if (DoCSE) {
582 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
583 unsigned OldReg = CSEPair.first;
584 unsigned NewReg = CSEPair.second;
585 // OldReg may have been unused but is used now, clear the Dead flag
586 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
587 assert(Def != nullptr && "CSEd register has no unique definition?");
588 Def->clearRegisterDeads(NewReg);
589 // Replace with NewReg and clear kill flags which may be wrong now.
590 MRI->replaceRegWith(OldReg, NewReg);
591 MRI->clearKillFlags(NewReg);
592 }
593
594 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
595 // we should make sure it is not dead at CSMI.
596 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
597 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
598
599 // Go through implicit defs of CSMI and MI, and clear the kill flags on
600 // their uses in all the instructions between CSMI and MI.
601 // We might have made some of the kill flags redundant, consider:
602 // subs ... %NZCV<imp-def> <- CSMI
603 // csinc ... %NZCV<imp-use,kill> <- this kill flag isn't valid anymore
604 // subs ... %NZCV<imp-def> <- MI, to be eliminated
605 // csinc ... %NZCV<imp-use,kill>
606 // Since we eliminated MI, and reused a register imp-def'd by CSMI
607 // (here %NZCV), that register, if it was killed before MI, should have
608 // that kill flag removed, because it's lifetime was extended.
609 if (CSMI->getParent() == MI->getParent()) {
610 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
611 for (auto ImplicitDef : ImplicitDefs)
612 if (MachineOperand *MO = II->findRegisterUseOperand(
613 ImplicitDef, /*isKill=*/true, TRI))
614 MO->setIsKill(false);
615 } else {
616 // If the instructions aren't in the same BB, bail out and clear the
617 // kill flag on all uses of the imp-def'd register.
618 for (auto ImplicitDef : ImplicitDefs)
619 MRI->clearKillFlags(ImplicitDef);
620 }
621
622 if (CrossMBBPhysDef) {
623 // Add physical register defs now coming in from a predecessor to MBB
624 // livein list.
625 while (!PhysDefs.empty()) {
626 unsigned LiveIn = PhysDefs.pop_back_val();
627 if (!MBB->isLiveIn(LiveIn))
628 MBB->addLiveIn(LiveIn);
629 }
630 ++NumCrossBBCSEs;
631 }
632
633 MI->eraseFromParent();
634 ++NumCSEs;
635 if (!PhysRefs.empty())
636 ++NumPhysCSEs;
637 if (Commuted)
638 ++NumCommutes;
639 Changed = true;
640 } else {
641 VNT.insert(MI, CurrVN++);
642 Exps.push_back(MI);
643 }
644 CSEPairs.clear();
645 ImplicitDefsToUpdate.clear();
646 ImplicitDefs.clear();
647 }
648
649 return Changed;
650 }
651
652 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
653 /// dominator tree node if its a leaf or all of its children are done. Walk
654 /// up the dominator tree to destroy ancestors which are now done.
655 void
ExitScopeIfDone(MachineDomTreeNode * Node,DenseMap<MachineDomTreeNode *,unsigned> & OpenChildren)656 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
657 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
658 if (OpenChildren[Node])
659 return;
660
661 // Pop scope.
662 ExitScope(Node->getBlock());
663
664 // Now traverse upwards to pop ancestors whose offsprings are all done.
665 while (MachineDomTreeNode *Parent = Node->getIDom()) {
666 unsigned Left = --OpenChildren[Parent];
667 if (Left != 0)
668 break;
669 ExitScope(Parent->getBlock());
670 Node = Parent;
671 }
672 }
673
PerformCSE(MachineDomTreeNode * Node)674 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
675 SmallVector<MachineDomTreeNode*, 32> Scopes;
676 SmallVector<MachineDomTreeNode*, 8> WorkList;
677 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
678
679 CurrVN = 0;
680
681 // Perform a DFS walk to determine the order of visit.
682 WorkList.push_back(Node);
683 do {
684 Node = WorkList.pop_back_val();
685 Scopes.push_back(Node);
686 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
687 OpenChildren[Node] = Children.size();
688 for (MachineDomTreeNode *Child : Children)
689 WorkList.push_back(Child);
690 } while (!WorkList.empty());
691
692 // Now perform CSE.
693 bool Changed = false;
694 for (MachineDomTreeNode *Node : Scopes) {
695 MachineBasicBlock *MBB = Node->getBlock();
696 EnterScope(MBB);
697 Changed |= ProcessBlock(MBB);
698 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
699 ExitScopeIfDone(Node, OpenChildren);
700 }
701
702 return Changed;
703 }
704
runOnMachineFunction(MachineFunction & MF)705 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
706 if (skipFunction(*MF.getFunction()))
707 return false;
708
709 TII = MF.getSubtarget().getInstrInfo();
710 TRI = MF.getSubtarget().getRegisterInfo();
711 MRI = &MF.getRegInfo();
712 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
713 DT = &getAnalysis<MachineDominatorTree>();
714 LookAheadLimit = TII->getMachineCSELookAheadLimit();
715 return PerformCSE(DT->getRootNode());
716 }
717