• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread.h"
18 
19 #if !defined(__APPLE__)
20 #include <sched.h>
21 #endif
22 
23 #include <pthread.h>
24 #include <signal.h>
25 #include <sys/resource.h>
26 #include <sys/time.h>
27 
28 #include <algorithm>
29 #include <bitset>
30 #include <cerrno>
31 #include <iostream>
32 #include <list>
33 #include <sstream>
34 
35 #include "android-base/stringprintf.h"
36 
37 #include "arch/context-inl.h"
38 #include "arch/context.h"
39 #include "art_field-inl.h"
40 #include "art_method-inl.h"
41 #include "base/bit_utils.h"
42 #include "base/file_utils.h"
43 #include "base/memory_tool.h"
44 #include "base/mutex.h"
45 #include "base/systrace.h"
46 #include "base/timing_logger.h"
47 #include "base/to_str.h"
48 #include "base/utils.h"
49 #include "class_linker-inl.h"
50 #include "debugger.h"
51 #include "dex/descriptors_names.h"
52 #include "dex/dex_file-inl.h"
53 #include "dex/dex_file_annotations.h"
54 #include "dex/dex_file_types.h"
55 #include "entrypoints/entrypoint_utils.h"
56 #include "entrypoints/quick/quick_alloc_entrypoints.h"
57 #include "gc/accounting/card_table-inl.h"
58 #include "gc/accounting/heap_bitmap-inl.h"
59 #include "gc/allocator/rosalloc.h"
60 #include "gc/heap.h"
61 #include "gc/space/space-inl.h"
62 #include "gc_root.h"
63 #include "handle_scope-inl.h"
64 #include "indirect_reference_table-inl.h"
65 #include "interpreter/interpreter.h"
66 #include "interpreter/shadow_frame.h"
67 #include "java_frame_root_info.h"
68 #include "java_vm_ext.h"
69 #include "jni_internal.h"
70 #include "mirror/class-inl.h"
71 #include "mirror/class_loader.h"
72 #include "mirror/object_array-inl.h"
73 #include "mirror/stack_trace_element.h"
74 #include "monitor.h"
75 #include "monitor_objects_stack_visitor.h"
76 #include "native_stack_dump.h"
77 #include "nativehelper/scoped_local_ref.h"
78 #include "nativehelper/scoped_utf_chars.h"
79 #include "nth_caller_visitor.h"
80 #include "oat_quick_method_header.h"
81 #include "obj_ptr-inl.h"
82 #include "object_lock.h"
83 #include "quick/quick_method_frame_info.h"
84 #include "quick_exception_handler.h"
85 #include "read_barrier-inl.h"
86 #include "reflection.h"
87 #include "runtime.h"
88 #include "runtime_callbacks.h"
89 #include "scoped_thread_state_change-inl.h"
90 #include "stack.h"
91 #include "stack_map.h"
92 #include "thread-inl.h"
93 #include "thread_list.h"
94 #include "verifier/method_verifier.h"
95 #include "verify_object.h"
96 #include "well_known_classes.h"
97 
98 #if ART_USE_FUTEXES
99 #include "linux/futex.h"
100 #include "sys/syscall.h"
101 #ifndef SYS_futex
102 #define SYS_futex __NR_futex
103 #endif
104 #endif  // ART_USE_FUTEXES
105 
106 namespace art {
107 
108 using android::base::StringAppendV;
109 using android::base::StringPrintf;
110 
111 extern "C" NO_RETURN void artDeoptimize(Thread* self);
112 
113 bool Thread::is_started_ = false;
114 pthread_key_t Thread::pthread_key_self_;
115 ConditionVariable* Thread::resume_cond_ = nullptr;
116 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
117 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
118 Thread* Thread::jit_sensitive_thread_ = nullptr;
119 
120 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
121 
122 // For implicit overflow checks we reserve an extra piece of memory at the bottom
123 // of the stack (lowest memory).  The higher portion of the memory
124 // is protected against reads and the lower is available for use while
125 // throwing the StackOverflow exception.
126 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
127 
128 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
129 
InitCardTable()130 void Thread::InitCardTable() {
131   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
132 }
133 
UnimplementedEntryPoint()134 static void UnimplementedEntryPoint() {
135   UNIMPLEMENTED(FATAL);
136 }
137 
138 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
139 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
140 
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)141 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
142   CHECK(kUseReadBarrier);
143   tls32_.is_gc_marking = is_marking;
144   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active */ is_marking);
145   ResetQuickAllocEntryPointsForThread(is_marking);
146 }
147 
InitTlsEntryPoints()148 void Thread::InitTlsEntryPoints() {
149   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
150   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
151   uintptr_t* end = reinterpret_cast<uintptr_t*>(
152       reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
153   for (uintptr_t* it = begin; it != end; ++it) {
154     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
155   }
156   InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
157 }
158 
ResetQuickAllocEntryPointsForThread(bool is_marking)159 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
160   if (kUseReadBarrier && kRuntimeISA != InstructionSet::kX86_64) {
161     // Allocation entrypoint switching is currently only implemented for X86_64.
162     is_marking = true;
163   }
164   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
165 }
166 
167 class DeoptimizationContextRecord {
168  public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationMethodType method_type,DeoptimizationContextRecord * link)169   DeoptimizationContextRecord(const JValue& ret_val,
170                               bool is_reference,
171                               bool from_code,
172                               ObjPtr<mirror::Throwable> pending_exception,
173                               DeoptimizationMethodType method_type,
174                               DeoptimizationContextRecord* link)
175       : ret_val_(ret_val),
176         is_reference_(is_reference),
177         from_code_(from_code),
178         pending_exception_(pending_exception.Ptr()),
179         deopt_method_type_(method_type),
180         link_(link) {}
181 
GetReturnValue() const182   JValue GetReturnValue() const { return ret_val_; }
IsReference() const183   bool IsReference() const { return is_reference_; }
GetFromCode() const184   bool GetFromCode() const { return from_code_; }
GetPendingException() const185   ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
GetLink() const186   DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()187   mirror::Object** GetReturnValueAsGCRoot() {
188     DCHECK(is_reference_);
189     return ret_val_.GetGCRoot();
190   }
GetPendingExceptionAsGCRoot()191   mirror::Object** GetPendingExceptionAsGCRoot() {
192     return reinterpret_cast<mirror::Object**>(&pending_exception_);
193   }
GetDeoptimizationMethodType() const194   DeoptimizationMethodType GetDeoptimizationMethodType() const {
195     return deopt_method_type_;
196   }
197 
198  private:
199   // The value returned by the method at the top of the stack before deoptimization.
200   JValue ret_val_;
201 
202   // Indicates whether the returned value is a reference. If so, the GC will visit it.
203   const bool is_reference_;
204 
205   // Whether the context was created from an explicit deoptimization in the code.
206   const bool from_code_;
207 
208   // The exception that was pending before deoptimization (or null if there was no pending
209   // exception).
210   mirror::Throwable* pending_exception_;
211 
212   // Whether the context was created for an (idempotent) runtime method.
213   const DeoptimizationMethodType deopt_method_type_;
214 
215   // A link to the previous DeoptimizationContextRecord.
216   DeoptimizationContextRecord* const link_;
217 
218   DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
219 };
220 
221 class StackedShadowFrameRecord {
222  public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)223   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
224                            StackedShadowFrameType type,
225                            StackedShadowFrameRecord* link)
226       : shadow_frame_(shadow_frame),
227         type_(type),
228         link_(link) {}
229 
GetShadowFrame() const230   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const231   StackedShadowFrameType GetType() const { return type_; }
GetLink() const232   StackedShadowFrameRecord* GetLink() const { return link_; }
233 
234  private:
235   ShadowFrame* const shadow_frame_;
236   const StackedShadowFrameType type_;
237   StackedShadowFrameRecord* const link_;
238 
239   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
240 };
241 
PushDeoptimizationContext(const JValue & return_value,bool is_reference,ObjPtr<mirror::Throwable> exception,bool from_code,DeoptimizationMethodType method_type)242 void Thread::PushDeoptimizationContext(const JValue& return_value,
243                                        bool is_reference,
244                                        ObjPtr<mirror::Throwable> exception,
245                                        bool from_code,
246                                        DeoptimizationMethodType method_type) {
247   DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
248       return_value,
249       is_reference,
250       from_code,
251       exception,
252       method_type,
253       tlsPtr_.deoptimization_context_stack);
254   tlsPtr_.deoptimization_context_stack = record;
255 }
256 
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code,DeoptimizationMethodType * method_type)257 void Thread::PopDeoptimizationContext(JValue* result,
258                                       ObjPtr<mirror::Throwable>* exception,
259                                       bool* from_code,
260                                       DeoptimizationMethodType* method_type) {
261   AssertHasDeoptimizationContext();
262   DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
263   tlsPtr_.deoptimization_context_stack = record->GetLink();
264   result->SetJ(record->GetReturnValue().GetJ());
265   *exception = record->GetPendingException();
266   *from_code = record->GetFromCode();
267   *method_type = record->GetDeoptimizationMethodType();
268   delete record;
269 }
270 
AssertHasDeoptimizationContext()271 void Thread::AssertHasDeoptimizationContext() {
272   CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
273       << "No deoptimization context for thread " << *this;
274 }
275 
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)276 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
277   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
278       sf, type, tlsPtr_.stacked_shadow_frame_record);
279   tlsPtr_.stacked_shadow_frame_record = record;
280 }
281 
PopStackedShadowFrame(StackedShadowFrameType type,bool must_be_present)282 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
283   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
284   if (must_be_present) {
285     DCHECK(record != nullptr);
286   } else {
287     if (record == nullptr || record->GetType() != type) {
288       return nullptr;
289     }
290   }
291   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
292   ShadowFrame* shadow_frame = record->GetShadowFrame();
293   delete record;
294   return shadow_frame;
295 }
296 
297 class FrameIdToShadowFrame {
298  public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)299   static FrameIdToShadowFrame* Create(size_t frame_id,
300                                       ShadowFrame* shadow_frame,
301                                       FrameIdToShadowFrame* next,
302                                       size_t num_vregs) {
303     // Append a bool array at the end to keep track of what vregs are updated by the debugger.
304     uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
305     return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
306   }
307 
Delete(FrameIdToShadowFrame * f)308   static void Delete(FrameIdToShadowFrame* f) {
309     uint8_t* memory = reinterpret_cast<uint8_t*>(f);
310     delete[] memory;
311   }
312 
GetFrameId() const313   size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const314   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const315   FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)316   void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()317   bool* GetUpdatedVRegFlags() {
318     return updated_vreg_flags_;
319   }
320 
321  private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)322   FrameIdToShadowFrame(size_t frame_id,
323                        ShadowFrame* shadow_frame,
324                        FrameIdToShadowFrame* next)
325       : frame_id_(frame_id),
326         shadow_frame_(shadow_frame),
327         next_(next) {}
328 
329   const size_t frame_id_;
330   ShadowFrame* const shadow_frame_;
331   FrameIdToShadowFrame* next_;
332   bool updated_vreg_flags_[0];
333 
334   DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
335 };
336 
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)337 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
338                                                       size_t frame_id) {
339   FrameIdToShadowFrame* found = nullptr;
340   for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
341     if (record->GetFrameId() == frame_id) {
342       if (kIsDebugBuild) {
343         // Sanity check we have at most one record for this frame.
344         CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
345         found = record;
346       } else {
347         return record;
348       }
349     }
350   }
351   return found;
352 }
353 
FindDebuggerShadowFrame(size_t frame_id)354 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
355   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
356       tlsPtr_.frame_id_to_shadow_frame, frame_id);
357   if (record != nullptr) {
358     return record->GetShadowFrame();
359   }
360   return nullptr;
361 }
362 
363 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)364 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
365   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
366       tlsPtr_.frame_id_to_shadow_frame, frame_id);
367   CHECK(record != nullptr);
368   return record->GetUpdatedVRegFlags();
369 }
370 
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)371 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
372                                                      uint32_t num_vregs,
373                                                      ArtMethod* method,
374                                                      uint32_t dex_pc) {
375   ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
376   if (shadow_frame != nullptr) {
377     return shadow_frame;
378   }
379   VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
380   shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
381   FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
382                                                               shadow_frame,
383                                                               tlsPtr_.frame_id_to_shadow_frame,
384                                                               num_vregs);
385   for (uint32_t i = 0; i < num_vregs; i++) {
386     // Do this to clear all references for root visitors.
387     shadow_frame->SetVRegReference(i, nullptr);
388     // This flag will be changed to true if the debugger modifies the value.
389     record->GetUpdatedVRegFlags()[i] = false;
390   }
391   tlsPtr_.frame_id_to_shadow_frame = record;
392   return shadow_frame;
393 }
394 
RemoveDebuggerShadowFrameMapping(size_t frame_id)395 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
396   FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
397   if (head->GetFrameId() == frame_id) {
398     tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
399     FrameIdToShadowFrame::Delete(head);
400     return;
401   }
402   FrameIdToShadowFrame* prev = head;
403   for (FrameIdToShadowFrame* record = head->GetNext();
404        record != nullptr;
405        prev = record, record = record->GetNext()) {
406     if (record->GetFrameId() == frame_id) {
407       prev->SetNext(record->GetNext());
408       FrameIdToShadowFrame::Delete(record);
409       return;
410     }
411   }
412   LOG(FATAL) << "No shadow frame for frame " << frame_id;
413   UNREACHABLE();
414 }
415 
InitTid()416 void Thread::InitTid() {
417   tls32_.tid = ::art::GetTid();
418 }
419 
InitAfterFork()420 void Thread::InitAfterFork() {
421   // One thread (us) survived the fork, but we have a new tid so we need to
422   // update the value stashed in this Thread*.
423   InitTid();
424 }
425 
CreateCallback(void * arg)426 void* Thread::CreateCallback(void* arg) {
427   Thread* self = reinterpret_cast<Thread*>(arg);
428   Runtime* runtime = Runtime::Current();
429   if (runtime == nullptr) {
430     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
431     return nullptr;
432   }
433   {
434     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
435     //       after self->Init().
436     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
437     // Check that if we got here we cannot be shutting down (as shutdown should never have started
438     // while threads are being born).
439     CHECK(!runtime->IsShuttingDownLocked());
440     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
441     //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
442     //       the runtime in such a case. In case this ever changes, we need to make sure here to
443     //       delete the tmp_jni_env, as we own it at this point.
444     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
445     self->tlsPtr_.tmp_jni_env = nullptr;
446     Runtime::Current()->EndThreadBirth();
447   }
448   {
449     ScopedObjectAccess soa(self);
450     self->InitStringEntryPoints();
451 
452     // Copy peer into self, deleting global reference when done.
453     CHECK(self->tlsPtr_.jpeer != nullptr);
454     self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
455     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
456     self->tlsPtr_.jpeer = nullptr;
457     self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
458 
459     ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
460     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
461 
462     runtime->GetRuntimeCallbacks()->ThreadStart(self);
463 
464     // Invoke the 'run' method of our java.lang.Thread.
465     ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
466     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
467     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
468     InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
469   }
470   // Detach and delete self.
471   Runtime::Current()->GetThreadList()->Unregister(self);
472 
473   return nullptr;
474 }
475 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> thread_peer)476 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
477                                   ObjPtr<mirror::Object> thread_peer) {
478   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
479   Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
480   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
481   // to stop it from going away.
482   if (kIsDebugBuild) {
483     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
484     if (result != nullptr && !result->IsSuspended()) {
485       Locks::thread_list_lock_->AssertHeld(soa.Self());
486     }
487   }
488   return result;
489 }
490 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)491 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
492                                   jobject java_thread) {
493   return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr());
494 }
495 
FixStackSize(size_t stack_size)496 static size_t FixStackSize(size_t stack_size) {
497   // A stack size of zero means "use the default".
498   if (stack_size == 0) {
499     stack_size = Runtime::Current()->GetDefaultStackSize();
500   }
501 
502   // Dalvik used the bionic pthread default stack size for native threads,
503   // so include that here to support apps that expect large native stacks.
504   stack_size += 1 * MB;
505 
506   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
507   if (stack_size < PTHREAD_STACK_MIN) {
508     stack_size = PTHREAD_STACK_MIN;
509   }
510 
511   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
512     // It's likely that callers are trying to ensure they have at least a certain amount of
513     // stack space, so we should add our reserved space on top of what they requested, rather
514     // than implicitly take it away from them.
515     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
516   } else {
517     // If we are going to use implicit stack checks, allocate space for the protected
518     // region at the bottom of the stack.
519     stack_size += Thread::kStackOverflowImplicitCheckSize +
520         GetStackOverflowReservedBytes(kRuntimeISA);
521   }
522 
523   // Some systems require the stack size to be a multiple of the system page size, so round up.
524   stack_size = RoundUp(stack_size, kPageSize);
525 
526   return stack_size;
527 }
528 
529 // Return the nearest page-aligned address below the current stack top.
530 NO_INLINE
FindStackTop()531 static uint8_t* FindStackTop() {
532   return reinterpret_cast<uint8_t*>(
533       AlignDown(__builtin_frame_address(0), kPageSize));
534 }
535 
536 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
537 // overflow is detected.  It is located right below the stack_begin_.
538 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()539 void Thread::InstallImplicitProtection() {
540   uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
541   // Page containing current top of stack.
542   uint8_t* stack_top = FindStackTop();
543 
544   // Try to directly protect the stack.
545   VLOG(threads) << "installing stack protected region at " << std::hex <<
546         static_cast<void*>(pregion) << " to " <<
547         static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
548   if (ProtectStack(/* fatal_on_error */ false)) {
549     // Tell the kernel that we won't be needing these pages any more.
550     // NB. madvise will probably write zeroes into the memory (on linux it does).
551     uint32_t unwanted_size = stack_top - pregion - kPageSize;
552     madvise(pregion, unwanted_size, MADV_DONTNEED);
553     return;
554   }
555 
556   // There is a little complexity here that deserves a special mention.  On some
557   // architectures, the stack is created using a VM_GROWSDOWN flag
558   // to prevent memory being allocated when it's not needed.  This flag makes the
559   // kernel only allocate memory for the stack by growing down in memory.  Because we
560   // want to put an mprotected region far away from that at the stack top, we need
561   // to make sure the pages for the stack are mapped in before we call mprotect.
562   //
563   // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
564   // with a non-mapped stack (usually only the main thread).
565   //
566   // We map in the stack by reading every page from the stack bottom (highest address)
567   // to the stack top. (We then madvise this away.) This must be done by reading from the
568   // current stack pointer downwards.
569   //
570   // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
571   // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
572   // thus have to move the stack pointer. We do this portably by using a recursive function with a
573   // large stack frame size.
574 
575   // (Defensively) first remove the protection on the protected region as we'll want to read
576   // and write it. Ignore errors.
577   UnprotectStack();
578 
579   VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
580       static_cast<void*>(pregion);
581 
582   struct RecurseDownStack {
583     // This function has an intentionally large stack size.
584 #pragma GCC diagnostic push
585 #pragma GCC diagnostic ignored "-Wframe-larger-than="
586     NO_INLINE
587     static void Touch(uintptr_t target) {
588       volatile size_t zero = 0;
589       // Use a large local volatile array to ensure a large frame size. Do not use anything close
590       // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
591       // there is no pragma support for this.
592       // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
593       constexpr size_t kAsanMultiplier =
594 #ifdef ADDRESS_SANITIZER
595           2u;
596 #else
597           1u;
598 #endif
599       volatile char space[kPageSize - (kAsanMultiplier * 256)];
600       char sink ATTRIBUTE_UNUSED = space[zero];
601       if (reinterpret_cast<uintptr_t>(space) >= target + kPageSize) {
602         Touch(target);
603       }
604       zero *= 2;  // Try to avoid tail recursion.
605     }
606 #pragma GCC diagnostic pop
607   };
608   RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
609 
610   VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
611       static_cast<void*>(pregion) << " to " <<
612       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
613 
614   // Protect the bottom of the stack to prevent read/write to it.
615   ProtectStack(/* fatal_on_error */ true);
616 
617   // Tell the kernel that we won't be needing these pages any more.
618   // NB. madvise will probably write zeroes into the memory (on linux it does).
619   uint32_t unwanted_size = stack_top - pregion - kPageSize;
620   madvise(pregion, unwanted_size, MADV_DONTNEED);
621 }
622 
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)623 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
624   CHECK(java_peer != nullptr);
625   Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf();
626 
627   if (VLOG_IS_ON(threads)) {
628     ScopedObjectAccess soa(env);
629 
630     ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
631     ObjPtr<mirror::String> java_name =
632         f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
633     std::string thread_name;
634     if (java_name != nullptr) {
635       thread_name = java_name->ToModifiedUtf8();
636     } else {
637       thread_name = "(Unnamed)";
638     }
639 
640     VLOG(threads) << "Creating native thread for " << thread_name;
641     self->Dump(LOG_STREAM(INFO));
642   }
643 
644   Runtime* runtime = Runtime::Current();
645 
646   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
647   bool thread_start_during_shutdown = false;
648   {
649     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
650     if (runtime->IsShuttingDownLocked()) {
651       thread_start_during_shutdown = true;
652     } else {
653       runtime->StartThreadBirth();
654     }
655   }
656   if (thread_start_during_shutdown) {
657     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
658     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
659     return;
660   }
661 
662   Thread* child_thread = new Thread(is_daemon);
663   // Use global JNI ref to hold peer live while child thread starts.
664   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
665   stack_size = FixStackSize(stack_size);
666 
667   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing
668   // to assign it.
669   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
670                     reinterpret_cast<jlong>(child_thread));
671 
672   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
673   // do not have a good way to report this on the child's side.
674   std::string error_msg;
675   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
676       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
677 
678   int pthread_create_result = 0;
679   if (child_jni_env_ext.get() != nullptr) {
680     pthread_t new_pthread;
681     pthread_attr_t attr;
682     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
683     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
684     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
685                        "PTHREAD_CREATE_DETACHED");
686     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
687     pthread_create_result = pthread_create(&new_pthread,
688                                            &attr,
689                                            Thread::CreateCallback,
690                                            child_thread);
691     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
692 
693     if (pthread_create_result == 0) {
694       // pthread_create started the new thread. The child is now responsible for managing the
695       // JNIEnvExt we created.
696       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
697       //       between the threads.
698       child_jni_env_ext.release();
699       return;
700     }
701   }
702 
703   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
704   {
705     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
706     runtime->EndThreadBirth();
707   }
708   // Manually delete the global reference since Thread::Init will not have been run.
709   env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
710   child_thread->tlsPtr_.jpeer = nullptr;
711   delete child_thread;
712   child_thread = nullptr;
713   // TODO: remove from thread group?
714   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
715   {
716     std::string msg(child_jni_env_ext.get() == nullptr ?
717         StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
718         StringPrintf("pthread_create (%s stack) failed: %s",
719                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
720     ScopedObjectAccess soa(env);
721     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
722   }
723 }
724 
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)725 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
726   // This function does all the initialization that must be run by the native thread it applies to.
727   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
728   // we can handshake with the corresponding native thread when it's ready.) Check this native
729   // thread hasn't been through here already...
730   CHECK(Thread::Current() == nullptr);
731 
732   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
733   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
734   tlsPtr_.pthread_self = pthread_self();
735   CHECK(is_started_);
736 
737   SetUpAlternateSignalStack();
738   if (!InitStackHwm()) {
739     return false;
740   }
741   InitCpu();
742   InitTlsEntryPoints();
743   RemoveSuspendTrigger();
744   InitCardTable();
745   InitTid();
746   interpreter::InitInterpreterTls(this);
747 
748 #ifdef ART_TARGET_ANDROID
749   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
750 #else
751   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
752 #endif
753   DCHECK_EQ(Thread::Current(), this);
754 
755   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
756 
757   if (jni_env_ext != nullptr) {
758     DCHECK_EQ(jni_env_ext->GetVm(), java_vm);
759     DCHECK_EQ(jni_env_ext->GetSelf(), this);
760     tlsPtr_.jni_env = jni_env_ext;
761   } else {
762     std::string error_msg;
763     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
764     if (tlsPtr_.jni_env == nullptr) {
765       LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
766       return false;
767     }
768   }
769 
770   thread_list->Register(this);
771   return true;
772 }
773 
774 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action)775 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
776   Runtime* runtime = Runtime::Current();
777   if (runtime == nullptr) {
778     LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
779         ((thread_name != nullptr) ? thread_name : "(Unnamed)");
780     return nullptr;
781   }
782   Thread* self;
783   {
784     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
785     if (runtime->IsShuttingDownLocked()) {
786       LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
787           ((thread_name != nullptr) ? thread_name : "(Unnamed)");
788       return nullptr;
789     } else {
790       Runtime::Current()->StartThreadBirth();
791       self = new Thread(as_daemon);
792       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
793       Runtime::Current()->EndThreadBirth();
794       if (!init_success) {
795         delete self;
796         return nullptr;
797       }
798     }
799   }
800 
801   self->InitStringEntryPoints();
802 
803   CHECK_NE(self->GetState(), kRunnable);
804   self->SetState(kNative);
805 
806   // Run the action that is acting on the peer.
807   if (!peer_action(self)) {
808     runtime->GetThreadList()->Unregister(self);
809     // Unregister deletes self, no need to do this here.
810     return nullptr;
811   }
812 
813   if (VLOG_IS_ON(threads)) {
814     if (thread_name != nullptr) {
815       VLOG(threads) << "Attaching thread " << thread_name;
816     } else {
817       VLOG(threads) << "Attaching unnamed thread.";
818     }
819     ScopedObjectAccess soa(self);
820     self->Dump(LOG_STREAM(INFO));
821   }
822 
823   {
824     ScopedObjectAccess soa(self);
825     runtime->GetRuntimeCallbacks()->ThreadStart(self);
826   }
827 
828   return self;
829 }
830 
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)831 Thread* Thread::Attach(const char* thread_name,
832                        bool as_daemon,
833                        jobject thread_group,
834                        bool create_peer) {
835   auto create_peer_action = [&](Thread* self) {
836     // If we're the main thread, ClassLinker won't be created until after we're attached,
837     // so that thread needs a two-stage attach. Regular threads don't need this hack.
838     // In the compiler, all threads need this hack, because no-one's going to be getting
839     // a native peer!
840     if (create_peer) {
841       self->CreatePeer(thread_name, as_daemon, thread_group);
842       if (self->IsExceptionPending()) {
843         // We cannot keep the exception around, as we're deleting self. Try to be helpful and log
844         // it.
845         {
846           ScopedObjectAccess soa(self);
847           LOG(ERROR) << "Exception creating thread peer:";
848           LOG(ERROR) << self->GetException()->Dump();
849           self->ClearException();
850         }
851         return false;
852       }
853     } else {
854       // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
855       if (thread_name != nullptr) {
856         self->tlsPtr_.name->assign(thread_name);
857         ::art::SetThreadName(thread_name);
858       } else if (self->GetJniEnv()->IsCheckJniEnabled()) {
859         LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
860       }
861     }
862     return true;
863   };
864   return Attach(thread_name, as_daemon, create_peer_action);
865 }
866 
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)867 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
868   auto set_peer_action = [&](Thread* self) {
869     // Install the given peer.
870     {
871       DCHECK(self == Thread::Current());
872       ScopedObjectAccess soa(self);
873       self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
874     }
875     self->GetJniEnv()->SetLongField(thread_peer,
876                                     WellKnownClasses::java_lang_Thread_nativePeer,
877                                     reinterpret_cast<jlong>(self));
878     return true;
879   };
880   return Attach(thread_name, as_daemon, set_peer_action);
881 }
882 
CreatePeer(const char * name,bool as_daemon,jobject thread_group)883 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
884   Runtime* runtime = Runtime::Current();
885   CHECK(runtime->IsStarted());
886   JNIEnv* env = tlsPtr_.jni_env;
887 
888   if (thread_group == nullptr) {
889     thread_group = runtime->GetMainThreadGroup();
890   }
891   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
892   // Add missing null check in case of OOM b/18297817
893   if (name != nullptr && thread_name.get() == nullptr) {
894     CHECK(IsExceptionPending());
895     return;
896   }
897   jint thread_priority = GetNativePriority();
898   jboolean thread_is_daemon = as_daemon;
899 
900   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
901   if (peer.get() == nullptr) {
902     CHECK(IsExceptionPending());
903     return;
904   }
905   {
906     ScopedObjectAccess soa(this);
907     tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
908   }
909   env->CallNonvirtualVoidMethod(peer.get(),
910                                 WellKnownClasses::java_lang_Thread,
911                                 WellKnownClasses::java_lang_Thread_init,
912                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
913   if (IsExceptionPending()) {
914     return;
915   }
916 
917   Thread* self = this;
918   DCHECK_EQ(self, Thread::Current());
919   env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
920                     reinterpret_cast<jlong>(self));
921 
922   ScopedObjectAccess soa(self);
923   StackHandleScope<1> hs(self);
924   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
925   if (peer_thread_name == nullptr) {
926     // The Thread constructor should have set the Thread.name to a
927     // non-null value. However, because we can run without code
928     // available (in the compiler, in tests), we manually assign the
929     // fields the constructor should have set.
930     if (runtime->IsActiveTransaction()) {
931       InitPeer<true>(soa,
932                      tlsPtr_.opeer,
933                      thread_is_daemon,
934                      thread_group,
935                      thread_name.get(),
936                      thread_priority);
937     } else {
938       InitPeer<false>(soa,
939                       tlsPtr_.opeer,
940                       thread_is_daemon,
941                       thread_group,
942                       thread_name.get(),
943                       thread_priority);
944     }
945     peer_thread_name.Assign(GetThreadName());
946   }
947   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
948   if (peer_thread_name != nullptr) {
949     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
950   }
951 }
952 
CreateCompileTimePeer(JNIEnv * env,const char * name,bool as_daemon,jobject thread_group)953 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
954                                       const char* name,
955                                       bool as_daemon,
956                                       jobject thread_group) {
957   Runtime* runtime = Runtime::Current();
958   CHECK(!runtime->IsStarted());
959 
960   if (thread_group == nullptr) {
961     thread_group = runtime->GetMainThreadGroup();
962   }
963   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
964   // Add missing null check in case of OOM b/18297817
965   if (name != nullptr && thread_name.get() == nullptr) {
966     CHECK(Thread::Current()->IsExceptionPending());
967     return nullptr;
968   }
969   jint thread_priority = GetNativePriority();
970   jboolean thread_is_daemon = as_daemon;
971 
972   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
973   if (peer.get() == nullptr) {
974     CHECK(Thread::Current()->IsExceptionPending());
975     return nullptr;
976   }
977 
978   // We cannot call Thread.init, as it will recursively ask for currentThread.
979 
980   // The Thread constructor should have set the Thread.name to a
981   // non-null value. However, because we can run without code
982   // available (in the compiler, in tests), we manually assign the
983   // fields the constructor should have set.
984   ScopedObjectAccessUnchecked soa(Thread::Current());
985   if (runtime->IsActiveTransaction()) {
986     InitPeer<true>(soa,
987                    soa.Decode<mirror::Object>(peer.get()),
988                    thread_is_daemon,
989                    thread_group,
990                    thread_name.get(),
991                    thread_priority);
992   } else {
993     InitPeer<false>(soa,
994                     soa.Decode<mirror::Object>(peer.get()),
995                     thread_is_daemon,
996                     thread_group,
997                     thread_name.get(),
998                     thread_priority);
999   }
1000 
1001   return peer.release();
1002 }
1003 
1004 template<bool kTransactionActive>
InitPeer(ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> peer,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)1005 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
1006                       ObjPtr<mirror::Object> peer,
1007                       jboolean thread_is_daemon,
1008                       jobject thread_group,
1009                       jobject thread_name,
1010                       jint thread_priority) {
1011   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
1012       SetBoolean<kTransactionActive>(peer, thread_is_daemon);
1013   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
1014       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
1015   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
1016       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
1017   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
1018       SetInt<kTransactionActive>(peer, thread_priority);
1019 }
1020 
SetThreadName(const char * name)1021 void Thread::SetThreadName(const char* name) {
1022   tlsPtr_.name->assign(name);
1023   ::art::SetThreadName(name);
1024   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1025 }
1026 
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)1027 static void GetThreadStack(pthread_t thread,
1028                            void** stack_base,
1029                            size_t* stack_size,
1030                            size_t* guard_size) {
1031 #if defined(__APPLE__)
1032   *stack_size = pthread_get_stacksize_np(thread);
1033   void* stack_addr = pthread_get_stackaddr_np(thread);
1034 
1035   // Check whether stack_addr is the base or end of the stack.
1036   // (On Mac OS 10.7, it's the end.)
1037   int stack_variable;
1038   if (stack_addr > &stack_variable) {
1039     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
1040   } else {
1041     *stack_base = stack_addr;
1042   }
1043 
1044   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1045   pthread_attr_t attributes;
1046   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1047   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1048   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1049 #else
1050   pthread_attr_t attributes;
1051   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1052   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1053   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1054   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1055 
1056 #if defined(__GLIBC__)
1057   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1058   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1059   // will be broken because we'll die long before we get close to 2GB.
1060   bool is_main_thread = (::art::GetTid() == getpid());
1061   if (is_main_thread) {
1062     rlimit stack_limit;
1063     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1064       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1065     }
1066     if (stack_limit.rlim_cur == RLIM_INFINITY) {
1067       size_t old_stack_size = *stack_size;
1068 
1069       // Use the kernel default limit as our size, and adjust the base to match.
1070       *stack_size = 8 * MB;
1071       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1072 
1073       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1074                     << " to " << PrettySize(*stack_size)
1075                     << " with base " << *stack_base;
1076     }
1077   }
1078 #endif
1079 
1080 #endif
1081 }
1082 
InitStackHwm()1083 bool Thread::InitStackHwm() {
1084   void* read_stack_base;
1085   size_t read_stack_size;
1086   size_t read_guard_size;
1087   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1088 
1089   tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1090   tlsPtr_.stack_size = read_stack_size;
1091 
1092   // The minimum stack size we can cope with is the overflow reserved bytes (typically
1093   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
1094   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
1095   // between 8K and 12K.
1096   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1097     + 4 * KB;
1098   if (read_stack_size <= min_stack) {
1099     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1100     LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1101                                __LINE__,
1102                                ::android::base::ERROR,
1103                                "Attempt to attach a thread with a too-small stack");
1104     return false;
1105   }
1106 
1107   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1108   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1109                                 read_stack_base,
1110                                 PrettySize(read_stack_size).c_str(),
1111                                 PrettySize(read_guard_size).c_str());
1112 
1113   // Set stack_end_ to the bottom of the stack saving space of stack overflows
1114 
1115   Runtime* runtime = Runtime::Current();
1116   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1117 
1118   // Valgrind on arm doesn't give the right values here. Do not install the guard page, and
1119   // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
1120   // stack_begin to 0.
1121   const bool valgrind_on_arm =
1122       (kRuntimeISA == InstructionSet::kArm || kRuntimeISA == InstructionSet::kArm64) &&
1123       kMemoryToolIsValgrind &&
1124       RUNNING_ON_MEMORY_TOOL != 0;
1125   if (valgrind_on_arm) {
1126     tlsPtr_.stack_begin = nullptr;
1127   }
1128 
1129   ResetDefaultStackEnd();
1130 
1131   // Install the protected region if we are doing implicit overflow checks.
1132   if (implicit_stack_check && !valgrind_on_arm) {
1133     // The thread might have protected region at the bottom.  We need
1134     // to install our own region so we need to move the limits
1135     // of the stack to make room for it.
1136 
1137     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1138     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1139     tlsPtr_.stack_size -= read_guard_size;
1140 
1141     InstallImplicitProtection();
1142   }
1143 
1144   // Sanity check.
1145   CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1146 
1147   return true;
1148 }
1149 
ShortDump(std::ostream & os) const1150 void Thread::ShortDump(std::ostream& os) const {
1151   os << "Thread[";
1152   if (GetThreadId() != 0) {
1153     // If we're in kStarting, we won't have a thin lock id or tid yet.
1154     os << GetThreadId()
1155        << ",tid=" << GetTid() << ',';
1156   }
1157   os << GetState()
1158      << ",Thread*=" << this
1159      << ",peer=" << tlsPtr_.opeer
1160      << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
1161      << "]";
1162 }
1163 
Dump(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1164 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
1165                   bool force_dump_stack) const {
1166   DumpState(os);
1167   DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
1168 }
1169 
GetThreadName() const1170 mirror::String* Thread::GetThreadName() const {
1171   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
1172   if (tlsPtr_.opeer == nullptr) {
1173     return nullptr;
1174   }
1175   ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
1176   return name == nullptr ? nullptr : name->AsString();
1177 }
1178 
GetThreadName(std::string & name) const1179 void Thread::GetThreadName(std::string& name) const {
1180   name.assign(*tlsPtr_.name);
1181 }
1182 
GetCpuMicroTime() const1183 uint64_t Thread::GetCpuMicroTime() const {
1184 #if defined(__linux__)
1185   clockid_t cpu_clock_id;
1186   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1187   timespec now;
1188   clock_gettime(cpu_clock_id, &now);
1189   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
1190 #else  // __APPLE__
1191   UNIMPLEMENTED(WARNING);
1192   return -1;
1193 #endif
1194 }
1195 
1196 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1197 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1198   LOG(ERROR) << *thread << " suspend count already zero.";
1199   Locks::thread_suspend_count_lock_->Unlock(self);
1200   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1201     Locks::mutator_lock_->SharedTryLock(self);
1202     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1203       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1204     }
1205   }
1206   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1207     Locks::thread_list_lock_->TryLock(self);
1208     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1209       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1210     }
1211   }
1212   std::ostringstream ss;
1213   Runtime::Current()->GetThreadList()->Dump(ss);
1214   LOG(FATAL) << ss.str();
1215 }
1216 
ModifySuspendCountInternal(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)1217 bool Thread::ModifySuspendCountInternal(Thread* self,
1218                                         int delta,
1219                                         AtomicInteger* suspend_barrier,
1220                                         SuspendReason reason) {
1221   if (kIsDebugBuild) {
1222     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1223           << reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this;
1224     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1225     Locks::thread_suspend_count_lock_->AssertHeld(self);
1226     if (this != self && !IsSuspended()) {
1227       Locks::thread_list_lock_->AssertHeld(self);
1228     }
1229   }
1230   // User code suspensions need to be checked more closely since they originate from code outside of
1231   // the runtime's control.
1232   if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
1233     Locks::user_code_suspension_lock_->AssertHeld(self);
1234     if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
1235       LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
1236       return false;
1237     }
1238   }
1239   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1240     UnsafeLogFatalForSuspendCount(self, this);
1241     return false;
1242   }
1243 
1244   if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1245     // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1246     // deadlock. b/31683379.
1247     return false;
1248   }
1249 
1250   uint16_t flags = kSuspendRequest;
1251   if (delta > 0 && suspend_barrier != nullptr) {
1252     uint32_t available_barrier = kMaxSuspendBarriers;
1253     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1254       if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1255         available_barrier = i;
1256         break;
1257       }
1258     }
1259     if (available_barrier == kMaxSuspendBarriers) {
1260       // No barrier spaces available, we can't add another.
1261       return false;
1262     }
1263     tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1264     flags |= kActiveSuspendBarrier;
1265   }
1266 
1267   tls32_.suspend_count += delta;
1268   switch (reason) {
1269     case SuspendReason::kForDebugger:
1270       tls32_.debug_suspend_count += delta;
1271       break;
1272     case SuspendReason::kForUserCode:
1273       tls32_.user_code_suspend_count += delta;
1274       break;
1275     case SuspendReason::kInternal:
1276       break;
1277   }
1278 
1279   if (tls32_.suspend_count == 0) {
1280     AtomicClearFlag(kSuspendRequest);
1281   } else {
1282     // Two bits might be set simultaneously.
1283     tls32_.state_and_flags.as_atomic_int.FetchAndBitwiseOrSequentiallyConsistent(flags);
1284     TriggerSuspend();
1285   }
1286   return true;
1287 }
1288 
PassActiveSuspendBarriers(Thread * self)1289 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1290   // Grab the suspend_count lock and copy the current set of
1291   // barriers. Then clear the list and the flag. The ModifySuspendCount
1292   // function requires the lock so we prevent a race between setting
1293   // the kActiveSuspendBarrier flag and clearing it.
1294   AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1295   {
1296     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1297     if (!ReadFlag(kActiveSuspendBarrier)) {
1298       // quick exit test: the barriers have already been claimed - this is
1299       // possible as there may be a race to claim and it doesn't matter
1300       // who wins.
1301       // All of the callers of this function (except the SuspendAllInternal)
1302       // will first test the kActiveSuspendBarrier flag without lock. Here
1303       // double-check whether the barrier has been passed with the
1304       // suspend_count lock.
1305       return false;
1306     }
1307 
1308     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1309       pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1310       tlsPtr_.active_suspend_barriers[i] = nullptr;
1311     }
1312     AtomicClearFlag(kActiveSuspendBarrier);
1313   }
1314 
1315   uint32_t barrier_count = 0;
1316   for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1317     AtomicInteger* pending_threads = pass_barriers[i];
1318     if (pending_threads != nullptr) {
1319       bool done = false;
1320       do {
1321         int32_t cur_val = pending_threads->LoadRelaxed();
1322         CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1323         // Reduce value by 1.
1324         done = pending_threads->CompareAndSetWeakRelaxed(cur_val, cur_val - 1);
1325 #if ART_USE_FUTEXES
1326         if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
1327           futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
1328         }
1329 #endif
1330       } while (!done);
1331       ++barrier_count;
1332     }
1333   }
1334   CHECK_GT(barrier_count, 0U);
1335   return true;
1336 }
1337 
ClearSuspendBarrier(AtomicInteger * target)1338 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1339   CHECK(ReadFlag(kActiveSuspendBarrier));
1340   bool clear_flag = true;
1341   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1342     AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1343     if (ptr == target) {
1344       tlsPtr_.active_suspend_barriers[i] = nullptr;
1345     } else if (ptr != nullptr) {
1346       clear_flag = false;
1347     }
1348   }
1349   if (LIKELY(clear_flag)) {
1350     AtomicClearFlag(kActiveSuspendBarrier);
1351   }
1352 }
1353 
RunCheckpointFunction()1354 void Thread::RunCheckpointFunction() {
1355   // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If
1356   // there are no more checkpoints we will also clear the kCheckpointRequest flag.
1357   Closure* checkpoint;
1358   {
1359     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1360     checkpoint = tlsPtr_.checkpoint_function;
1361     if (!checkpoint_overflow_.empty()) {
1362       // Overflow list not empty, copy the first one out and continue.
1363       tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1364       checkpoint_overflow_.pop_front();
1365     } else {
1366       // No overflow checkpoints. Clear the kCheckpointRequest flag
1367       tlsPtr_.checkpoint_function = nullptr;
1368       AtomicClearFlag(kCheckpointRequest);
1369     }
1370   }
1371   // Outside the lock, run the checkpoint function.
1372   ScopedTrace trace("Run checkpoint function");
1373   CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint";
1374   checkpoint->Run(this);
1375 }
1376 
RunEmptyCheckpoint()1377 void Thread::RunEmptyCheckpoint() {
1378   DCHECK_EQ(Thread::Current(), this);
1379   AtomicClearFlag(kEmptyCheckpointRequest);
1380   Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1381 }
1382 
RequestCheckpoint(Closure * function)1383 bool Thread::RequestCheckpoint(Closure* function) {
1384   union StateAndFlags old_state_and_flags;
1385   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1386   if (old_state_and_flags.as_struct.state != kRunnable) {
1387     return false;  // Fail, thread is suspended and so can't run a checkpoint.
1388   }
1389 
1390   // We must be runnable to request a checkpoint.
1391   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1392   union StateAndFlags new_state_and_flags;
1393   new_state_and_flags.as_int = old_state_and_flags.as_int;
1394   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1395   bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1396       old_state_and_flags.as_int, new_state_and_flags.as_int);
1397   if (success) {
1398     // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1399     if (tlsPtr_.checkpoint_function == nullptr) {
1400       tlsPtr_.checkpoint_function = function;
1401     } else {
1402       checkpoint_overflow_.push_back(function);
1403     }
1404     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1405     TriggerSuspend();
1406   }
1407   return success;
1408 }
1409 
RequestEmptyCheckpoint()1410 bool Thread::RequestEmptyCheckpoint() {
1411   union StateAndFlags old_state_and_flags;
1412   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1413   if (old_state_and_flags.as_struct.state != kRunnable) {
1414     // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1415     // heap access (eg. the read barrier).
1416     return false;
1417   }
1418 
1419   // We must be runnable to request a checkpoint.
1420   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1421   union StateAndFlags new_state_and_flags;
1422   new_state_and_flags.as_int = old_state_and_flags.as_int;
1423   new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
1424   bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1425       old_state_and_flags.as_int, new_state_and_flags.as_int);
1426   if (success) {
1427     TriggerSuspend();
1428   }
1429   return success;
1430 }
1431 
1432 class BarrierClosure : public Closure {
1433  public:
BarrierClosure(Closure * wrapped)1434   explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1435 
Run(Thread * self)1436   void Run(Thread* self) OVERRIDE {
1437     wrapped_->Run(self);
1438     barrier_.Pass(self);
1439   }
1440 
Wait(Thread * self,ThreadState suspend_state)1441   void Wait(Thread* self, ThreadState suspend_state) {
1442     if (suspend_state != ThreadState::kRunnable) {
1443       barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1);
1444     } else {
1445       barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1);
1446     }
1447   }
1448 
1449  private:
1450   Closure* wrapped_;
1451   Barrier barrier_;
1452 };
1453 
1454 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution.
RequestSynchronousCheckpoint(Closure * function,ThreadState suspend_state)1455 bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state) {
1456   Thread* self = Thread::Current();
1457   if (this == Thread::Current()) {
1458     Locks::thread_list_lock_->AssertExclusiveHeld(self);
1459     // Unlock the tll before running so that the state is the same regardless of thread.
1460     Locks::thread_list_lock_->ExclusiveUnlock(self);
1461     // Asked to run on this thread. Just run.
1462     function->Run(this);
1463     return true;
1464   }
1465 
1466   // The current thread is not this thread.
1467 
1468   if (GetState() == ThreadState::kTerminated) {
1469     Locks::thread_list_lock_->ExclusiveUnlock(self);
1470     return false;
1471   }
1472 
1473   struct ScopedThreadListLockUnlock {
1474     explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
1475         : self_thread(self_in) {
1476       Locks::thread_list_lock_->AssertHeld(self_thread);
1477       Locks::thread_list_lock_->Unlock(self_thread);
1478     }
1479 
1480     ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
1481       Locks::thread_list_lock_->AssertNotHeld(self_thread);
1482       Locks::thread_list_lock_->Lock(self_thread);
1483     }
1484 
1485     Thread* self_thread;
1486   };
1487 
1488   for (;;) {
1489     Locks::thread_list_lock_->AssertExclusiveHeld(self);
1490     // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1491     // suspend-count lock for too long.
1492     if (GetState() == ThreadState::kRunnable) {
1493       BarrierClosure barrier_closure(function);
1494       bool installed = false;
1495       {
1496         MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1497         installed = RequestCheckpoint(&barrier_closure);
1498       }
1499       if (installed) {
1500         // Relinquish the thread-list lock. We should not wait holding any locks. We cannot
1501         // reacquire it since we don't know if 'this' hasn't been deleted yet.
1502         Locks::thread_list_lock_->ExclusiveUnlock(self);
1503         ScopedThreadStateChange sts(self, suspend_state);
1504         barrier_closure.Wait(self, suspend_state);
1505         return true;
1506       }
1507       // Fall-through.
1508     }
1509 
1510     // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1511     // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1512     //       certain situations.
1513     {
1514       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1515 
1516       if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
1517         // Just retry the loop.
1518         sched_yield();
1519         continue;
1520       }
1521     }
1522 
1523     {
1524       // Release for the wait. The suspension will keep us from being deleted. Reacquire after so
1525       // that we can call ModifySuspendCount without racing against ThreadList::Unregister.
1526       ScopedThreadListLockUnlock stllu(self);
1527       {
1528         ScopedThreadStateChange sts(self, suspend_state);
1529         while (GetState() == ThreadState::kRunnable) {
1530           // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1531           // moves us to suspended.
1532           sched_yield();
1533         }
1534       }
1535 
1536       function->Run(this);
1537     }
1538 
1539     {
1540       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1541 
1542       DCHECK_NE(GetState(), ThreadState::kRunnable);
1543       bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1544       DCHECK(updated);
1545     }
1546 
1547     {
1548       // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
1549       // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
1550       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1551       Thread::resume_cond_->Broadcast(self);
1552     }
1553 
1554     // Release the thread_list_lock_ to be consistent with the barrier-closure path.
1555     Locks::thread_list_lock_->ExclusiveUnlock(self);
1556 
1557     return true;  // We're done, break out of the loop.
1558   }
1559 }
1560 
GetFlipFunction()1561 Closure* Thread::GetFlipFunction() {
1562   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1563   Closure* func;
1564   do {
1565     func = atomic_func->LoadRelaxed();
1566     if (func == nullptr) {
1567       return nullptr;
1568     }
1569   } while (!atomic_func->CompareAndSetWeakSequentiallyConsistent(func, nullptr));
1570   DCHECK(func != nullptr);
1571   return func;
1572 }
1573 
SetFlipFunction(Closure * function)1574 void Thread::SetFlipFunction(Closure* function) {
1575   CHECK(function != nullptr);
1576   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1577   atomic_func->StoreSequentiallyConsistent(function);
1578 }
1579 
FullSuspendCheck()1580 void Thread::FullSuspendCheck() {
1581   ScopedTrace trace(__FUNCTION__);
1582   VLOG(threads) << this << " self-suspending";
1583   // Make thread appear suspended to other threads, release mutator_lock_.
1584   // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1585   ScopedThreadSuspension(this, kSuspended);
1586   VLOG(threads) << this << " self-reviving";
1587 }
1588 
GetSchedulerGroupName(pid_t tid)1589 static std::string GetSchedulerGroupName(pid_t tid) {
1590   // /proc/<pid>/cgroup looks like this:
1591   // 2:devices:/
1592   // 1:cpuacct,cpu:/
1593   // We want the third field from the line whose second field contains the "cpu" token.
1594   std::string cgroup_file;
1595   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1596     return "";
1597   }
1598   std::vector<std::string> cgroup_lines;
1599   Split(cgroup_file, '\n', &cgroup_lines);
1600   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1601     std::vector<std::string> cgroup_fields;
1602     Split(cgroup_lines[i], ':', &cgroup_fields);
1603     std::vector<std::string> cgroups;
1604     Split(cgroup_fields[1], ',', &cgroups);
1605     for (size_t j = 0; j < cgroups.size(); ++j) {
1606       if (cgroups[j] == "cpu") {
1607         return cgroup_fields[2].substr(1);  // Skip the leading slash.
1608       }
1609     }
1610   }
1611   return "";
1612 }
1613 
1614 
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1615 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1616   std::string group_name;
1617   int priority;
1618   bool is_daemon = false;
1619   Thread* self = Thread::Current();
1620 
1621   // If flip_function is not null, it means we have run a checkpoint
1622   // before the thread wakes up to execute the flip function and the
1623   // thread roots haven't been forwarded.  So the following access to
1624   // the roots (opeer or methods in the frames) would be bad. Run it
1625   // here. TODO: clean up.
1626   if (thread != nullptr) {
1627     ScopedObjectAccessUnchecked soa(self);
1628     Thread* this_thread = const_cast<Thread*>(thread);
1629     Closure* flip_func = this_thread->GetFlipFunction();
1630     if (flip_func != nullptr) {
1631       flip_func->Run(this_thread);
1632     }
1633   }
1634 
1635   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1636   // cause ScopedObjectAccessUnchecked to deadlock.
1637   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1638     ScopedObjectAccessUnchecked soa(self);
1639     priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
1640         ->GetInt(thread->tlsPtr_.opeer);
1641     is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
1642         ->GetBoolean(thread->tlsPtr_.opeer);
1643 
1644     ObjPtr<mirror::Object> thread_group =
1645         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
1646             ->GetObject(thread->tlsPtr_.opeer);
1647 
1648     if (thread_group != nullptr) {
1649       ArtField* group_name_field =
1650           jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
1651       ObjPtr<mirror::String> group_name_string =
1652           group_name_field->GetObject(thread_group)->AsString();
1653       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1654     }
1655   } else {
1656     priority = GetNativePriority();
1657   }
1658 
1659   std::string scheduler_group_name(GetSchedulerGroupName(tid));
1660   if (scheduler_group_name.empty()) {
1661     scheduler_group_name = "default";
1662   }
1663 
1664   if (thread != nullptr) {
1665     os << '"' << *thread->tlsPtr_.name << '"';
1666     if (is_daemon) {
1667       os << " daemon";
1668     }
1669     os << " prio=" << priority
1670        << " tid=" << thread->GetThreadId()
1671        << " " << thread->GetState();
1672     if (thread->IsStillStarting()) {
1673       os << " (still starting up)";
1674     }
1675     os << "\n";
1676   } else {
1677     os << '"' << ::art::GetThreadName(tid) << '"'
1678        << " prio=" << priority
1679        << " (not attached)\n";
1680   }
1681 
1682   if (thread != nullptr) {
1683     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1684     os << "  | group=\"" << group_name << "\""
1685        << " sCount=" << thread->tls32_.suspend_count
1686        << " dsCount=" << thread->tls32_.debug_suspend_count
1687        << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
1688        << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1689        << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1690   }
1691 
1692   os << "  | sysTid=" << tid
1693      << " nice=" << getpriority(PRIO_PROCESS, tid)
1694      << " cgrp=" << scheduler_group_name;
1695   if (thread != nullptr) {
1696     int policy;
1697     sched_param sp;
1698 #if !defined(__APPLE__)
1699     // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
1700     policy = sched_getscheduler(tid);
1701     if (policy == -1) {
1702       PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
1703     }
1704     int sched_getparam_result = sched_getparam(tid, &sp);
1705     if (sched_getparam_result == -1) {
1706       PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
1707       sp.sched_priority = -1;
1708     }
1709 #else
1710     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1711                        __FUNCTION__);
1712 #endif
1713     os << " sched=" << policy << "/" << sp.sched_priority
1714        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1715   }
1716   os << "\n";
1717 
1718   // Grab the scheduler stats for this thread.
1719   std::string scheduler_stats;
1720   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
1721     scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
1722   } else {
1723     scheduler_stats = "0 0 0";
1724   }
1725 
1726   char native_thread_state = '?';
1727   int utime = 0;
1728   int stime = 0;
1729   int task_cpu = 0;
1730   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1731 
1732   os << "  | state=" << native_thread_state
1733      << " schedstat=( " << scheduler_stats << " )"
1734      << " utm=" << utime
1735      << " stm=" << stime
1736      << " core=" << task_cpu
1737      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1738   if (thread != nullptr) {
1739     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1740         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1741         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1742     // Dump the held mutexes.
1743     os << "  | held mutexes=";
1744     for (size_t i = 0; i < kLockLevelCount; ++i) {
1745       if (i != kMonitorLock) {
1746         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1747         if (mutex != nullptr) {
1748           os << " \"" << mutex->GetName() << "\"";
1749           if (mutex->IsReaderWriterMutex()) {
1750             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1751             if (rw_mutex->GetExclusiveOwnerTid() == tid) {
1752               os << "(exclusive held)";
1753             } else {
1754               os << "(shared held)";
1755             }
1756           }
1757         }
1758       }
1759     }
1760     os << "\n";
1761   }
1762 }
1763 
DumpState(std::ostream & os) const1764 void Thread::DumpState(std::ostream& os) const {
1765   Thread::DumpState(os, this, GetTid());
1766 }
1767 
1768 struct StackDumpVisitor : public MonitorObjectsStackVisitor {
StackDumpVisitorart::StackDumpVisitor1769   StackDumpVisitor(std::ostream& os_in,
1770                    Thread* thread_in,
1771                    Context* context,
1772                    bool can_allocate,
1773                    bool check_suspended = true,
1774                    bool dump_locks = true)
1775       REQUIRES_SHARED(Locks::mutator_lock_)
1776       : MonitorObjectsStackVisitor(thread_in,
1777                                    context,
1778                                    check_suspended,
1779                                    can_allocate && dump_locks),
1780         os(os_in),
1781         last_method(nullptr),
1782         last_line_number(0),
1783         repetition_count(0) {}
1784 
~StackDumpVisitorart::StackDumpVisitor1785   virtual ~StackDumpVisitor() {
1786     if (frame_count == 0) {
1787       os << "  (no managed stack frames)\n";
1788     }
1789   }
1790 
1791   static constexpr size_t kMaxRepetition = 3u;
1792 
StartMethodart::StackDumpVisitor1793   VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
1794       OVERRIDE
1795       REQUIRES_SHARED(Locks::mutator_lock_) {
1796     m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1797     ObjPtr<mirror::Class> c = m->GetDeclaringClass();
1798     ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache();
1799     int line_number = -1;
1800     if (dex_cache != nullptr) {  // be tolerant of bad input
1801       const DexFile* dex_file = dex_cache->GetDexFile();
1802       line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
1803     }
1804     if (line_number == last_line_number && last_method == m) {
1805       ++repetition_count;
1806     } else {
1807       if (repetition_count >= kMaxRepetition) {
1808         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1809       }
1810       repetition_count = 0;
1811       last_line_number = line_number;
1812       last_method = m;
1813     }
1814 
1815     if (repetition_count >= kMaxRepetition) {
1816       // Skip visiting=printing anything.
1817       return VisitMethodResult::kSkipMethod;
1818     }
1819 
1820     os << "  at " << m->PrettyMethod(false);
1821     if (m->IsNative()) {
1822       os << "(Native method)";
1823     } else {
1824       const char* source_file(m->GetDeclaringClassSourceFile());
1825       os << "(" << (source_file != nullptr ? source_file : "unavailable")
1826                        << ":" << line_number << ")";
1827     }
1828     os << "\n";
1829     // Go and visit locks.
1830     return VisitMethodResult::kContinueMethod;
1831   }
1832 
EndMethodart::StackDumpVisitor1833   VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) OVERRIDE {
1834     return VisitMethodResult::kContinueMethod;
1835   }
1836 
VisitWaitingObjectart::StackDumpVisitor1837   void VisitWaitingObject(mirror::Object* obj, ThreadState state ATTRIBUTE_UNUSED)
1838       OVERRIDE
1839       REQUIRES_SHARED(Locks::mutator_lock_) {
1840     PrintObject(obj, "  - waiting on ", ThreadList::kInvalidThreadId);
1841   }
VisitSleepingObjectart::StackDumpVisitor1842   void VisitSleepingObject(mirror::Object* obj)
1843       OVERRIDE
1844       REQUIRES_SHARED(Locks::mutator_lock_) {
1845     PrintObject(obj, "  - sleeping on ", ThreadList::kInvalidThreadId);
1846   }
VisitBlockedOnObjectart::StackDumpVisitor1847   void VisitBlockedOnObject(mirror::Object* obj,
1848                             ThreadState state,
1849                             uint32_t owner_tid)
1850       OVERRIDE
1851       REQUIRES_SHARED(Locks::mutator_lock_) {
1852     const char* msg;
1853     switch (state) {
1854       case kBlocked:
1855         msg = "  - waiting to lock ";
1856         break;
1857 
1858       case kWaitingForLockInflation:
1859         msg = "  - waiting for lock inflation of ";
1860         break;
1861 
1862       default:
1863         LOG(FATAL) << "Unreachable";
1864         UNREACHABLE();
1865     }
1866     PrintObject(obj, msg, owner_tid);
1867   }
VisitLockedObjectart::StackDumpVisitor1868   void VisitLockedObject(mirror::Object* obj)
1869       OVERRIDE
1870       REQUIRES_SHARED(Locks::mutator_lock_) {
1871     PrintObject(obj, "  - locked ", ThreadList::kInvalidThreadId);
1872   }
1873 
PrintObjectart::StackDumpVisitor1874   void PrintObject(mirror::Object* obj,
1875                    const char* msg,
1876                    uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) {
1877     if (obj == nullptr) {
1878       os << msg << "an unknown object";
1879     } else {
1880       if ((obj->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
1881           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1882         // Getting the identity hashcode here would result in lock inflation and suspension of the
1883         // current thread, which isn't safe if this is the only runnable thread.
1884         os << msg << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
1885                                   reinterpret_cast<intptr_t>(obj),
1886                                   obj->PrettyTypeOf().c_str());
1887       } else {
1888         // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
1889         // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
1890         // suspension and move pretty_object.
1891         const std::string pretty_type(obj->PrettyTypeOf());
1892         os << msg << StringPrintf("<0x%08x> (a %s)", obj->IdentityHashCode(), pretty_type.c_str());
1893       }
1894     }
1895     if (owner_tid != ThreadList::kInvalidThreadId) {
1896       os << " held by thread " << owner_tid;
1897     }
1898     os << "\n";
1899   }
1900 
1901   std::ostream& os;
1902   ArtMethod* last_method;
1903   int last_line_number;
1904   size_t repetition_count;
1905 };
1906 
ShouldShowNativeStack(const Thread * thread)1907 static bool ShouldShowNativeStack(const Thread* thread)
1908     REQUIRES_SHARED(Locks::mutator_lock_) {
1909   ThreadState state = thread->GetState();
1910 
1911   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1912   if (state > kWaiting && state < kStarting) {
1913     return true;
1914   }
1915 
1916   // In an Object.wait variant or Thread.sleep? That's not interesting.
1917   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1918     return false;
1919   }
1920 
1921   // Threads with no managed stack frames should be shown.
1922   if (!thread->HasManagedStack()) {
1923     return true;
1924   }
1925 
1926   // In some other native method? That's interesting.
1927   // We don't just check kNative because native methods will be in state kSuspended if they're
1928   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1929   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1930   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1931   return current_method != nullptr && current_method->IsNative();
1932 }
1933 
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const1934 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
1935   // If flip_function is not null, it means we have run a checkpoint
1936   // before the thread wakes up to execute the flip function and the
1937   // thread roots haven't been forwarded.  So the following access to
1938   // the roots (locks or methods in the frames) would be bad. Run it
1939   // here. TODO: clean up.
1940   {
1941     Thread* this_thread = const_cast<Thread*>(this);
1942     Closure* flip_func = this_thread->GetFlipFunction();
1943     if (flip_func != nullptr) {
1944       flip_func->Run(this_thread);
1945     }
1946   }
1947 
1948   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1949   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1950   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1951   // thread.
1952   StackHandleScope<1> scope(Thread::Current());
1953   Handle<mirror::Throwable> exc;
1954   bool have_exception = false;
1955   if (IsExceptionPending()) {
1956     exc = scope.NewHandle(GetException());
1957     const_cast<Thread*>(this)->ClearException();
1958     have_exception = true;
1959   }
1960 
1961   std::unique_ptr<Context> context(Context::Create());
1962   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1963                           !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
1964   dumper.WalkStack();
1965 
1966   if (have_exception) {
1967     const_cast<Thread*>(this)->SetException(exc.Get());
1968   }
1969 }
1970 
DumpStack(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1971 void Thread::DumpStack(std::ostream& os,
1972                        bool dump_native_stack,
1973                        BacktraceMap* backtrace_map,
1974                        bool force_dump_stack) const {
1975   // TODO: we call this code when dying but may not have suspended the thread ourself. The
1976   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1977   //       the race with the thread_suspend_count_lock_).
1978   bool dump_for_abort = (gAborting > 0);
1979   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1980   if (!kIsDebugBuild) {
1981     // We always want to dump the stack for an abort, however, there is no point dumping another
1982     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1983     safe_to_dump = (safe_to_dump || dump_for_abort);
1984   }
1985   if (safe_to_dump || force_dump_stack) {
1986     // If we're currently in native code, dump that stack before dumping the managed stack.
1987     if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
1988       DumpKernelStack(os, GetTid(), "  kernel: ", false);
1989       ArtMethod* method =
1990           GetCurrentMethod(nullptr,
1991                            /*check_suspended*/ !force_dump_stack,
1992                            /*abort_on_error*/ !(dump_for_abort || force_dump_stack));
1993       DumpNativeStack(os, GetTid(), backtrace_map, "  native: ", method);
1994     }
1995     DumpJavaStack(os,
1996                   /*check_suspended*/ !force_dump_stack,
1997                   /*dump_locks*/ !force_dump_stack);
1998   } else {
1999     os << "Not able to dump stack of thread that isn't suspended";
2000   }
2001 }
2002 
ThreadExitCallback(void * arg)2003 void Thread::ThreadExitCallback(void* arg) {
2004   Thread* self = reinterpret_cast<Thread*>(arg);
2005   if (self->tls32_.thread_exit_check_count == 0) {
2006     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
2007         "going to use a pthread_key_create destructor?): " << *self;
2008     CHECK(is_started_);
2009 #ifdef ART_TARGET_ANDROID
2010     __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
2011 #else
2012     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
2013 #endif
2014     self->tls32_.thread_exit_check_count = 1;
2015   } else {
2016     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
2017   }
2018 }
2019 
Startup()2020 void Thread::Startup() {
2021   CHECK(!is_started_);
2022   is_started_ = true;
2023   {
2024     // MutexLock to keep annotalysis happy.
2025     //
2026     // Note we use null for the thread because Thread::Current can
2027     // return garbage since (is_started_ == true) and
2028     // Thread::pthread_key_self_ is not yet initialized.
2029     // This was seen on glibc.
2030     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
2031     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
2032                                          *Locks::thread_suspend_count_lock_);
2033   }
2034 
2035   // Allocate a TLS slot.
2036   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
2037                      "self key");
2038 
2039   // Double-check the TLS slot allocation.
2040   if (pthread_getspecific(pthread_key_self_) != nullptr) {
2041     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
2042   }
2043 }
2044 
FinishStartup()2045 void Thread::FinishStartup() {
2046   Runtime* runtime = Runtime::Current();
2047   CHECK(runtime->IsStarted());
2048 
2049   // Finish attaching the main thread.
2050   ScopedObjectAccess soa(Thread::Current());
2051   Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2052   Thread::Current()->AssertNoPendingException();
2053 
2054   Runtime::Current()->GetClassLinker()->RunRootClinits();
2055 
2056   // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2057   // threads, this is done in Thread.start() on the Java side.
2058   Thread::Current()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup());
2059   Thread::Current()->AssertNoPendingException();
2060 }
2061 
Shutdown()2062 void Thread::Shutdown() {
2063   CHECK(is_started_);
2064   is_started_ = false;
2065   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2066   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2067   if (resume_cond_ != nullptr) {
2068     delete resume_cond_;
2069     resume_cond_ = nullptr;
2070   }
2071 }
2072 
NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable & soa,jobject thread_group)2073 void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) {
2074   ScopedLocalRef<jobject> thread_jobject(
2075       soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
2076   ScopedLocalRef<jobject> thread_group_jobject_scoped(
2077       soa.Env(), nullptr);
2078   jobject thread_group_jobject = thread_group;
2079   if (thread_group == nullptr || kIsDebugBuild) {
2080     // There is always a group set. Retrieve it.
2081     thread_group_jobject_scoped.reset(
2082         soa.Env()->GetObjectField(thread_jobject.get(),
2083                                   WellKnownClasses::java_lang_Thread_group));
2084     thread_group_jobject = thread_group_jobject_scoped.get();
2085     if (kIsDebugBuild && thread_group != nullptr) {
2086       CHECK(soa.Env()->IsSameObject(thread_group, thread_group_jobject));
2087     }
2088   }
2089   soa.Env()->CallNonvirtualVoidMethod(thread_group_jobject,
2090                                       WellKnownClasses::java_lang_ThreadGroup,
2091                                       WellKnownClasses::java_lang_ThreadGroup_add,
2092                                       thread_jobject.get());
2093 }
2094 
Thread(bool daemon)2095 Thread::Thread(bool daemon)
2096     : tls32_(daemon),
2097       wait_monitor_(nullptr),
2098       custom_tls_(nullptr),
2099       can_call_into_java_(true) {
2100   wait_mutex_ = new Mutex("a thread wait mutex");
2101   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2102   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
2103   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
2104 
2105   static_assert((sizeof(Thread) % 4) == 0U,
2106                 "art::Thread has a size which is not a multiple of 4.");
2107   tls32_.state_and_flags.as_struct.flags = 0;
2108   tls32_.state_and_flags.as_struct.state = kNative;
2109   tls32_.interrupted.StoreRelaxed(false);
2110   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2111   std::fill(tlsPtr_.rosalloc_runs,
2112             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2113             gc::allocator::RosAlloc::GetDedicatedFullRun());
2114   tlsPtr_.checkpoint_function = nullptr;
2115   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
2116     tlsPtr_.active_suspend_barriers[i] = nullptr;
2117   }
2118   tlsPtr_.flip_function = nullptr;
2119   tlsPtr_.thread_local_mark_stack = nullptr;
2120   tls32_.is_transitioning_to_runnable = false;
2121 }
2122 
IsStillStarting() const2123 bool Thread::IsStillStarting() const {
2124   // You might think you can check whether the state is kStarting, but for much of thread startup,
2125   // the thread is in kNative; it might also be in kVmWait.
2126   // You might think you can check whether the peer is null, but the peer is actually created and
2127   // assigned fairly early on, and needs to be.
2128   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2129   // this thread _ever_ entered kRunnable".
2130   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2131       (*tlsPtr_.name == kThreadNameDuringStartup);
2132 }
2133 
AssertPendingException() const2134 void Thread::AssertPendingException() const {
2135   CHECK(IsExceptionPending()) << "Pending exception expected.";
2136 }
2137 
AssertPendingOOMException() const2138 void Thread::AssertPendingOOMException() const {
2139   AssertPendingException();
2140   auto* e = GetException();
2141   CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
2142       << e->Dump();
2143 }
2144 
AssertNoPendingException() const2145 void Thread::AssertNoPendingException() const {
2146   if (UNLIKELY(IsExceptionPending())) {
2147     ScopedObjectAccess soa(Thread::Current());
2148     LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2149   }
2150 }
2151 
AssertNoPendingExceptionForNewException(const char * msg) const2152 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2153   if (UNLIKELY(IsExceptionPending())) {
2154     ScopedObjectAccess soa(Thread::Current());
2155     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2156         << GetException()->Dump();
2157   }
2158 }
2159 
2160 class MonitorExitVisitor : public SingleRootVisitor {
2161  public:
MonitorExitVisitor(Thread * self)2162   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2163 
2164   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)2165   void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2166       OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
2167     if (self_->HoldsLock(entered_monitor)) {
2168       LOG(WARNING) << "Calling MonitorExit on object "
2169                    << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2170                    << " left locked by native thread "
2171                    << *Thread::Current() << " which is detaching";
2172       entered_monitor->MonitorExit(self_);
2173     }
2174   }
2175 
2176  private:
2177   Thread* const self_;
2178 };
2179 
Destroy()2180 void Thread::Destroy() {
2181   Thread* self = this;
2182   DCHECK_EQ(self, Thread::Current());
2183 
2184   if (tlsPtr_.jni_env != nullptr) {
2185     {
2186       ScopedObjectAccess soa(self);
2187       MonitorExitVisitor visitor(self);
2188       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2189       tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2190     }
2191     // Release locally held global references which releasing may require the mutator lock.
2192     if (tlsPtr_.jpeer != nullptr) {
2193       // If pthread_create fails we don't have a jni env here.
2194       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2195       tlsPtr_.jpeer = nullptr;
2196     }
2197     if (tlsPtr_.class_loader_override != nullptr) {
2198       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2199       tlsPtr_.class_loader_override = nullptr;
2200     }
2201   }
2202 
2203   if (tlsPtr_.opeer != nullptr) {
2204     ScopedObjectAccess soa(self);
2205     // We may need to call user-supplied managed code, do this before final clean-up.
2206     HandleUncaughtExceptions(soa);
2207     RemoveFromThreadGroup(soa);
2208     Runtime* runtime = Runtime::Current();
2209     if (runtime != nullptr) {
2210       runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2211     }
2212 
2213     // this.nativePeer = 0;
2214     if (Runtime::Current()->IsActiveTransaction()) {
2215       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2216           ->SetLong<true>(tlsPtr_.opeer, 0);
2217     } else {
2218       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2219           ->SetLong<false>(tlsPtr_.opeer, 0);
2220     }
2221 
2222     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2223     // who is waiting.
2224     ObjPtr<mirror::Object> lock =
2225         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
2226     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2227     if (lock != nullptr) {
2228       StackHandleScope<1> hs(self);
2229       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2230       ObjectLock<mirror::Object> locker(self, h_obj);
2231       locker.NotifyAll();
2232     }
2233     tlsPtr_.opeer = nullptr;
2234   }
2235 
2236   {
2237     ScopedObjectAccess soa(self);
2238     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2239     if (kUseReadBarrier) {
2240       Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2241     }
2242   }
2243 }
2244 
~Thread()2245 Thread::~Thread() {
2246   CHECK(tlsPtr_.class_loader_override == nullptr);
2247   CHECK(tlsPtr_.jpeer == nullptr);
2248   CHECK(tlsPtr_.opeer == nullptr);
2249   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
2250   if (initialized) {
2251     delete tlsPtr_.jni_env;
2252     tlsPtr_.jni_env = nullptr;
2253   }
2254   CHECK_NE(GetState(), kRunnable);
2255   CHECK(!ReadFlag(kCheckpointRequest));
2256   CHECK(!ReadFlag(kEmptyCheckpointRequest));
2257   CHECK(tlsPtr_.checkpoint_function == nullptr);
2258   CHECK_EQ(checkpoint_overflow_.size(), 0u);
2259   CHECK(tlsPtr_.flip_function == nullptr);
2260   CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2261 
2262   // Make sure we processed all deoptimization requests.
2263   CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2264   CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2265       "Not all deoptimized frames have been consumed by the debugger.";
2266 
2267   // We may be deleting a still born thread.
2268   SetStateUnsafe(kTerminated);
2269 
2270   delete wait_cond_;
2271   delete wait_mutex_;
2272 
2273   if (tlsPtr_.long_jump_context != nullptr) {
2274     delete tlsPtr_.long_jump_context;
2275   }
2276 
2277   if (initialized) {
2278     CleanupCpu();
2279   }
2280 
2281   if (tlsPtr_.single_step_control != nullptr) {
2282     delete tlsPtr_.single_step_control;
2283   }
2284   delete tlsPtr_.instrumentation_stack;
2285   delete tlsPtr_.name;
2286   delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2287 
2288   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2289 
2290   TearDownAlternateSignalStack();
2291 }
2292 
HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable & soa)2293 void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
2294   if (!IsExceptionPending()) {
2295     return;
2296   }
2297   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2298   ScopedThreadStateChange tsc(this, kNative);
2299 
2300   // Get and clear the exception.
2301   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
2302   tlsPtr_.jni_env->ExceptionClear();
2303 
2304   // Call the Thread instance's dispatchUncaughtException(Throwable)
2305   tlsPtr_.jni_env->CallVoidMethod(peer.get(),
2306       WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
2307       exception.get());
2308 
2309   // If the dispatchUncaughtException threw, clear that exception too.
2310   tlsPtr_.jni_env->ExceptionClear();
2311 }
2312 
RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable & soa)2313 void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
2314   // this.group.removeThread(this);
2315   // group can be null if we're in the compiler or a test.
2316   ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
2317       ->GetObject(tlsPtr_.opeer);
2318   if (ogroup != nullptr) {
2319     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
2320     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2321     ScopedThreadStateChange tsc(soa.Self(), kNative);
2322     tlsPtr_.jni_env->CallVoidMethod(group.get(),
2323                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
2324                                     peer.get());
2325   }
2326 }
2327 
HandleScopeContains(jobject obj) const2328 bool Thread::HandleScopeContains(jobject obj) const {
2329   StackReference<mirror::Object>* hs_entry =
2330       reinterpret_cast<StackReference<mirror::Object>*>(obj);
2331   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
2332     if (cur->Contains(hs_entry)) {
2333       return true;
2334     }
2335   }
2336   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
2337   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
2338 }
2339 
HandleScopeVisitRoots(RootVisitor * visitor,pid_t thread_id)2340 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) {
2341   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2342       visitor, RootInfo(kRootNativeStack, thread_id));
2343   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2344     cur->VisitRoots(buffered_visitor);
2345   }
2346 }
2347 
DecodeJObject(jobject obj) const2348 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
2349   if (obj == nullptr) {
2350     return nullptr;
2351   }
2352   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2353   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2354   ObjPtr<mirror::Object> result;
2355   bool expect_null = false;
2356   // The "kinds" below are sorted by the frequency we expect to encounter them.
2357   if (kind == kLocal) {
2358     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals_;
2359     // Local references do not need a read barrier.
2360     result = locals.Get<kWithoutReadBarrier>(ref);
2361   } else if (kind == kHandleScopeOrInvalid) {
2362     // TODO: make stack indirect reference table lookup more efficient.
2363     // Check if this is a local reference in the handle scope.
2364     if (LIKELY(HandleScopeContains(obj))) {
2365       // Read from handle scope.
2366       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
2367       VerifyObject(result);
2368     } else {
2369       tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of invalid jobject %p", obj);
2370       expect_null = true;
2371       result = nullptr;
2372     }
2373   } else if (kind == kGlobal) {
2374     result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref);
2375   } else {
2376     DCHECK_EQ(kind, kWeakGlobal);
2377     result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2378     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2379       // This is a special case where it's okay to return null.
2380       expect_null = true;
2381       result = nullptr;
2382     }
2383   }
2384 
2385   if (UNLIKELY(!expect_null && result == nullptr)) {
2386     tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of deleted %s %p",
2387                                    ToStr<IndirectRefKind>(kind).c_str(), obj);
2388   }
2389   return result;
2390 }
2391 
IsJWeakCleared(jweak obj) const2392 bool Thread::IsJWeakCleared(jweak obj) const {
2393   CHECK(obj != nullptr);
2394   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2395   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2396   CHECK_EQ(kind, kWeakGlobal);
2397   return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2398 }
2399 
2400 // Implements java.lang.Thread.interrupted.
Interrupted()2401 bool Thread::Interrupted() {
2402   DCHECK_EQ(Thread::Current(), this);
2403   // No other thread can concurrently reset the interrupted flag.
2404   bool interrupted = tls32_.interrupted.LoadSequentiallyConsistent();
2405   if (interrupted) {
2406     tls32_.interrupted.StoreSequentiallyConsistent(false);
2407   }
2408   return interrupted;
2409 }
2410 
2411 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2412 bool Thread::IsInterrupted() {
2413   return tls32_.interrupted.LoadSequentiallyConsistent();
2414 }
2415 
Interrupt(Thread * self)2416 void Thread::Interrupt(Thread* self) {
2417   MutexLock mu(self, *wait_mutex_);
2418   if (tls32_.interrupted.LoadSequentiallyConsistent()) {
2419     return;
2420   }
2421   tls32_.interrupted.StoreSequentiallyConsistent(true);
2422   NotifyLocked(self);
2423 }
2424 
Notify()2425 void Thread::Notify() {
2426   Thread* self = Thread::Current();
2427   MutexLock mu(self, *wait_mutex_);
2428   NotifyLocked(self);
2429 }
2430 
NotifyLocked(Thread * self)2431 void Thread::NotifyLocked(Thread* self) {
2432   if (wait_monitor_ != nullptr) {
2433     wait_cond_->Signal(self);
2434   }
2435 }
2436 
SetClassLoaderOverride(jobject class_loader_override)2437 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2438   if (tlsPtr_.class_loader_override != nullptr) {
2439     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2440   }
2441   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2442 }
2443 
2444 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2445 
2446 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2447 class FetchStackTraceVisitor : public StackVisitor {
2448  public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2449   explicit FetchStackTraceVisitor(Thread* thread,
2450                                   ArtMethodDexPcPair* saved_frames = nullptr,
2451                                   size_t max_saved_frames = 0)
2452       REQUIRES_SHARED(Locks::mutator_lock_)
2453       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2454         saved_frames_(saved_frames),
2455         max_saved_frames_(max_saved_frames) {}
2456 
VisitFrame()2457   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2458     // We want to skip frames up to and including the exception's constructor.
2459     // Note we also skip the frame if it doesn't have a method (namely the callee
2460     // save frame)
2461     ArtMethod* m = GetMethod();
2462     if (skipping_ && !m->IsRuntimeMethod() &&
2463         !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
2464       skipping_ = false;
2465     }
2466     if (!skipping_) {
2467       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
2468         if (depth_ < max_saved_frames_) {
2469           saved_frames_[depth_].first = m;
2470           saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
2471         }
2472         ++depth_;
2473       }
2474     } else {
2475       ++skip_depth_;
2476     }
2477     return true;
2478   }
2479 
GetDepth() const2480   uint32_t GetDepth() const {
2481     return depth_;
2482   }
2483 
GetSkipDepth() const2484   uint32_t GetSkipDepth() const {
2485     return skip_depth_;
2486   }
2487 
2488  private:
2489   uint32_t depth_ = 0;
2490   uint32_t skip_depth_ = 0;
2491   bool skipping_ = true;
2492   ArtMethodDexPcPair* saved_frames_;
2493   const size_t max_saved_frames_;
2494 
2495   DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2496 };
2497 
2498 template<bool kTransactionActive>
2499 class BuildInternalStackTraceVisitor : public StackVisitor {
2500  public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)2501   BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2502       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2503         self_(self),
2504         skip_depth_(skip_depth),
2505         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2506 
Init(int depth)2507   bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2508     // Allocate method trace as an object array where the first element is a pointer array that
2509     // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2510     // class of the ArtMethod pointers.
2511     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2512     StackHandleScope<1> hs(self_);
2513     ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
2514     // The first element is the methods and dex pc array, the other elements are declaring classes
2515     // for the methods to ensure classes in the stack trace don't get unloaded.
2516     Handle<mirror::ObjectArray<mirror::Object>> trace(
2517         hs.NewHandle(
2518             mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2519     if (trace == nullptr) {
2520       // Acquire uninterruptible_ in all paths.
2521       self_->StartAssertNoThreadSuspension("Building internal stack trace");
2522       self_->AssertPendingOOMException();
2523       return false;
2524     }
2525     ObjPtr<mirror::PointerArray> methods_and_pcs =
2526         class_linker->AllocPointerArray(self_, depth * 2);
2527     const char* last_no_suspend_cause =
2528         self_->StartAssertNoThreadSuspension("Building internal stack trace");
2529     if (methods_and_pcs == nullptr) {
2530       self_->AssertPendingOOMException();
2531       return false;
2532     }
2533     trace->Set(0, methods_and_pcs);
2534     trace_ = trace.Get();
2535     // If We are called from native, use non-transactional mode.
2536     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2537     return true;
2538   }
2539 
RELEASE(Roles::uninterruptible_)2540   virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2541     self_->EndAssertNoThreadSuspension(nullptr);
2542   }
2543 
VisitFrame()2544   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2545     if (trace_ == nullptr) {
2546       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2547     }
2548     if (skip_depth_ > 0) {
2549       skip_depth_--;
2550       return true;
2551     }
2552     ArtMethod* m = GetMethod();
2553     if (m->IsRuntimeMethod()) {
2554       return true;  // Ignore runtime frames (in particular callee save).
2555     }
2556     AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
2557     return true;
2558   }
2559 
AddFrame(ArtMethod * method,uint32_t dex_pc)2560   void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2561     ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
2562     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
2563     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2564         trace_methods_and_pcs->GetLength() / 2 + count_,
2565         dex_pc,
2566         pointer_size_);
2567     // Save the declaring class of the method to ensure that the declaring classes of the methods
2568     // do not get unloaded while the stack trace is live.
2569     trace_->Set(count_ + 1, method->GetDeclaringClass());
2570     ++count_;
2571   }
2572 
GetTraceMethodsAndPCs() const2573   ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2574     return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0)));
2575   }
2576 
GetInternalStackTrace() const2577   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2578     return trace_;
2579   }
2580 
2581  private:
2582   Thread* const self_;
2583   // How many more frames to skip.
2584   int32_t skip_depth_;
2585   // Current position down stack trace.
2586   uint32_t count_ = 0;
2587   // An object array where the first element is a pointer array that contains the ArtMethod
2588   // pointers on the stack and dex PCs. The rest of the elements are the declaring
2589   // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2590   // the i'th frame.
2591   mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
2592   // For cross compilation.
2593   const PointerSize pointer_size_;
2594 
2595   DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2596 };
2597 
2598 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2599 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2600   // Compute depth of stack, save frames if possible to avoid needing to recompute many.
2601   constexpr size_t kMaxSavedFrames = 256;
2602   std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
2603   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
2604                                        &saved_frames[0],
2605                                        kMaxSavedFrames);
2606   count_visitor.WalkStack();
2607   const uint32_t depth = count_visitor.GetDepth();
2608   const uint32_t skip_depth = count_visitor.GetSkipDepth();
2609 
2610   // Build internal stack trace.
2611   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2612                                                                          const_cast<Thread*>(this),
2613                                                                          skip_depth);
2614   if (!build_trace_visitor.Init(depth)) {
2615     return nullptr;  // Allocation failed.
2616   }
2617   // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
2618   // than doing the stack walk twice.
2619   if (depth < kMaxSavedFrames) {
2620     for (size_t i = 0; i < depth; ++i) {
2621       build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
2622     }
2623   } else {
2624     build_trace_visitor.WalkStack();
2625   }
2626 
2627   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2628   if (kIsDebugBuild) {
2629     ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2630     // Second half of trace_methods is dex PCs.
2631     for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2632       auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2633           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2634       CHECK(method != nullptr);
2635     }
2636   }
2637   return soa.AddLocalReference<jobject>(trace);
2638 }
2639 template jobject Thread::CreateInternalStackTrace<false>(
2640     const ScopedObjectAccessAlreadyRunnable& soa) const;
2641 template jobject Thread::CreateInternalStackTrace<true>(
2642     const ScopedObjectAccessAlreadyRunnable& soa) const;
2643 
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const2644 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
2645   // Only count the depth since we do not pass a stack frame array as an argument.
2646   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
2647   count_visitor.WalkStack();
2648   return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
2649 }
2650 
CreateStackTraceElement(const ScopedObjectAccessAlreadyRunnable & soa,ArtMethod * method,uint32_t dex_pc)2651 static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement(
2652     const ScopedObjectAccessAlreadyRunnable& soa,
2653     ArtMethod* method,
2654     uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2655   int32_t line_number;
2656   StackHandleScope<3> hs(soa.Self());
2657   auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2658   auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2659   if (method->IsProxyMethod()) {
2660     line_number = -1;
2661     class_name_object.Assign(method->GetDeclaringClass()->GetName());
2662     // source_name_object intentionally left null for proxy methods
2663   } else {
2664     line_number = method->GetLineNumFromDexPC(dex_pc);
2665     // Allocate element, potentially triggering GC
2666     // TODO: reuse class_name_object via Class::name_?
2667     const char* descriptor = method->GetDeclaringClassDescriptor();
2668     CHECK(descriptor != nullptr);
2669     std::string class_name(PrettyDescriptor(descriptor));
2670     class_name_object.Assign(
2671         mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2672     if (class_name_object == nullptr) {
2673       soa.Self()->AssertPendingOOMException();
2674       return nullptr;
2675     }
2676     const char* source_file = method->GetDeclaringClassSourceFile();
2677     if (line_number == -1) {
2678       // Make the line_number field of StackTraceElement hold the dex pc.
2679       // source_name_object is intentionally left null if we failed to map the dex pc to
2680       // a line number (most probably because there is no debug info). See b/30183883.
2681       line_number = dex_pc;
2682     } else {
2683       if (source_file != nullptr) {
2684         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2685         if (source_name_object == nullptr) {
2686           soa.Self()->AssertPendingOOMException();
2687           return nullptr;
2688         }
2689       }
2690     }
2691   }
2692   const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2693   CHECK(method_name != nullptr);
2694   Handle<mirror::String> method_name_object(
2695       hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2696   if (method_name_object == nullptr) {
2697     return nullptr;
2698   }
2699   return mirror::StackTraceElement::Alloc(soa.Self(),
2700                                           class_name_object,
2701                                           method_name_object,
2702                                           source_name_object,
2703                                           line_number);
2704 }
2705 
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)2706 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2707     const ScopedObjectAccessAlreadyRunnable& soa,
2708     jobject internal,
2709     jobjectArray output_array,
2710     int* stack_depth) {
2711   // Decode the internal stack trace into the depth, method trace and PC trace.
2712   // Subtract one for the methods and PC trace.
2713   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
2714   DCHECK_GE(depth, 0);
2715 
2716   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2717 
2718   jobjectArray result;
2719 
2720   if (output_array != nullptr) {
2721     // Reuse the array we were given.
2722     result = output_array;
2723     // ...adjusting the number of frames we'll write to not exceed the array length.
2724     const int32_t traces_length =
2725         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
2726     depth = std::min(depth, traces_length);
2727   } else {
2728     // Create java_trace array and place in local reference table
2729     mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
2730         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2731     if (java_traces == nullptr) {
2732       return nullptr;
2733     }
2734     result = soa.AddLocalReference<jobjectArray>(java_traces);
2735   }
2736 
2737   if (stack_depth != nullptr) {
2738     *stack_depth = depth;
2739   }
2740 
2741   for (int32_t i = 0; i < depth; ++i) {
2742     ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
2743         soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
2744     // Methods and dex PC trace is element 0.
2745     DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2746     ObjPtr<mirror::PointerArray> const method_trace =
2747         ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0)));
2748     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2749     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
2750     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2751         i + method_trace->GetLength() / 2, kRuntimePointerSize);
2752     ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc);
2753     if (obj == nullptr) {
2754       return nullptr;
2755     }
2756     // We are called from native: use non-transactional mode.
2757     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
2758   }
2759   return result;
2760 }
2761 
CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2762 jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2763   // This code allocates. Do not allow it to operate with a pending exception.
2764   if (IsExceptionPending()) {
2765     return nullptr;
2766   }
2767 
2768   // If flip_function is not null, it means we have run a checkpoint
2769   // before the thread wakes up to execute the flip function and the
2770   // thread roots haven't been forwarded.  So the following access to
2771   // the roots (locks or methods in the frames) would be bad. Run it
2772   // here. TODO: clean up.
2773   // Note: copied from DumpJavaStack.
2774   {
2775     Thread* this_thread = const_cast<Thread*>(this);
2776     Closure* flip_func = this_thread->GetFlipFunction();
2777     if (flip_func != nullptr) {
2778       flip_func->Run(this_thread);
2779     }
2780   }
2781 
2782   class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor {
2783    public:
2784     CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in,
2785                                       Thread* self,
2786                                       Context* context)
2787         : MonitorObjectsStackVisitor(self, context),
2788           wait_jobject_(soaa_in.Env(), nullptr),
2789           block_jobject_(soaa_in.Env(), nullptr),
2790           soaa_(soaa_in) {}
2791 
2792    protected:
2793     VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
2794         OVERRIDE
2795         REQUIRES_SHARED(Locks::mutator_lock_) {
2796       ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(
2797           soaa_, m, GetDexPc(/* abort on error */ false));
2798       if (obj == nullptr) {
2799         return VisitMethodResult::kEndStackWalk;
2800       }
2801       stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr()));
2802       return VisitMethodResult::kContinueMethod;
2803     }
2804 
2805     VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) OVERRIDE {
2806       lock_objects_.push_back({});
2807       lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_);
2808 
2809       DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size());
2810 
2811       return VisitMethodResult::kContinueMethod;
2812     }
2813 
2814     void VisitWaitingObject(mirror::Object* obj, ThreadState state ATTRIBUTE_UNUSED)
2815         OVERRIDE
2816         REQUIRES_SHARED(Locks::mutator_lock_) {
2817       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
2818     }
2819     void VisitSleepingObject(mirror::Object* obj)
2820         OVERRIDE
2821         REQUIRES_SHARED(Locks::mutator_lock_) {
2822       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
2823     }
2824     void VisitBlockedOnObject(mirror::Object* obj,
2825                               ThreadState state ATTRIBUTE_UNUSED,
2826                               uint32_t owner_tid ATTRIBUTE_UNUSED)
2827         OVERRIDE
2828         REQUIRES_SHARED(Locks::mutator_lock_) {
2829       block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
2830     }
2831     void VisitLockedObject(mirror::Object* obj)
2832         OVERRIDE
2833         REQUIRES_SHARED(Locks::mutator_lock_) {
2834       frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj));
2835     }
2836 
2837    public:
2838     std::vector<ScopedLocalRef<jobject>> stack_trace_elements_;
2839     ScopedLocalRef<jobject> wait_jobject_;
2840     ScopedLocalRef<jobject> block_jobject_;
2841     std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_;
2842 
2843    private:
2844     const ScopedObjectAccessAlreadyRunnable& soaa_;
2845 
2846     std::vector<ScopedLocalRef<jobject>> frame_lock_objects_;
2847   };
2848 
2849   std::unique_ptr<Context> context(Context::Create());
2850   CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get());
2851   dumper.WalkStack();
2852 
2853   // There should not be a pending exception. Otherwise, return with it pending.
2854   if (IsExceptionPending()) {
2855     return nullptr;
2856   }
2857 
2858   // Now go and create Java arrays.
2859 
2860   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2861 
2862   StackHandleScope<6> hs(soa.Self());
2863   mirror::Class* aste_array_class = class_linker->FindClass(
2864       soa.Self(),
2865       "[Ldalvik/system/AnnotatedStackTraceElement;",
2866       ScopedNullHandle<mirror::ClassLoader>());
2867   if (aste_array_class == nullptr) {
2868     return nullptr;
2869   }
2870   Handle<mirror::Class> h_aste_array_class(hs.NewHandle<mirror::Class>(aste_array_class));
2871 
2872   mirror::Class* o_array_class = class_linker->FindClass(soa.Self(),
2873                                                          "[Ljava/lang/Object;",
2874                                                          ScopedNullHandle<mirror::ClassLoader>());
2875   if (o_array_class == nullptr) {
2876     // This should not fail in a healthy runtime.
2877     soa.Self()->AssertPendingException();
2878     return nullptr;
2879   }
2880   Handle<mirror::Class> h_o_array_class(hs.NewHandle<mirror::Class>(o_array_class));
2881 
2882   Handle<mirror::Class> h_aste_class(hs.NewHandle<mirror::Class>(
2883       h_aste_array_class->GetComponentType()));
2884 
2885   // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 .
2886   class_linker->EnsureInitialized(soa.Self(),
2887                                   h_aste_class,
2888                                   /* can_init_fields */ true,
2889                                   /* can_init_parents */ true);
2890   if (soa.Self()->IsExceptionPending()) {
2891     // This should not fail in a healthy runtime.
2892     return nullptr;
2893   }
2894 
2895   ArtField* stack_trace_element_field = h_aste_class->FindField(
2896       soa.Self(), h_aste_class.Get(), "stackTraceElement", "Ljava/lang/StackTraceElement;");
2897   DCHECK(stack_trace_element_field != nullptr);
2898   ArtField* held_locks_field = h_aste_class->FindField(
2899         soa.Self(), h_aste_class.Get(), "heldLocks", "[Ljava/lang/Object;");
2900   DCHECK(held_locks_field != nullptr);
2901   ArtField* blocked_on_field = h_aste_class->FindField(
2902         soa.Self(), h_aste_class.Get(), "blockedOn", "Ljava/lang/Object;");
2903   DCHECK(blocked_on_field != nullptr);
2904 
2905   size_t length = dumper.stack_trace_elements_.size();
2906   ObjPtr<mirror::ObjectArray<mirror::Object>> array =
2907       mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), aste_array_class, length);
2908   if (array == nullptr) {
2909     soa.Self()->AssertPendingOOMException();
2910     return nullptr;
2911   }
2912 
2913   ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array));
2914 
2915   MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr));
2916   MutableHandle<mirror::ObjectArray<mirror::Object>> handle2(
2917       hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr));
2918   for (size_t i = 0; i != length; ++i) {
2919     handle.Assign(h_aste_class->AllocObject(soa.Self()));
2920     if (handle == nullptr) {
2921       soa.Self()->AssertPendingOOMException();
2922       return nullptr;
2923     }
2924 
2925     // Set stack trace element.
2926     stack_trace_element_field->SetObject<false>(
2927         handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get()));
2928 
2929     // Create locked-on array.
2930     if (!dumper.lock_objects_[i].empty()) {
2931       handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(),
2932                                                                 h_o_array_class.Get(),
2933                                                                 dumper.lock_objects_[i].size()));
2934       if (handle2 == nullptr) {
2935         soa.Self()->AssertPendingOOMException();
2936         return nullptr;
2937       }
2938       int32_t j = 0;
2939       for (auto& scoped_local : dumper.lock_objects_[i]) {
2940         if (scoped_local == nullptr) {
2941           continue;
2942         }
2943         handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get()));
2944         DCHECK(!soa.Self()->IsExceptionPending());
2945         j++;
2946       }
2947       held_locks_field->SetObject<false>(handle.Get(), handle2.Get());
2948     }
2949 
2950     // Set blocked-on object.
2951     if (i == 0) {
2952       if (dumper.block_jobject_ != nullptr) {
2953         blocked_on_field->SetObject<false>(
2954             handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get()));
2955       }
2956     }
2957 
2958     ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get()));
2959     soa.Env()->SetObjectArrayElement(result.get(), i, elem.get());
2960     DCHECK(!soa.Self()->IsExceptionPending());
2961   }
2962 
2963   return result.release();
2964 }
2965 
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)2966 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
2967   va_list args;
2968   va_start(args, fmt);
2969   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
2970   va_end(args);
2971 }
2972 
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)2973 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
2974                                 const char* fmt, va_list ap) {
2975   std::string msg;
2976   StringAppendV(&msg, fmt, ap);
2977   ThrowNewException(exception_class_descriptor, msg.c_str());
2978 }
2979 
ThrowNewException(const char * exception_class_descriptor,const char * msg)2980 void Thread::ThrowNewException(const char* exception_class_descriptor,
2981                                const char* msg) {
2982   // Callers should either clear or call ThrowNewWrappedException.
2983   AssertNoPendingExceptionForNewException(msg);
2984   ThrowNewWrappedException(exception_class_descriptor, msg);
2985 }
2986 
GetCurrentClassLoader(Thread * self)2987 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
2988     REQUIRES_SHARED(Locks::mutator_lock_) {
2989   ArtMethod* method = self->GetCurrentMethod(nullptr);
2990   return method != nullptr
2991       ? method->GetDeclaringClass()->GetClassLoader()
2992       : nullptr;
2993 }
2994 
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)2995 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
2996                                       const char* msg) {
2997   DCHECK_EQ(this, Thread::Current());
2998   ScopedObjectAccessUnchecked soa(this);
2999   StackHandleScope<3> hs(soa.Self());
3000   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
3001   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
3002   ClearException();
3003   Runtime* runtime = Runtime::Current();
3004   auto* cl = runtime->GetClassLinker();
3005   Handle<mirror::Class> exception_class(
3006       hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
3007   if (UNLIKELY(exception_class == nullptr)) {
3008     CHECK(IsExceptionPending());
3009     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
3010     return;
3011   }
3012 
3013   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
3014                                                              true))) {
3015     DCHECK(IsExceptionPending());
3016     return;
3017   }
3018   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
3019   Handle<mirror::Throwable> exception(
3020       hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
3021 
3022   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
3023   if (exception == nullptr) {
3024     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
3025     return;
3026   }
3027 
3028   // Choose an appropriate constructor and set up the arguments.
3029   const char* signature;
3030   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
3031   if (msg != nullptr) {
3032     // Ensure we remember this and the method over the String allocation.
3033     msg_string.reset(
3034         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
3035     if (UNLIKELY(msg_string.get() == nullptr)) {
3036       CHECK(IsExceptionPending());  // OOME.
3037       return;
3038     }
3039     if (cause.get() == nullptr) {
3040       signature = "(Ljava/lang/String;)V";
3041     } else {
3042       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
3043     }
3044   } else {
3045     if (cause.get() == nullptr) {
3046       signature = "()V";
3047     } else {
3048       signature = "(Ljava/lang/Throwable;)V";
3049     }
3050   }
3051   ArtMethod* exception_init_method =
3052       exception_class->FindConstructor(signature, cl->GetImagePointerSize());
3053 
3054   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
3055       << PrettyDescriptor(exception_class_descriptor);
3056 
3057   if (UNLIKELY(!runtime->IsStarted())) {
3058     // Something is trying to throw an exception without a started runtime, which is the common
3059     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
3060     // the exception fields directly.
3061     if (msg != nullptr) {
3062       exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
3063     }
3064     if (cause.get() != nullptr) {
3065       exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
3066     }
3067     ScopedLocalRef<jobject> trace(GetJniEnv(),
3068                                   Runtime::Current()->IsActiveTransaction()
3069                                       ? CreateInternalStackTrace<true>(soa)
3070                                       : CreateInternalStackTrace<false>(soa));
3071     if (trace.get() != nullptr) {
3072       exception->SetStackState(DecodeJObject(trace.get()).Ptr());
3073     }
3074     SetException(exception.Get());
3075   } else {
3076     jvalue jv_args[2];
3077     size_t i = 0;
3078 
3079     if (msg != nullptr) {
3080       jv_args[i].l = msg_string.get();
3081       ++i;
3082     }
3083     if (cause.get() != nullptr) {
3084       jv_args[i].l = cause.get();
3085       ++i;
3086     }
3087     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
3088     InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
3089     if (LIKELY(!IsExceptionPending())) {
3090       SetException(exception.Get());
3091     }
3092   }
3093 }
3094 
ThrowOutOfMemoryError(const char * msg)3095 void Thread::ThrowOutOfMemoryError(const char* msg) {
3096   LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
3097       msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
3098   if (!tls32_.throwing_OutOfMemoryError) {
3099     tls32_.throwing_OutOfMemoryError = true;
3100     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
3101     tls32_.throwing_OutOfMemoryError = false;
3102   } else {
3103     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
3104     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
3105   }
3106 }
3107 
CurrentFromGdb()3108 Thread* Thread::CurrentFromGdb() {
3109   return Thread::Current();
3110 }
3111 
DumpFromGdb() const3112 void Thread::DumpFromGdb() const {
3113   std::ostringstream ss;
3114   Dump(ss);
3115   std::string str(ss.str());
3116   // log to stderr for debugging command line processes
3117   std::cerr << str;
3118 #ifdef ART_TARGET_ANDROID
3119   // log to logcat for debugging frameworks processes
3120   LOG(INFO) << str;
3121 #endif
3122 }
3123 
3124 // Explicitly instantiate 32 and 64bit thread offset dumping support.
3125 template
3126 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
3127 template
3128 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
3129 
3130 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)3131 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
3132 #define DO_THREAD_OFFSET(x, y) \
3133     if (offset == (x).Uint32Value()) { \
3134       os << (y); \
3135       return; \
3136     }
3137   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
3138   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
3139   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
3140   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
3141   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
3142   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
3143   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
3144   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
3145   DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
3146   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
3147   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
3148   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
3149   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
3150 #undef DO_THREAD_OFFSET
3151 
3152 #define JNI_ENTRY_POINT_INFO(x) \
3153     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3154       os << #x; \
3155       return; \
3156     }
3157   JNI_ENTRY_POINT_INFO(pDlsymLookup)
3158 #undef JNI_ENTRY_POINT_INFO
3159 
3160 #define QUICK_ENTRY_POINT_INFO(x) \
3161     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3162       os << #x; \
3163       return; \
3164     }
3165   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
3166   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
3167   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
3168   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
3169   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
3170   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
3171   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
3172   QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
3173   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
3174   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
3175   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
3176   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
3177   QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
3178   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
3179   QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
3180   QUICK_ENTRY_POINT_INFO(pInitializeType)
3181   QUICK_ENTRY_POINT_INFO(pResolveString)
3182   QUICK_ENTRY_POINT_INFO(pSet8Instance)
3183   QUICK_ENTRY_POINT_INFO(pSet8Static)
3184   QUICK_ENTRY_POINT_INFO(pSet16Instance)
3185   QUICK_ENTRY_POINT_INFO(pSet16Static)
3186   QUICK_ENTRY_POINT_INFO(pSet32Instance)
3187   QUICK_ENTRY_POINT_INFO(pSet32Static)
3188   QUICK_ENTRY_POINT_INFO(pSet64Instance)
3189   QUICK_ENTRY_POINT_INFO(pSet64Static)
3190   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
3191   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
3192   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
3193   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
3194   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
3195   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
3196   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
3197   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
3198   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
3199   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
3200   QUICK_ENTRY_POINT_INFO(pGet32Instance)
3201   QUICK_ENTRY_POINT_INFO(pGet32Static)
3202   QUICK_ENTRY_POINT_INFO(pGet64Instance)
3203   QUICK_ENTRY_POINT_INFO(pGet64Static)
3204   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
3205   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
3206   QUICK_ENTRY_POINT_INFO(pAputObject)
3207   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
3208   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
3209   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
3210   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
3211   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
3212   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
3213   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
3214   QUICK_ENTRY_POINT_INFO(pLockObject)
3215   QUICK_ENTRY_POINT_INFO(pUnlockObject)
3216   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
3217   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
3218   QUICK_ENTRY_POINT_INFO(pCmplDouble)
3219   QUICK_ENTRY_POINT_INFO(pCmplFloat)
3220   QUICK_ENTRY_POINT_INFO(pCos)
3221   QUICK_ENTRY_POINT_INFO(pSin)
3222   QUICK_ENTRY_POINT_INFO(pAcos)
3223   QUICK_ENTRY_POINT_INFO(pAsin)
3224   QUICK_ENTRY_POINT_INFO(pAtan)
3225   QUICK_ENTRY_POINT_INFO(pAtan2)
3226   QUICK_ENTRY_POINT_INFO(pCbrt)
3227   QUICK_ENTRY_POINT_INFO(pCosh)
3228   QUICK_ENTRY_POINT_INFO(pExp)
3229   QUICK_ENTRY_POINT_INFO(pExpm1)
3230   QUICK_ENTRY_POINT_INFO(pHypot)
3231   QUICK_ENTRY_POINT_INFO(pLog)
3232   QUICK_ENTRY_POINT_INFO(pLog10)
3233   QUICK_ENTRY_POINT_INFO(pNextAfter)
3234   QUICK_ENTRY_POINT_INFO(pSinh)
3235   QUICK_ENTRY_POINT_INFO(pTan)
3236   QUICK_ENTRY_POINT_INFO(pTanh)
3237   QUICK_ENTRY_POINT_INFO(pFmod)
3238   QUICK_ENTRY_POINT_INFO(pL2d)
3239   QUICK_ENTRY_POINT_INFO(pFmodf)
3240   QUICK_ENTRY_POINT_INFO(pL2f)
3241   QUICK_ENTRY_POINT_INFO(pD2iz)
3242   QUICK_ENTRY_POINT_INFO(pF2iz)
3243   QUICK_ENTRY_POINT_INFO(pIdivmod)
3244   QUICK_ENTRY_POINT_INFO(pD2l)
3245   QUICK_ENTRY_POINT_INFO(pF2l)
3246   QUICK_ENTRY_POINT_INFO(pLdiv)
3247   QUICK_ENTRY_POINT_INFO(pLmod)
3248   QUICK_ENTRY_POINT_INFO(pLmul)
3249   QUICK_ENTRY_POINT_INFO(pShlLong)
3250   QUICK_ENTRY_POINT_INFO(pShrLong)
3251   QUICK_ENTRY_POINT_INFO(pUshrLong)
3252   QUICK_ENTRY_POINT_INFO(pIndexOf)
3253   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
3254   QUICK_ENTRY_POINT_INFO(pMemcpy)
3255   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
3256   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
3257   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
3258   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
3259   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
3260   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
3261   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
3262   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
3263   QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
3264   QUICK_ENTRY_POINT_INFO(pTestSuspend)
3265   QUICK_ENTRY_POINT_INFO(pDeliverException)
3266   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
3267   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
3268   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3269   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3270   QUICK_ENTRY_POINT_INFO(pDeoptimize)
3271   QUICK_ENTRY_POINT_INFO(pA64Load)
3272   QUICK_ENTRY_POINT_INFO(pA64Store)
3273   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3274   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3275   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3276   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3277   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3278   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3279   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3280   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3281   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3282   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3283   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3284   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3285   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3286   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3287   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3288   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3289   QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
3290   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3291   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3292   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3293   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3294   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3295   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3296   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3297   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3298   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3299   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3300   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3301   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3302   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3303   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3304   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3305   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3306   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3307   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3308   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3309   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3310   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3311   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3312   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3313   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3314   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3315   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3316   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3317   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3318   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3319   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3320   QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3321   QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3322 
3323   QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
3324   QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
3325 #undef QUICK_ENTRY_POINT_INFO
3326 
3327   os << offset;
3328 }
3329 
QuickDeliverException()3330 void Thread::QuickDeliverException() {
3331   // Get exception from thread.
3332   ObjPtr<mirror::Throwable> exception = GetException();
3333   CHECK(exception != nullptr);
3334   if (exception == GetDeoptimizationException()) {
3335     artDeoptimize(this);
3336     UNREACHABLE();
3337   }
3338 
3339   ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr());
3340 
3341   // This is a real exception: let the instrumentation know about it.
3342   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3343   if (instrumentation->HasExceptionThrownListeners() &&
3344       IsExceptionThrownByCurrentMethod(exception)) {
3345     // Instrumentation may cause GC so keep the exception object safe.
3346     StackHandleScope<1> hs(this);
3347     HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3348     instrumentation->ExceptionThrownEvent(this, exception.Ptr());
3349   }
3350   // Does instrumentation need to deoptimize the stack?
3351   // Note: we do this *after* reporting the exception to instrumentation in case it
3352   // now requires deoptimization. It may happen if a debugger is attached and requests
3353   // new events (single-step, breakpoint, ...) when the exception is reported.
3354   if (Dbg::IsForcedInterpreterNeededForException(this)) {
3355     NthCallerVisitor visitor(this, 0, false);
3356     visitor.WalkStack();
3357     if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
3358       // method_type shouldn't matter due to exception handling.
3359       const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
3360       // Save the exception into the deoptimization context so it can be restored
3361       // before entering the interpreter.
3362       PushDeoptimizationContext(
3363           JValue(),
3364           false /* is_reference */,
3365           exception,
3366           false /* from_code */,
3367           method_type);
3368       artDeoptimize(this);
3369       UNREACHABLE();
3370     } else {
3371       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3372                    << visitor.caller->PrettyMethod();
3373     }
3374   }
3375 
3376   // Don't leave exception visible while we try to find the handler, which may cause class
3377   // resolution.
3378   ClearException();
3379   QuickExceptionHandler exception_handler(this, false);
3380   exception_handler.FindCatch(exception);
3381   exception_handler.UpdateInstrumentationStack();
3382   if (exception_handler.GetClearException()) {
3383     // Exception was cleared as part of delivery.
3384     DCHECK(!IsExceptionPending());
3385   } else {
3386     // Exception was put back with a throw location.
3387     DCHECK(IsExceptionPending());
3388     // Check the to-space invariant on the re-installed exception (if applicable).
3389     ReadBarrier::MaybeAssertToSpaceInvariant(GetException());
3390   }
3391   exception_handler.DoLongJump();
3392 }
3393 
GetLongJumpContext()3394 Context* Thread::GetLongJumpContext() {
3395   Context* result = tlsPtr_.long_jump_context;
3396   if (result == nullptr) {
3397     result = Context::Create();
3398   } else {
3399     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
3400     result->Reset();
3401   }
3402   return result;
3403 }
3404 
3405 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3406 //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
3407 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL3408   CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error)
3409       REQUIRES_SHARED(Locks::mutator_lock_)
3410       : StackVisitor(thread,
3411                      context,
3412                      StackVisitor::StackWalkKind::kIncludeInlinedFrames,
3413                      check_suspended),
3414         this_object_(nullptr),
3415         method_(nullptr),
3416         dex_pc_(0),
3417         abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL3418   bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3419     ArtMethod* m = GetMethod();
3420     if (m->IsRuntimeMethod()) {
3421       // Continue if this is a runtime method.
3422       return true;
3423     }
3424     if (context_ != nullptr) {
3425       this_object_ = GetThisObject();
3426     }
3427     method_ = m;
3428     dex_pc_ = GetDexPc(abort_on_error_);
3429     return false;
3430   }
3431   ObjPtr<mirror::Object> this_object_;
3432   ArtMethod* method_;
3433   uint32_t dex_pc_;
3434   const bool abort_on_error_;
3435 };
3436 
GetCurrentMethod(uint32_t * dex_pc,bool check_suspended,bool abort_on_error) const3437 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc,
3438                                     bool check_suspended,
3439                                     bool abort_on_error) const {
3440   CurrentMethodVisitor visitor(const_cast<Thread*>(this),
3441                                nullptr,
3442                                check_suspended,
3443                                abort_on_error);
3444   visitor.WalkStack(false);
3445   if (dex_pc != nullptr) {
3446     *dex_pc = visitor.dex_pc_;
3447   }
3448   return visitor.method_;
3449 }
3450 
HoldsLock(ObjPtr<mirror::Object> object) const3451 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
3452   return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
3453 }
3454 
3455 extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
3456     REQUIRES_SHARED(Locks::mutator_lock_);
3457 
3458 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
3459 template <typename RootVisitor, bool kPrecise = false>
3460 class ReferenceMapVisitor : public StackVisitor {
3461  public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)3462   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
3463       REQUIRES_SHARED(Locks::mutator_lock_)
3464         // We are visiting the references in compiled frames, so we do not need
3465         // to know the inlined frames.
3466       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
3467         visitor_(visitor) {}
3468 
VisitFrame()3469   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3470     if (false) {
3471       LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
3472                 << StringPrintf("@ PC:%04x", GetDexPc());
3473     }
3474     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
3475     if (shadow_frame != nullptr) {
3476       VisitShadowFrame(shadow_frame);
3477     } else {
3478       VisitQuickFrame();
3479     }
3480     return true;
3481   }
3482 
VisitShadowFrame(ShadowFrame * shadow_frame)3483   void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
3484     ArtMethod* m = shadow_frame->GetMethod();
3485     VisitDeclaringClass(m);
3486     DCHECK(m != nullptr);
3487     size_t num_regs = shadow_frame->NumberOfVRegs();
3488     DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
3489     // handle scope for JNI or References for interpreter.
3490     for (size_t reg = 0; reg < num_regs; ++reg) {
3491       mirror::Object* ref = shadow_frame->GetVRegReference(reg);
3492       if (ref != nullptr) {
3493         mirror::Object* new_ref = ref;
3494         visitor_(&new_ref, reg, this);
3495         if (new_ref != ref) {
3496           shadow_frame->SetVRegReference(reg, new_ref);
3497         }
3498       }
3499     }
3500     // Mark lock count map required for structured locking checks.
3501     shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg */ -1, this);
3502   }
3503 
3504  private:
3505   // Visiting the declaring class is necessary so that we don't unload the class of a method that
3506   // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
3507   // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)3508   void VisitDeclaringClass(ArtMethod* method)
3509       REQUIRES_SHARED(Locks::mutator_lock_)
3510       NO_THREAD_SAFETY_ANALYSIS {
3511     ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
3512     // klass can be null for runtime methods.
3513     if (klass != nullptr) {
3514       if (kVerifyImageObjectsMarked) {
3515         gc::Heap* const heap = Runtime::Current()->GetHeap();
3516         gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
3517                                                                                 /*fail_ok*/true);
3518         if (space != nullptr && space->IsImageSpace()) {
3519           bool failed = false;
3520           if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
3521             failed = true;
3522             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
3523           } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
3524             failed = true;
3525             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
3526           }
3527           if (failed) {
3528             GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3529             space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
3530             LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
3531                                      << " klass@" << klass.Ptr();
3532             // Pretty info last in case it crashes.
3533             LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
3534                        << klass->PrettyClass();
3535           }
3536         }
3537       }
3538       mirror::Object* new_ref = klass.Ptr();
3539       visitor_(&new_ref, /* vreg */ -1, this);
3540       if (new_ref != klass) {
3541         method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
3542       }
3543     }
3544   }
3545 
3546   template <typename T>
3547   ALWAYS_INLINE
VisitQuickFrameWithVregCallback()3548   inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
3549     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3550     DCHECK(cur_quick_frame != nullptr);
3551     ArtMethod* m = *cur_quick_frame;
3552     VisitDeclaringClass(m);
3553 
3554     // Process register map (which native and runtime methods don't have)
3555     if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
3556       const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
3557       DCHECK(method_header->IsOptimized());
3558       StackReference<mirror::Object>* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
3559           reinterpret_cast<uintptr_t>(cur_quick_frame));
3560       uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
3561       CodeInfo code_info = method_header->GetOptimizedCodeInfo();
3562       CodeInfoEncoding encoding = code_info.ExtractEncoding();
3563       StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
3564       DCHECK(map.IsValid());
3565 
3566       T vreg_info(m, code_info, encoding, map, visitor_);
3567 
3568       // Visit stack entries that hold pointers.
3569       const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding);
3570       BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map);
3571       for (size_t i = 0; i < number_of_bits; ++i) {
3572         if (stack_mask.LoadBit(i)) {
3573           StackReference<mirror::Object>* ref_addr = vreg_base + i;
3574           mirror::Object* ref = ref_addr->AsMirrorPtr();
3575           if (ref != nullptr) {
3576             mirror::Object* new_ref = ref;
3577             vreg_info.VisitStack(&new_ref, i, this);
3578             if (ref != new_ref) {
3579               ref_addr->Assign(new_ref);
3580            }
3581           }
3582         }
3583       }
3584       // Visit callee-save registers that hold pointers.
3585       uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map);
3586       for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
3587         if (register_mask & (1 << i)) {
3588           mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
3589           if (kIsDebugBuild && ref_addr == nullptr) {
3590             std::string thread_name;
3591             GetThread()->GetThreadName(thread_name);
3592             LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
3593             DescribeStack(GetThread());
3594             LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
3595                        << "set in register_mask=" << register_mask << " at " << DescribeLocation();
3596           }
3597           if (*ref_addr != nullptr) {
3598             vreg_info.VisitRegister(ref_addr, i, this);
3599           }
3600         }
3601       }
3602     } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) {
3603       // If this is a proxy method, visit its reference arguments.
3604       DCHECK(!m->IsStatic());
3605       DCHECK(!m->IsNative());
3606       std::vector<StackReference<mirror::Object>*> ref_addrs =
3607           GetProxyReferenceArguments(cur_quick_frame);
3608       for (StackReference<mirror::Object>* ref_addr : ref_addrs) {
3609         mirror::Object* ref = ref_addr->AsMirrorPtr();
3610         if (ref != nullptr) {
3611           mirror::Object* new_ref = ref;
3612           visitor_(&new_ref, /* vreg */ -1, this);
3613           if (ref != new_ref) {
3614             ref_addr->Assign(new_ref);
3615           }
3616         }
3617       }
3618     }
3619   }
3620 
VisitQuickFrame()3621   void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3622     if (kPrecise) {
3623       VisitQuickFramePrecise();
3624     } else {
3625       VisitQuickFrameNonPrecise();
3626     }
3627   }
3628 
VisitQuickFrameNonPrecise()3629   void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3630     struct UndefinedVRegInfo {
3631       UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
3632                         const CodeInfo& code_info ATTRIBUTE_UNUSED,
3633                         const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED,
3634                         const StackMap& map ATTRIBUTE_UNUSED,
3635                         RootVisitor& _visitor)
3636           : visitor(_visitor) {
3637       }
3638 
3639       ALWAYS_INLINE
3640       void VisitStack(mirror::Object** ref,
3641                       size_t stack_index ATTRIBUTE_UNUSED,
3642                       const StackVisitor* stack_visitor)
3643           REQUIRES_SHARED(Locks::mutator_lock_) {
3644         visitor(ref, -1, stack_visitor);
3645       }
3646 
3647       ALWAYS_INLINE
3648       void VisitRegister(mirror::Object** ref,
3649                          size_t register_index ATTRIBUTE_UNUSED,
3650                          const StackVisitor* stack_visitor)
3651           REQUIRES_SHARED(Locks::mutator_lock_) {
3652         visitor(ref, -1, stack_visitor);
3653       }
3654 
3655       RootVisitor& visitor;
3656     };
3657     VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
3658   }
3659 
VisitQuickFramePrecise()3660   void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3661     struct StackMapVRegInfo {
3662       StackMapVRegInfo(ArtMethod* method,
3663                        const CodeInfo& _code_info,
3664                        const CodeInfoEncoding& _encoding,
3665                        const StackMap& map,
3666                        RootVisitor& _visitor)
3667           : number_of_dex_registers(method->DexInstructionData().RegistersSize()),
3668             code_info(_code_info),
3669             encoding(_encoding),
3670             dex_register_map(code_info.GetDexRegisterMapOf(map,
3671                                                            encoding,
3672                                                            number_of_dex_registers)),
3673             visitor(_visitor) {
3674       }
3675 
3676       // TODO: If necessary, we should consider caching a reverse map instead of the linear
3677       //       lookups for each location.
3678       void FindWithType(const size_t index,
3679                         const DexRegisterLocation::Kind kind,
3680                         mirror::Object** ref,
3681                         const StackVisitor* stack_visitor)
3682           REQUIRES_SHARED(Locks::mutator_lock_) {
3683         bool found = false;
3684         for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
3685           DexRegisterLocation location = dex_register_map.GetDexRegisterLocation(
3686               dex_reg, number_of_dex_registers, code_info, encoding);
3687           if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
3688             visitor(ref, dex_reg, stack_visitor);
3689             found = true;
3690           }
3691         }
3692 
3693         if (!found) {
3694           // If nothing found, report with -1.
3695           visitor(ref, -1, stack_visitor);
3696         }
3697       }
3698 
3699       void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
3700           REQUIRES_SHARED(Locks::mutator_lock_) {
3701         const size_t stack_offset = stack_index * kFrameSlotSize;
3702         FindWithType(stack_offset,
3703                      DexRegisterLocation::Kind::kInStack,
3704                      ref,
3705                      stack_visitor);
3706       }
3707 
3708       void VisitRegister(mirror::Object** ref,
3709                          size_t register_index,
3710                          const StackVisitor* stack_visitor)
3711           REQUIRES_SHARED(Locks::mutator_lock_) {
3712         FindWithType(register_index,
3713                      DexRegisterLocation::Kind::kInRegister,
3714                      ref,
3715                      stack_visitor);
3716       }
3717 
3718       size_t number_of_dex_registers;
3719       const CodeInfo& code_info;
3720       const CodeInfoEncoding& encoding;
3721       DexRegisterMap dex_register_map;
3722       RootVisitor& visitor;
3723     };
3724     VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
3725   }
3726 
3727   // Visitor for when we visit a root.
3728   RootVisitor& visitor_;
3729 };
3730 
3731 class RootCallbackVisitor {
3732  public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)3733   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
3734 
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const3735   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
3736       REQUIRES_SHARED(Locks::mutator_lock_) {
3737     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
3738   }
3739 
3740  private:
3741   RootVisitor* const visitor_;
3742   const uint32_t tid_;
3743 };
3744 
3745 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)3746 void Thread::VisitRoots(RootVisitor* visitor) {
3747   const pid_t thread_id = GetThreadId();
3748   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
3749   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
3750     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
3751                        RootInfo(kRootNativeStack, thread_id));
3752   }
3753   if (tlsPtr_.async_exception != nullptr) {
3754     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception),
3755                        RootInfo(kRootNativeStack, thread_id));
3756   }
3757   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
3758   tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id));
3759   tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
3760   HandleScopeVisitRoots(visitor, thread_id);
3761   if (tlsPtr_.debug_invoke_req != nullptr) {
3762     tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
3763   }
3764   // Visit roots for deoptimization.
3765   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
3766     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3767     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3768     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
3769          record != nullptr;
3770          record = record->GetLink()) {
3771       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
3772            shadow_frame != nullptr;
3773            shadow_frame = shadow_frame->GetLink()) {
3774         mapper.VisitShadowFrame(shadow_frame);
3775       }
3776     }
3777   }
3778   for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
3779        record != nullptr;
3780        record = record->GetLink()) {
3781     if (record->IsReference()) {
3782       visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
3783                                   RootInfo(kRootThreadObject, thread_id));
3784     }
3785     visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
3786                                 RootInfo(kRootThreadObject, thread_id));
3787   }
3788   if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
3789     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3790     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3791     for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
3792          record != nullptr;
3793          record = record->GetNext()) {
3794       mapper.VisitShadowFrame(record->GetShadowFrame());
3795     }
3796   }
3797   for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
3798     verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
3799   }
3800   // Visit roots on this thread's stack
3801   RuntimeContextType context;
3802   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3803   ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
3804   mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
3805   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
3806     visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
3807   }
3808 }
3809 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)3810 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
3811   if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
3812     VisitRoots</* kPrecise */ true>(visitor);
3813   } else {
3814     VisitRoots</* kPrecise */ false>(visitor);
3815   }
3816 }
3817 
3818 class VerifyRootVisitor : public SingleRootVisitor {
3819  public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)3820   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
3821       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3822     VerifyObject(root);
3823   }
3824 };
3825 
VerifyStackImpl()3826 void Thread::VerifyStackImpl() {
3827   if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
3828     VerifyRootVisitor visitor;
3829     std::unique_ptr<Context> context(Context::Create());
3830     RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
3831     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
3832     mapper.WalkStack();
3833   }
3834 }
3835 
3836 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()3837 void Thread::SetStackEndForStackOverflow() {
3838   // During stack overflow we allow use of the full stack.
3839   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
3840     // However, we seem to have already extended to use the full stack.
3841     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
3842                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
3843     DumpStack(LOG_STREAM(ERROR));
3844     LOG(FATAL) << "Recursive stack overflow.";
3845   }
3846 
3847   tlsPtr_.stack_end = tlsPtr_.stack_begin;
3848 
3849   // Remove the stack overflow protection if is it set up.
3850   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
3851   if (implicit_stack_check) {
3852     if (!UnprotectStack()) {
3853       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
3854     }
3855   }
3856 }
3857 
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)3858 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
3859   DCHECK_LE(start, end);
3860   DCHECK_LE(end, limit);
3861   tlsPtr_.thread_local_start = start;
3862   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
3863   tlsPtr_.thread_local_end = end;
3864   tlsPtr_.thread_local_limit = limit;
3865   tlsPtr_.thread_local_objects = 0;
3866 }
3867 
HasTlab() const3868 bool Thread::HasTlab() const {
3869   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
3870   if (has_tlab) {
3871     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
3872   } else {
3873     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
3874   }
3875   return has_tlab;
3876 }
3877 
operator <<(std::ostream & os,const Thread & thread)3878 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
3879   thread.ShortDump(os);
3880   return os;
3881 }
3882 
ProtectStack(bool fatal_on_error)3883 bool Thread::ProtectStack(bool fatal_on_error) {
3884   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3885   VLOG(threads) << "Protecting stack at " << pregion;
3886   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
3887     if (fatal_on_error) {
3888       LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
3889           "Reason: "
3890           << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
3891     }
3892     return false;
3893   }
3894   return true;
3895 }
3896 
UnprotectStack()3897 bool Thread::UnprotectStack() {
3898   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3899   VLOG(threads) << "Unprotecting stack at " << pregion;
3900   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
3901 }
3902 
ActivateSingleStepControl(SingleStepControl * ssc)3903 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
3904   CHECK(Dbg::IsDebuggerActive());
3905   CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
3906   CHECK(ssc != nullptr);
3907   tlsPtr_.single_step_control = ssc;
3908 }
3909 
DeactivateSingleStepControl()3910 void Thread::DeactivateSingleStepControl() {
3911   CHECK(Dbg::IsDebuggerActive());
3912   CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
3913   SingleStepControl* ssc = GetSingleStepControl();
3914   tlsPtr_.single_step_control = nullptr;
3915   delete ssc;
3916 }
3917 
SetDebugInvokeReq(DebugInvokeReq * req)3918 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
3919   CHECK(Dbg::IsDebuggerActive());
3920   CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
3921   CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
3922   CHECK(req != nullptr);
3923   tlsPtr_.debug_invoke_req = req;
3924 }
3925 
ClearDebugInvokeReq()3926 void Thread::ClearDebugInvokeReq() {
3927   CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
3928   CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
3929   DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
3930   tlsPtr_.debug_invoke_req = nullptr;
3931   delete req;
3932 }
3933 
PushVerifier(verifier::MethodVerifier * verifier)3934 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
3935   verifier->link_ = tlsPtr_.method_verifier;
3936   tlsPtr_.method_verifier = verifier;
3937 }
3938 
PopVerifier(verifier::MethodVerifier * verifier)3939 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
3940   CHECK_EQ(tlsPtr_.method_verifier, verifier);
3941   tlsPtr_.method_verifier = verifier->link_;
3942 }
3943 
NumberOfHeldMutexes() const3944 size_t Thread::NumberOfHeldMutexes() const {
3945   size_t count = 0;
3946   for (BaseMutex* mu : tlsPtr_.held_mutexes) {
3947     count += mu != nullptr ? 1 : 0;
3948   }
3949   return count;
3950 }
3951 
DeoptimizeWithDeoptimizationException(JValue * result)3952 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
3953   DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
3954   ClearException();
3955   ShadowFrame* shadow_frame =
3956       PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
3957   ObjPtr<mirror::Throwable> pending_exception;
3958   bool from_code = false;
3959   DeoptimizationMethodType method_type;
3960   PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
3961   SetTopOfStack(nullptr);
3962   SetTopOfShadowStack(shadow_frame);
3963 
3964   // Restore the exception that was pending before deoptimization then interpret the
3965   // deoptimized frames.
3966   if (pending_exception != nullptr) {
3967     SetException(pending_exception);
3968   }
3969   interpreter::EnterInterpreterFromDeoptimize(this,
3970                                               shadow_frame,
3971                                               result,
3972                                               from_code,
3973                                               method_type);
3974 }
3975 
SetAsyncException(ObjPtr<mirror::Throwable> new_exception)3976 void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) {
3977   CHECK(new_exception != nullptr);
3978   Runtime::Current()->SetAsyncExceptionsThrown();
3979   if (kIsDebugBuild) {
3980     // Make sure we are in a checkpoint.
3981     MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
3982     CHECK(this == Thread::Current() || GetSuspendCount() >= 1)
3983         << "It doesn't look like this was called in a checkpoint! this: "
3984         << this << " count: " << GetSuspendCount();
3985   }
3986   tlsPtr_.async_exception = new_exception.Ptr();
3987 }
3988 
ObserveAsyncException()3989 bool Thread::ObserveAsyncException() {
3990   DCHECK(this == Thread::Current());
3991   if (tlsPtr_.async_exception != nullptr) {
3992     if (tlsPtr_.exception != nullptr) {
3993       LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: "
3994                    << tlsPtr_.exception->Dump();
3995       LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump();
3996     }
3997     tlsPtr_.exception = tlsPtr_.async_exception;
3998     tlsPtr_.async_exception = nullptr;
3999     return true;
4000   } else {
4001     return IsExceptionPending();
4002   }
4003 }
4004 
SetException(ObjPtr<mirror::Throwable> new_exception)4005 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
4006   CHECK(new_exception != nullptr);
4007   // TODO: DCHECK(!IsExceptionPending());
4008   tlsPtr_.exception = new_exception.Ptr();
4009 }
4010 
IsAotCompiler()4011 bool Thread::IsAotCompiler() {
4012   return Runtime::Current()->IsAotCompiler();
4013 }
4014 
GetPeerFromOtherThread() const4015 mirror::Object* Thread::GetPeerFromOtherThread() const {
4016   DCHECK(tlsPtr_.jpeer == nullptr);
4017   mirror::Object* peer = tlsPtr_.opeer;
4018   if (kUseReadBarrier && Current()->GetIsGcMarking()) {
4019     // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
4020     // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
4021     // mark/forward it here.
4022     peer = art::ReadBarrier::Mark(peer);
4023   }
4024   return peer;
4025 }
4026 
SetReadBarrierEntrypoints()4027 void Thread::SetReadBarrierEntrypoints() {
4028   // Make sure entrypoints aren't null.
4029   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active*/ true);
4030 }
4031 
4032 }  // namespace art
4033