• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "space_bitmap-inl.h"
18 
19 #include "android-base/stringprintf.h"
20 
21 #include "art_field-inl.h"
22 #include "dex/dex_file-inl.h"
23 #include "mem_map.h"
24 #include "mirror/class-inl.h"
25 #include "mirror/object-inl.h"
26 #include "mirror/object_array.h"
27 
28 namespace art {
29 namespace gc {
30 namespace accounting {
31 
32 using android::base::StringPrintf;
33 
34 template<size_t kAlignment>
ComputeBitmapSize(uint64_t capacity)35 size_t SpaceBitmap<kAlignment>::ComputeBitmapSize(uint64_t capacity) {
36   // Number of space (heap) bytes covered by one bitmap word.
37   // (Word size in bytes = `sizeof(intptr_t)`, which is expected to be
38   // 4 on a 32-bit architecture and 8 on a 64-bit one.)
39   const uint64_t kBytesCoveredPerWord = kAlignment * kBitsPerIntPtrT;
40   // Calculate the number of words required to cover a space (heap)
41   // having a size of `capacity` bytes.
42   return (RoundUp(capacity, kBytesCoveredPerWord) / kBytesCoveredPerWord) * sizeof(intptr_t);
43 }
44 
45 template<size_t kAlignment>
ComputeHeapSize(uint64_t bitmap_bytes)46 size_t SpaceBitmap<kAlignment>::ComputeHeapSize(uint64_t bitmap_bytes) {
47   return bitmap_bytes * kBitsPerByte * kAlignment;
48 }
49 
50 template<size_t kAlignment>
CreateFromMemMap(const std::string & name,MemMap * mem_map,uint8_t * heap_begin,size_t heap_capacity)51 SpaceBitmap<kAlignment>* SpaceBitmap<kAlignment>::CreateFromMemMap(
52     const std::string& name, MemMap* mem_map, uint8_t* heap_begin, size_t heap_capacity) {
53   CHECK(mem_map != nullptr);
54   uintptr_t* bitmap_begin = reinterpret_cast<uintptr_t*>(mem_map->Begin());
55   const size_t bitmap_size = ComputeBitmapSize(heap_capacity);
56   return new SpaceBitmap(name, mem_map, bitmap_begin, bitmap_size, heap_begin, heap_capacity);
57 }
58 
59 template<size_t kAlignment>
SpaceBitmap(const std::string & name,MemMap * mem_map,uintptr_t * bitmap_begin,size_t bitmap_size,const void * heap_begin,size_t heap_capacity)60 SpaceBitmap<kAlignment>::SpaceBitmap(const std::string& name,
61                                      MemMap* mem_map,
62                                      uintptr_t* bitmap_begin,
63                                      size_t bitmap_size,
64                                      const void* heap_begin,
65                                      size_t heap_capacity)
66     : mem_map_(mem_map),
67       bitmap_begin_(reinterpret_cast<Atomic<uintptr_t>*>(bitmap_begin)),
68       bitmap_size_(bitmap_size),
69       heap_begin_(reinterpret_cast<uintptr_t>(heap_begin)),
70       heap_limit_(reinterpret_cast<uintptr_t>(heap_begin) + heap_capacity),
71       name_(name) {
72   CHECK(bitmap_begin_ != nullptr);
73   CHECK_NE(bitmap_size, 0U);
74 }
75 
76 template<size_t kAlignment>
~SpaceBitmap()77 SpaceBitmap<kAlignment>::~SpaceBitmap() {}
78 
79 template<size_t kAlignment>
Create(const std::string & name,uint8_t * heap_begin,size_t heap_capacity)80 SpaceBitmap<kAlignment>* SpaceBitmap<kAlignment>::Create(
81     const std::string& name, uint8_t* heap_begin, size_t heap_capacity) {
82   // Round up since `heap_capacity` is not necessarily a multiple of `kAlignment * kBitsPerIntPtrT`
83   // (we represent one word as an `intptr_t`).
84   const size_t bitmap_size = ComputeBitmapSize(heap_capacity);
85   std::string error_msg;
86   std::unique_ptr<MemMap> mem_map(MemMap::MapAnonymous(name.c_str(), nullptr, bitmap_size,
87                                                        PROT_READ | PROT_WRITE, false, false,
88                                                        &error_msg));
89   if (UNLIKELY(mem_map.get() == nullptr)) {
90     LOG(ERROR) << "Failed to allocate bitmap " << name << ": " << error_msg;
91     return nullptr;
92   }
93   return CreateFromMemMap(name, mem_map.release(), heap_begin, heap_capacity);
94 }
95 
96 template<size_t kAlignment>
SetHeapLimit(uintptr_t new_end)97 void SpaceBitmap<kAlignment>::SetHeapLimit(uintptr_t new_end) {
98   DCHECK_ALIGNED(new_end, kBitsPerIntPtrT * kAlignment);
99   size_t new_size = OffsetToIndex(new_end - heap_begin_) * sizeof(intptr_t);
100   if (new_size < bitmap_size_) {
101     bitmap_size_ = new_size;
102   }
103   heap_limit_ = new_end;
104   // Not sure if doing this trim is necessary, since nothing past the end of the heap capacity
105   // should be marked.
106 }
107 
108 template<size_t kAlignment>
Dump() const109 std::string SpaceBitmap<kAlignment>::Dump() const {
110   return StringPrintf("%s: %p-%p", name_.c_str(), reinterpret_cast<void*>(HeapBegin()),
111                       reinterpret_cast<void*>(HeapLimit()));
112 }
113 
114 template<size_t kAlignment>
Clear()115 void SpaceBitmap<kAlignment>::Clear() {
116   if (bitmap_begin_ != nullptr) {
117     mem_map_->MadviseDontNeedAndZero();
118   }
119 }
120 
121 template<size_t kAlignment>
ClearRange(const mirror::Object * begin,const mirror::Object * end)122 void SpaceBitmap<kAlignment>::ClearRange(const mirror::Object* begin, const mirror::Object* end) {
123   uintptr_t begin_offset = reinterpret_cast<uintptr_t>(begin) - heap_begin_;
124   uintptr_t end_offset = reinterpret_cast<uintptr_t>(end) - heap_begin_;
125   // Align begin and end to bitmap word boundaries.
126   while (begin_offset < end_offset && OffsetBitIndex(begin_offset) != 0) {
127     Clear(reinterpret_cast<mirror::Object*>(heap_begin_ + begin_offset));
128     begin_offset += kAlignment;
129   }
130   while (begin_offset < end_offset && OffsetBitIndex(end_offset) != 0) {
131     end_offset -= kAlignment;
132     Clear(reinterpret_cast<mirror::Object*>(heap_begin_ + end_offset));
133   }
134   // Bitmap word boundaries.
135   const uintptr_t start_index = OffsetToIndex(begin_offset);
136   const uintptr_t end_index = OffsetToIndex(end_offset);
137   ZeroAndReleasePages(reinterpret_cast<uint8_t*>(&bitmap_begin_[start_index]),
138                       (end_index - start_index) * sizeof(*bitmap_begin_));
139 }
140 
141 template<size_t kAlignment>
CopyFrom(SpaceBitmap * source_bitmap)142 void SpaceBitmap<kAlignment>::CopyFrom(SpaceBitmap* source_bitmap) {
143   DCHECK_EQ(Size(), source_bitmap->Size());
144   const size_t count = source_bitmap->Size() / sizeof(intptr_t);
145   Atomic<uintptr_t>* const src = source_bitmap->Begin();
146   Atomic<uintptr_t>* const dest = Begin();
147   for (size_t i = 0; i < count; ++i) {
148     dest[i].StoreRelaxed(src[i].LoadRelaxed());
149   }
150 }
151 
152 template<size_t kAlignment>
SweepWalk(const SpaceBitmap<kAlignment> & live_bitmap,const SpaceBitmap<kAlignment> & mark_bitmap,uintptr_t sweep_begin,uintptr_t sweep_end,SpaceBitmap::SweepCallback * callback,void * arg)153 void SpaceBitmap<kAlignment>::SweepWalk(const SpaceBitmap<kAlignment>& live_bitmap,
154                                         const SpaceBitmap<kAlignment>& mark_bitmap,
155                                         uintptr_t sweep_begin, uintptr_t sweep_end,
156                                         SpaceBitmap::SweepCallback* callback, void* arg) {
157   CHECK(live_bitmap.bitmap_begin_ != nullptr);
158   CHECK(mark_bitmap.bitmap_begin_ != nullptr);
159   CHECK_EQ(live_bitmap.heap_begin_, mark_bitmap.heap_begin_);
160   CHECK_EQ(live_bitmap.bitmap_size_, mark_bitmap.bitmap_size_);
161   CHECK(callback != nullptr);
162   CHECK_LE(sweep_begin, sweep_end);
163   CHECK_GE(sweep_begin, live_bitmap.heap_begin_);
164 
165   if (sweep_end <= sweep_begin) {
166     return;
167   }
168 
169   // TODO: rewrite the callbacks to accept a std::vector<mirror::Object*> rather than a mirror::Object**?
170   constexpr size_t buffer_size = sizeof(intptr_t) * kBitsPerIntPtrT;
171 #ifdef __LP64__
172   // Heap-allocate for smaller stack frame.
173   std::unique_ptr<mirror::Object*[]> pointer_buf_ptr(new mirror::Object*[buffer_size]);
174   mirror::Object** pointer_buf = pointer_buf_ptr.get();
175 #else
176   // Stack-allocate buffer as it's small enough.
177   mirror::Object* pointer_buf[buffer_size];
178 #endif
179   mirror::Object** pb = &pointer_buf[0];
180 
181   size_t start = OffsetToIndex(sweep_begin - live_bitmap.heap_begin_);
182   size_t end = OffsetToIndex(sweep_end - live_bitmap.heap_begin_ - 1);
183   CHECK_LT(end, live_bitmap.Size() / sizeof(intptr_t));
184   Atomic<uintptr_t>* live = live_bitmap.bitmap_begin_;
185   Atomic<uintptr_t>* mark = mark_bitmap.bitmap_begin_;
186   for (size_t i = start; i <= end; i++) {
187     uintptr_t garbage = live[i].LoadRelaxed() & ~mark[i].LoadRelaxed();
188     if (UNLIKELY(garbage != 0)) {
189       uintptr_t ptr_base = IndexToOffset(i) + live_bitmap.heap_begin_;
190       do {
191         const size_t shift = CTZ(garbage);
192         garbage ^= (static_cast<uintptr_t>(1)) << shift;
193         *pb++ = reinterpret_cast<mirror::Object*>(ptr_base + shift * kAlignment);
194       } while (garbage != 0);
195       // Make sure that there are always enough slots available for an
196       // entire word of one bits.
197       if (pb >= &pointer_buf[buffer_size - kBitsPerIntPtrT]) {
198         (*callback)(pb - &pointer_buf[0], &pointer_buf[0], arg);
199         pb = &pointer_buf[0];
200       }
201     }
202   }
203   if (pb > &pointer_buf[0]) {
204     (*callback)(pb - &pointer_buf[0], &pointer_buf[0], arg);
205   }
206 }
207 
208 template class SpaceBitmap<kObjectAlignment>;
209 template class SpaceBitmap<kPageSize>;
210 
211 }  // namespace accounting
212 }  // namespace gc
213 }  // namespace art
214