• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
110 #define OPENSSL_HEADER_CRYPTO_INTERNAL_H
111 
112 #include <openssl/ex_data.h>
113 #include <openssl/stack.h>
114 #include <openssl/thread.h>
115 
116 #include <assert.h>
117 #include <string.h>
118 
119 #if defined(__GNUC__) && \
120     (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800
121 // |alignas| and |alignof| were added in C11. GCC added support in version 4.8.
122 // Testing for __STDC_VERSION__/__cplusplus doesn't work because 4.7 already
123 // reports support for C11.
124 #define alignas(x) __attribute__ ((aligned (x)))
125 #define alignof(x) __alignof__ (x)
126 #elif !defined(__cplusplus)
127 #if defined(_MSC_VER)
128 #define alignas(x) __declspec(align(x))
129 #define alignof __alignof
130 #else
131 #include <stdalign.h>
132 #endif
133 #endif
134 
135 #if !defined(OPENSSL_NO_THREADS) && \
136     (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
137 #include <pthread.h>
138 #define OPENSSL_PTHREADS
139 #endif
140 
141 #if !defined(OPENSSL_NO_THREADS) && !defined(OPENSSL_PTHREADS) && \
142     defined(OPENSSL_WINDOWS)
143 #define OPENSSL_WINDOWS_THREADS
144 OPENSSL_MSVC_PRAGMA(warning(push, 3))
145 #include <windows.h>
OPENSSL_MSVC_PRAGMA(warning (pop))146 OPENSSL_MSVC_PRAGMA(warning(pop))
147 #endif
148 
149 #if defined(__cplusplus)
150 extern "C" {
151 #endif
152 
153 
154 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
155     defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
156 // OPENSSL_cpuid_setup initializes the platform-specific feature cache.
157 void OPENSSL_cpuid_setup(void);
158 #endif
159 
160 
161 #if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
162 #define BORINGSSL_HAS_UINT128
163 typedef __int128_t int128_t;
164 typedef __uint128_t uint128_t;
165 
166 // clang-cl supports __uint128_t but modulus and division don't work.
167 // https://crbug.com/787617.
168 #if !defined(_MSC_VER) || !defined(__clang__)
169 #define BORINGSSL_CAN_DIVIDE_UINT128
170 #endif
171 #endif
172 
173 #define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
174 
175 // Have a generic fall-through for different versions of C/C++.
176 #if defined(__cplusplus) && __cplusplus >= 201703L
177 #define OPENSSL_FALLTHROUGH [[fallthrough]]
178 #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
179 #define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
180 #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
181     __GNUC__ >= 7
182 #define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
183 #elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
184 #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
185 #else // C++11 on gcc 6, and all other cases
186 #define OPENSSL_FALLTHROUGH
187 #endif
188 
189 // buffers_alias returns one if |a| and |b| alias and zero otherwise.
190 static inline int buffers_alias(const uint8_t *a, size_t a_len,
191                                 const uint8_t *b, size_t b_len) {
192   // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
193   // objects are undefined whereas pointer to integer conversions are merely
194   // implementation-defined. We assume the implementation defined it in a sane
195   // way.
196   uintptr_t a_u = (uintptr_t)a;
197   uintptr_t b_u = (uintptr_t)b;
198   return a_u + a_len > b_u && b_u + b_len > a_u;
199 }
200 
201 
202 // Constant-time utility functions.
203 //
204 // The following methods return a bitmask of all ones (0xff...f) for true and 0
205 // for false. This is useful for choosing a value based on the result of a
206 // conditional in constant time. For example,
207 //
208 // if (a < b) {
209 //   c = a;
210 // } else {
211 //   c = b;
212 // }
213 //
214 // can be written as
215 //
216 // crypto_word_t lt = constant_time_lt_w(a, b);
217 // c = constant_time_select_w(lt, a, b);
218 
219 // crypto_word_t is the type that most constant-time functions use. Ideally we
220 // would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
221 // pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
222 // bits. Since we want to be able to do constant-time operations on a
223 // |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
224 // word length.
225 #if defined(OPENSSL_64_BIT)
226 typedef uint64_t crypto_word_t;
227 #elif defined(OPENSSL_32_BIT)
228 typedef uint32_t crypto_word_t;
229 #else
230 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
231 #endif
232 
233 #define CONSTTIME_TRUE_W ~((crypto_word_t)0)
234 #define CONSTTIME_FALSE_W ((crypto_word_t)0)
235 #define CONSTTIME_TRUE_8 ((uint8_t)0xff)
236 
237 #define CONSTTIME_TRUE_W ~((crypto_word_t)0)
238 #define CONSTTIME_FALSE_W ((crypto_word_t)0)
239 #define CONSTTIME_TRUE_8 ((uint8_t)0xff)
240 #define CONSTTIME_FALSE_8 ((uint8_t)0)
241 
242 // constant_time_msb_w returns the given value with the MSB copied to all the
243 // other bits.
244 static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
245   return 0u - (a >> (sizeof(a) * 8 - 1));
246 }
247 
248 // constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
249 static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
250                                                crypto_word_t b) {
251   // Consider the two cases of the problem:
252   //   msb(a) == msb(b): a < b iff the MSB of a - b is set.
253   //   msb(a) != msb(b): a < b iff the MSB of b is set.
254   //
255   // If msb(a) == msb(b) then the following evaluates as:
256   //   msb(a^((a^b)|((a-b)^a))) ==
257   //   msb(a^((a-b) ^ a))       ==   (because msb(a^b) == 0)
258   //   msb(a^a^(a-b))           ==   (rearranging)
259   //   msb(a-b)                      (because ∀x. x^x == 0)
260   //
261   // Else, if msb(a) != msb(b) then the following evaluates as:
262   //   msb(a^((a^b)|((a-b)^a))) ==
263   //   msb(a^(�� | ((a-b)^a)))   ==   (because msb(a^b) == 1 and ��
264   //                                  represents a value s.t. msb(��) = 1)
265   //   msb(a^��)                 ==   (because ORing with 1 results in 1)
266   //   msb(b)
267   //
268   //
269   // Here is an SMT-LIB verification of this formula:
270   //
271   // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
272   //   (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
273   // )
274   //
275   // (declare-fun a () (_ BitVec 32))
276   // (declare-fun b () (_ BitVec 32))
277   //
278   // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
279   // (check-sat)
280   // (get-model)
281   return constant_time_msb_w(a^((a^b)|((a-b)^a)));
282 }
283 
284 // constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
285 // mask.
286 static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
287   return (uint8_t)(constant_time_lt_w(a, b));
288 }
289 
290 // constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
291 static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
292                                                crypto_word_t b) {
293   return ~constant_time_lt_w(a, b);
294 }
295 
296 // constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
297 // mask.
298 static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
299   return (uint8_t)(constant_time_ge_w(a, b));
300 }
301 
302 // constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
303 static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
304   // Here is an SMT-LIB verification of this formula:
305   //
306   // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
307   //   (bvand (bvnot a) (bvsub a #x00000001))
308   // )
309   //
310   // (declare-fun a () (_ BitVec 32))
311   //
312   // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
313   // (check-sat)
314   // (get-model)
315   return constant_time_msb_w(~a & (a - 1));
316 }
317 
318 // constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
319 // 8-bit mask.
320 static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
321   return (uint8_t)(constant_time_is_zero_w(a));
322 }
323 
324 // constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
325 static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
326                                                crypto_word_t b) {
327   return constant_time_is_zero_w(a ^ b);
328 }
329 
330 // constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
331 // mask.
332 static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
333   return (uint8_t)(constant_time_eq_w(a, b));
334 }
335 
336 // constant_time_eq_int acts like |constant_time_eq_w| but works on int
337 // values.
338 static inline crypto_word_t constant_time_eq_int(int a, int b) {
339   return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
340 }
341 
342 // constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
343 // mask.
344 static inline uint8_t constant_time_eq_int_8(int a, int b) {
345   return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
346 }
347 
348 // constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
349 // 1s or all 0s (as returned by the methods above), the select methods return
350 // either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
351 static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
352                                                    crypto_word_t a,
353                                                    crypto_word_t b) {
354   return (mask & a) | (~mask & b);
355 }
356 
357 // constant_time_select_8 acts like |constant_time_select| but operates on
358 // 8-bit values.
359 static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
360                                              uint8_t b) {
361   return (uint8_t)(constant_time_select_w(mask, a, b));
362 }
363 
364 // constant_time_select_int acts like |constant_time_select| but operates on
365 // ints.
366 static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
367   return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
368                                       (crypto_word_t)(b)));
369 }
370 
371 
372 // Thread-safe initialisation.
373 
374 #if defined(OPENSSL_NO_THREADS)
375 typedef uint32_t CRYPTO_once_t;
376 #define CRYPTO_ONCE_INIT 0
377 #elif defined(OPENSSL_WINDOWS_THREADS)
378 typedef INIT_ONCE CRYPTO_once_t;
379 #define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
380 #elif defined(OPENSSL_PTHREADS)
381 typedef pthread_once_t CRYPTO_once_t;
382 #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
383 #else
384 #error "Unknown threading library"
385 #endif
386 
387 // CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
388 // concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
389 // then they will block until |init| completes, but |init| will have only been
390 // called once.
391 //
392 // The |once| argument must be a |CRYPTO_once_t| that has been initialised with
393 // the value |CRYPTO_ONCE_INIT|.
394 OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
395 
396 
397 // Reference counting.
398 
399 // CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
400 #define CRYPTO_REFCOUNT_MAX 0xffffffff
401 
402 // CRYPTO_refcount_inc atomically increments the value at |*count| unless the
403 // value would overflow. It's safe for multiple threads to concurrently call
404 // this or |CRYPTO_refcount_dec_and_test_zero| on the same
405 // |CRYPTO_refcount_t|.
406 OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
407 
408 // CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
409 //   if it's zero, it crashes the address space.
410 //   if it's the maximum value, it returns zero.
411 //   otherwise, it atomically decrements it and returns one iff the resulting
412 //       value is zero.
413 //
414 // It's safe for multiple threads to concurrently call this or
415 // |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
416 OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
417 
418 
419 // Locks.
420 //
421 // Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
422 // structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
423 // a global lock. A global lock must be initialised to the value
424 // |CRYPTO_STATIC_MUTEX_INIT|.
425 //
426 // |CRYPTO_MUTEX| can appear in public structures and so is defined in
427 // thread.h as a structure large enough to fit the real type. The global lock is
428 // a different type so it may be initialized with platform initializer macros.
429 
430 #if defined(OPENSSL_NO_THREADS)
431 struct CRYPTO_STATIC_MUTEX {
432   char padding;  // Empty structs have different sizes in C and C++.
433 };
434 #define CRYPTO_STATIC_MUTEX_INIT { 0 }
435 #elif defined(OPENSSL_WINDOWS_THREADS)
436 struct CRYPTO_STATIC_MUTEX {
437   SRWLOCK lock;
438 };
439 #define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
440 #elif defined(OPENSSL_PTHREADS)
441 struct CRYPTO_STATIC_MUTEX {
442   pthread_rwlock_t lock;
443 };
444 #define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
445 #else
446 #error "Unknown threading library"
447 #endif
448 
449 // CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
450 // |CRYPTO_STATIC_MUTEX|.
451 OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
452 
453 // CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
454 // read lock, but none may have a write lock.
455 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
456 
457 // CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
458 // of lock on it.
459 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
460 
461 // CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
462 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
463 
464 // CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
465 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
466 
467 // CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
468 OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
469 
470 // CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
471 // have a read lock, but none may have a write lock. The |lock| variable does
472 // not need to be initialised by any function, but must have been statically
473 // initialised with |CRYPTO_STATIC_MUTEX_INIT|.
474 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
475     struct CRYPTO_STATIC_MUTEX *lock);
476 
477 // CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
478 // any type of lock on it.  The |lock| variable does not need to be initialised
479 // by any function, but must have been statically initialised with
480 // |CRYPTO_STATIC_MUTEX_INIT|.
481 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
482     struct CRYPTO_STATIC_MUTEX *lock);
483 
484 // CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
485 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
486     struct CRYPTO_STATIC_MUTEX *lock);
487 
488 // CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
489 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
490     struct CRYPTO_STATIC_MUTEX *lock);
491 
492 #if defined(__cplusplus)
493 extern "C++" {
494 
495 namespace bssl {
496 
497 namespace internal {
498 
499 // MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
500 template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
501 class MutexLockBase {
502  public:
503   explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
504     assert(mu_ != nullptr);
505     LockFunc(mu_);
506   }
507   ~MutexLockBase() { ReleaseFunc(mu_); }
508   MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
509   MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
510       delete;
511 
512  private:
513   CRYPTO_MUTEX *const mu_;
514 };
515 
516 }  // namespace internal
517 
518 using MutexWriteLock =
519     internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
520 using MutexReadLock =
521     internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
522 
523 }  // namespace bssl
524 
525 }  // extern "C++"
526 #endif  // defined(__cplusplus)
527 
528 
529 // Thread local storage.
530 
531 // thread_local_data_t enumerates the types of thread-local data that can be
532 // stored.
533 typedef enum {
534   OPENSSL_THREAD_LOCAL_ERR = 0,
535   OPENSSL_THREAD_LOCAL_RAND,
536   OPENSSL_THREAD_LOCAL_TEST,
537   NUM_OPENSSL_THREAD_LOCALS,
538 } thread_local_data_t;
539 
540 // thread_local_destructor_t is the type of a destructor function that will be
541 // called when a thread exits and its thread-local storage needs to be freed.
542 typedef void (*thread_local_destructor_t)(void *);
543 
544 // CRYPTO_get_thread_local gets the pointer value that is stored for the
545 // current thread for the given index, or NULL if none has been set.
546 OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
547 
548 // CRYPTO_set_thread_local sets a pointer value for the current thread at the
549 // given index. This function should only be called once per thread for a given
550 // |index|: rather than update the pointer value itself, update the data that
551 // is pointed to.
552 //
553 // The destructor function will be called when a thread exits to free this
554 // thread-local data. All calls to |CRYPTO_set_thread_local| with the same
555 // |index| should have the same |destructor| argument. The destructor may be
556 // called with a NULL argument if a thread that never set a thread-local
557 // pointer for |index|, exits. The destructor may be called concurrently with
558 // different arguments.
559 //
560 // This function returns one on success or zero on error. If it returns zero
561 // then |destructor| has been called with |value| already.
562 OPENSSL_EXPORT int CRYPTO_set_thread_local(
563     thread_local_data_t index, void *value,
564     thread_local_destructor_t destructor);
565 
566 
567 // ex_data
568 
569 typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
570 
571 DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
572 
573 // CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
574 // supports ex_data. It should defined as a static global within the module
575 // which defines that type.
576 typedef struct {
577   struct CRYPTO_STATIC_MUTEX lock;
578   STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
579   // num_reserved is one if the ex_data index zero is reserved for legacy
580   // |TYPE_get_app_data| functions.
581   uint8_t num_reserved;
582 } CRYPTO_EX_DATA_CLASS;
583 
584 #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
585 #define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
586     {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
587 
588 // CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
589 // it to |*out_index|. Each class of object should provide a wrapper function
590 // that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
591 // zero otherwise.
592 OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
593                                            int *out_index, long argl,
594                                            void *argp,
595                                            CRYPTO_EX_free *free_func);
596 
597 // CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
598 // of object should provide a wrapper function.
599 OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
600 
601 // CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
602 // if no such index exists. Each class of object should provide a wrapper
603 // function.
604 OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
605 
606 // CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
607 OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
608 
609 // CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
610 // object of the given class.
611 OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
612                                         void *obj, CRYPTO_EX_DATA *ad);
613 
614 
615 // Endianness conversions.
616 
617 #if defined(__GNUC__) && __GNUC__ >= 2
618 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
619   return __builtin_bswap32(x);
620 }
621 
622 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
623   return __builtin_bswap64(x);
624 }
625 #elif defined(_MSC_VER)
626 OPENSSL_MSVC_PRAGMA(warning(push, 3))
627 #include <intrin.h>
628 OPENSSL_MSVC_PRAGMA(warning(pop))
629 #pragma intrinsic(_byteswap_uint64, _byteswap_ulong)
630 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
631   return _byteswap_ulong(x);
632 }
633 
634 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
635   return _byteswap_uint64(x);
636 }
637 #else
638 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
639   x = (x >> 16) | (x << 16);
640   x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
641   return x;
642 }
643 
644 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
645   return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
646 }
647 #endif
648 
649 
650 // Language bug workarounds.
651 //
652 // Most C standard library functions are undefined if passed NULL, even when the
653 // corresponding length is zero. This gives them (and, in turn, all functions
654 // which call them) surprising behavior on empty arrays. Some compilers will
655 // miscompile code due to this rule. See also
656 // https://www.imperialviolet.org/2016/06/26/nonnull.html
657 //
658 // These wrapper functions behave the same as the corresponding C standard
659 // functions, but behave as expected when passed NULL if the length is zero.
660 //
661 // Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
662 
663 // C++ defines |memchr| as a const-correct overload.
664 #if defined(__cplusplus)
665 extern "C++" {
666 
667 static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
668   if (n == 0) {
669     return NULL;
670   }
671 
672   return memchr(s, c, n);
673 }
674 
675 static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
676   if (n == 0) {
677     return NULL;
678   }
679 
680   return memchr(s, c, n);
681 }
682 
683 }  // extern "C++"
684 #else  // __cplusplus
685 
686 static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
687   if (n == 0) {
688     return NULL;
689   }
690 
691   return memchr(s, c, n);
692 }
693 
694 #endif  // __cplusplus
695 
696 static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
697   if (n == 0) {
698     return 0;
699   }
700 
701   return memcmp(s1, s2, n);
702 }
703 
704 static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
705   if (n == 0) {
706     return dst;
707   }
708 
709   return memcpy(dst, src, n);
710 }
711 
712 static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
713   if (n == 0) {
714     return dst;
715   }
716 
717   return memmove(dst, src, n);
718 }
719 
720 static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
721   if (n == 0) {
722     return dst;
723   }
724 
725   return memset(dst, c, n);
726 }
727 
728 #if defined(BORINGSSL_FIPS)
729 // BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
730 // fails. It prevents any further cryptographic operations by the current
731 // process.
732 void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
733 #endif
734 
735 #if defined(__cplusplus)
736 }  // extern C
737 #endif
738 
739 #endif  // OPENSSL_HEADER_CRYPTO_INTERNAL_H
740