• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "image_space.h"
18 
19 #include <lz4.h>
20 #include <sys/statvfs.h>
21 #include <sys/types.h>
22 #include <unistd.h>
23 
24 #include <random>
25 
26 #include "android-base/stringprintf.h"
27 #include "android-base/strings.h"
28 
29 #include "art_field-inl.h"
30 #include "art_method-inl.h"
31 #include "base/callee_save_type.h"
32 #include "base/enums.h"
33 #include "base/file_utils.h"
34 #include "base/macros.h"
35 #include "base/os.h"
36 #include "base/scoped_flock.h"
37 #include "base/stl_util.h"
38 #include "base/systrace.h"
39 #include "base/time_utils.h"
40 #include "base/utils.h"
41 #include "dex/art_dex_file_loader.h"
42 #include "dex/dex_file_loader.h"
43 #include "exec_utils.h"
44 #include "gc/accounting/space_bitmap-inl.h"
45 #include "image-inl.h"
46 #include "image_space_fs.h"
47 #include "mirror/class-inl.h"
48 #include "mirror/object-inl.h"
49 #include "mirror/object-refvisitor-inl.h"
50 #include "oat_file.h"
51 #include "runtime.h"
52 #include "space-inl.h"
53 
54 namespace art {
55 namespace gc {
56 namespace space {
57 
58 using android::base::StringAppendF;
59 using android::base::StringPrintf;
60 
61 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
62 
ImageSpace(const std::string & image_filename,const char * image_location,MemMap * mem_map,accounting::ContinuousSpaceBitmap * live_bitmap,uint8_t * end)63 ImageSpace::ImageSpace(const std::string& image_filename,
64                        const char* image_location,
65                        MemMap* mem_map,
66                        accounting::ContinuousSpaceBitmap* live_bitmap,
67                        uint8_t* end)
68     : MemMapSpace(image_filename,
69                   mem_map,
70                   mem_map->Begin(),
71                   end,
72                   end,
73                   kGcRetentionPolicyNeverCollect),
74       oat_file_non_owned_(nullptr),
75       image_location_(image_location) {
76   DCHECK(live_bitmap != nullptr);
77   live_bitmap_.reset(live_bitmap);
78 }
79 
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)80 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
81   CHECK_ALIGNED(min_delta, kPageSize);
82   CHECK_ALIGNED(max_delta, kPageSize);
83   CHECK_LT(min_delta, max_delta);
84 
85   int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
86   if (r % 2 == 0) {
87     r = RoundUp(r, kPageSize);
88   } else {
89     r = RoundDown(r, kPageSize);
90   }
91   CHECK_LE(min_delta, r);
92   CHECK_GE(max_delta, r);
93   CHECK_ALIGNED(r, kPageSize);
94   return r;
95 }
96 
ChooseRelocationOffsetDelta()97 static int32_t ChooseRelocationOffsetDelta() {
98   return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
99 }
100 
GenerateImage(const std::string & image_filename,InstructionSet image_isa,std::string * error_msg)101 static bool GenerateImage(const std::string& image_filename,
102                           InstructionSet image_isa,
103                           std::string* error_msg) {
104   const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
105   std::vector<std::string> boot_class_path;
106   Split(boot_class_path_string, ':', &boot_class_path);
107   if (boot_class_path.empty()) {
108     *error_msg = "Failed to generate image because no boot class path specified";
109     return false;
110   }
111   // We should clean up so we are more likely to have room for the image.
112   if (Runtime::Current()->IsZygote()) {
113     LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
114     PruneDalvikCache(image_isa);
115   }
116 
117   std::vector<std::string> arg_vector;
118 
119   std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
120   arg_vector.push_back(dex2oat);
121 
122   std::string image_option_string("--image=");
123   image_option_string += image_filename;
124   arg_vector.push_back(image_option_string);
125 
126   for (size_t i = 0; i < boot_class_path.size(); i++) {
127     arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
128   }
129 
130   std::string oat_file_option_string("--oat-file=");
131   oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
132   arg_vector.push_back(oat_file_option_string);
133 
134   // Note: we do not generate a fully debuggable boot image so we do not pass the
135   // compiler flag --debuggable here.
136 
137   Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
138   CHECK_EQ(image_isa, kRuntimeISA)
139       << "We should always be generating an image for the current isa.";
140 
141   int32_t base_offset = ChooseRelocationOffsetDelta();
142   LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
143             << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
144   arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
145 
146   if (!kIsTargetBuild) {
147     arg_vector.push_back("--host");
148   }
149 
150   const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
151   for (size_t i = 0; i < compiler_options.size(); ++i) {
152     arg_vector.push_back(compiler_options[i].c_str());
153   }
154 
155   std::string command_line(android::base::Join(arg_vector, ' '));
156   LOG(INFO) << "GenerateImage: " << command_line;
157   return Exec(arg_vector, error_msg);
158 }
159 
FindImageFilenameImpl(const char * image_location,const InstructionSet image_isa,bool * has_system,std::string * system_filename,bool * dalvik_cache_exists,std::string * dalvik_cache,bool * is_global_cache,bool * has_cache,std::string * cache_filename)160 static bool FindImageFilenameImpl(const char* image_location,
161                                   const InstructionSet image_isa,
162                                   bool* has_system,
163                                   std::string* system_filename,
164                                   bool* dalvik_cache_exists,
165                                   std::string* dalvik_cache,
166                                   bool* is_global_cache,
167                                   bool* has_cache,
168                                   std::string* cache_filename) {
169   DCHECK(dalvik_cache != nullptr);
170 
171   *has_system = false;
172   *has_cache = false;
173   // image_location = /system/framework/boot.art
174   // system_image_location = /system/framework/<image_isa>/boot.art
175   std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
176   if (OS::FileExists(system_image_filename.c_str())) {
177     *system_filename = system_image_filename;
178     *has_system = true;
179   }
180 
181   bool have_android_data = false;
182   *dalvik_cache_exists = false;
183   GetDalvikCache(GetInstructionSetString(image_isa),
184                  true,
185                  dalvik_cache,
186                  &have_android_data,
187                  dalvik_cache_exists,
188                  is_global_cache);
189 
190   if (have_android_data && *dalvik_cache_exists) {
191     // Always set output location even if it does not exist,
192     // so that the caller knows where to create the image.
193     //
194     // image_location = /system/framework/boot.art
195     // *image_filename = /data/dalvik-cache/<image_isa>/boot.art
196     std::string error_msg;
197     if (!GetDalvikCacheFilename(image_location,
198                                 dalvik_cache->c_str(),
199                                 cache_filename,
200                                 &error_msg)) {
201       LOG(WARNING) << error_msg;
202       return *has_system;
203     }
204     *has_cache = OS::FileExists(cache_filename->c_str());
205   }
206   return *has_system || *has_cache;
207 }
208 
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system,std::string * cache_filename,bool * dalvik_cache_exists,bool * has_cache,bool * is_global_cache)209 bool ImageSpace::FindImageFilename(const char* image_location,
210                                    const InstructionSet image_isa,
211                                    std::string* system_filename,
212                                    bool* has_system,
213                                    std::string* cache_filename,
214                                    bool* dalvik_cache_exists,
215                                    bool* has_cache,
216                                    bool* is_global_cache) {
217   std::string dalvik_cache_unused;
218   return FindImageFilenameImpl(image_location,
219                                image_isa,
220                                has_system,
221                                system_filename,
222                                dalvik_cache_exists,
223                                &dalvik_cache_unused,
224                                is_global_cache,
225                                has_cache,
226                                cache_filename);
227 }
228 
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header)229 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
230     std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
231     if (image_file.get() == nullptr) {
232       return false;
233     }
234     const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
235     if (!success || !image_header->IsValid()) {
236       return false;
237     }
238     return true;
239 }
240 
241 // Relocate the image at image_location to dest_filename and relocate it by a random amount.
RelocateImage(const char * image_location,const char * dest_directory,InstructionSet isa,std::string * error_msg)242 static bool RelocateImage(const char* image_location,
243                           const char* dest_directory,
244                           InstructionSet isa,
245                           std::string* error_msg) {
246   // We should clean up so we are more likely to have room for the image.
247   if (Runtime::Current()->IsZygote()) {
248     LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
249     PruneDalvikCache(isa);
250   }
251 
252   std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
253 
254   std::string input_image_location_arg("--input-image-location=");
255   input_image_location_arg += image_location;
256 
257   std::string output_image_directory_arg("--output-image-directory=");
258   output_image_directory_arg += dest_directory;
259 
260   std::string instruction_set_arg("--instruction-set=");
261   instruction_set_arg += GetInstructionSetString(isa);
262 
263   std::string base_offset_arg("--base-offset-delta=");
264   StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta());
265 
266   std::vector<std::string> argv;
267   argv.push_back(patchoat);
268 
269   argv.push_back(input_image_location_arg);
270   argv.push_back(output_image_directory_arg);
271 
272   argv.push_back(instruction_set_arg);
273   argv.push_back(base_offset_arg);
274 
275   std::string command_line(android::base::Join(argv, ' '));
276   LOG(INFO) << "RelocateImage: " << command_line;
277   return Exec(argv, error_msg);
278 }
279 
VerifyImage(const char * image_location,const char * dest_directory,InstructionSet isa,std::string * error_msg)280 static bool VerifyImage(const char* image_location,
281                         const char* dest_directory,
282                         InstructionSet isa,
283                         std::string* error_msg) {
284   std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
285 
286   std::string input_image_location_arg("--input-image-location=");
287   input_image_location_arg += image_location;
288 
289   std::string output_image_directory_arg("--output-image-directory=");
290   output_image_directory_arg += dest_directory;
291 
292   std::string instruction_set_arg("--instruction-set=");
293   instruction_set_arg += GetInstructionSetString(isa);
294 
295   std::vector<std::string> argv;
296   argv.push_back(patchoat);
297 
298   argv.push_back(input_image_location_arg);
299   argv.push_back(output_image_directory_arg);
300 
301   argv.push_back(instruction_set_arg);
302 
303   argv.push_back("--verify");
304 
305   std::string command_line(android::base::Join(argv, ' '));
306   LOG(INFO) << "VerifyImage: " << command_line;
307   return Exec(argv, error_msg);
308 }
309 
ReadSpecificImageHeader(const char * filename,std::string * error_msg)310 static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
311   std::unique_ptr<ImageHeader> hdr(new ImageHeader);
312   if (!ReadSpecificImageHeader(filename, hdr.get())) {
313     *error_msg = StringPrintf("Unable to read image header for %s", filename);
314     return nullptr;
315   }
316   return hdr.release();
317 }
318 
ReadImageHeader(const char * image_location,const InstructionSet image_isa,std::string * error_msg)319 ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
320                                          const InstructionSet image_isa,
321                                          std::string* error_msg) {
322   std::string system_filename;
323   bool has_system = false;
324   std::string cache_filename;
325   bool has_cache = false;
326   bool dalvik_cache_exists = false;
327   bool is_global_cache = false;
328   if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
329                         &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
330     if (Runtime::Current()->ShouldRelocate()) {
331       if (has_system && has_cache) {
332         std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
333         std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
334         if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
335           *error_msg = StringPrintf("Unable to read image header for %s at %s",
336                                     image_location, system_filename.c_str());
337           return nullptr;
338         }
339         if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
340           *error_msg = StringPrintf("Unable to read image header for %s at %s",
341                                     image_location, cache_filename.c_str());
342           return nullptr;
343         }
344         if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
345           *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
346                                     image_location);
347           return nullptr;
348         }
349         return cache_hdr.release();
350       } else if (!has_cache) {
351         *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
352                                   image_location);
353         return nullptr;
354       } else if (!has_system && has_cache) {
355         // This can probably just use the cache one.
356         return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
357       }
358     } else {
359       // We don't want to relocate, Just pick the appropriate one if we have it and return.
360       if (has_system && has_cache) {
361         // We want the cache if the checksum matches, otherwise the system.
362         std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
363                                                                     error_msg));
364         std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
365                                                                    error_msg));
366         if (system.get() == nullptr ||
367             (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
368           return cache.release();
369         } else {
370           return system.release();
371         }
372       } else if (has_system) {
373         return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
374       } else if (has_cache) {
375         return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
376       }
377     }
378   }
379 
380   *error_msg = StringPrintf("Unable to find image file for %s", image_location);
381   return nullptr;
382 }
383 
ChecksumsMatch(const char * image_a,const char * image_b,std::string * error_msg)384 static bool ChecksumsMatch(const char* image_a, const char* image_b, std::string* error_msg) {
385   DCHECK(error_msg != nullptr);
386 
387   ImageHeader hdr_a;
388   ImageHeader hdr_b;
389 
390   if (!ReadSpecificImageHeader(image_a, &hdr_a)) {
391     *error_msg = StringPrintf("Cannot read header of %s", image_a);
392     return false;
393   }
394   if (!ReadSpecificImageHeader(image_b, &hdr_b)) {
395     *error_msg = StringPrintf("Cannot read header of %s", image_b);
396     return false;
397   }
398 
399   if (hdr_a.GetOatChecksum() != hdr_b.GetOatChecksum()) {
400     *error_msg = StringPrintf("Checksum mismatch: %u(%s) vs %u(%s)",
401                               hdr_a.GetOatChecksum(),
402                               image_a,
403                               hdr_b.GetOatChecksum(),
404                               image_b);
405     return false;
406   }
407 
408   return true;
409 }
410 
CanWriteToDalvikCache(const InstructionSet isa)411 static bool CanWriteToDalvikCache(const InstructionSet isa) {
412   const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa));
413   if (access(dalvik_cache.c_str(), O_RDWR) == 0) {
414     return true;
415   } else if (errno != EACCES) {
416     PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES";
417   }
418   return false;
419 }
420 
ImageCreationAllowed(bool is_global_cache,const InstructionSet isa,std::string * error_msg)421 static bool ImageCreationAllowed(bool is_global_cache,
422                                  const InstructionSet isa,
423                                  std::string* error_msg) {
424   // Anyone can write into a "local" cache.
425   if (!is_global_cache) {
426     return true;
427   }
428 
429   // Only the zygote running as root is allowed to create the global boot image.
430   // If the zygote is running as non-root (and cannot write to the dalvik-cache),
431   // then image creation is not allowed..
432   if (Runtime::Current()->IsZygote()) {
433     return CanWriteToDalvikCache(isa);
434   }
435 
436   *error_msg = "Only the zygote can create the global boot image.";
437   return false;
438 }
439 
VerifyImageAllocations()440 void ImageSpace::VerifyImageAllocations() {
441   uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
442   while (current < End()) {
443     CHECK_ALIGNED(current, kObjectAlignment);
444     auto* obj = reinterpret_cast<mirror::Object*>(current);
445     CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
446     CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf();
447     if (kUseBakerReadBarrier) {
448       obj->AssertReadBarrierState();
449     }
450     current += RoundUp(obj->SizeOf(), kObjectAlignment);
451   }
452 }
453 
454 // Helper class for relocating from one range of memory to another.
455 class RelocationRange {
456  public:
457   RelocationRange() = default;
458   RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)459   RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
460       : source_(source),
461         dest_(dest),
462         length_(length) {}
463 
InSource(uintptr_t address) const464   bool InSource(uintptr_t address) const {
465     return address - source_ < length_;
466   }
467 
InDest(uintptr_t address) const468   bool InDest(uintptr_t address) const {
469     return address - dest_ < length_;
470   }
471 
472   // Translate a source address to the destination space.
ToDest(uintptr_t address) const473   uintptr_t ToDest(uintptr_t address) const {
474     DCHECK(InSource(address));
475     return address + Delta();
476   }
477 
478   // Returns the delta between the dest from the source.
Delta() const479   uintptr_t Delta() const {
480     return dest_ - source_;
481   }
482 
Source() const483   uintptr_t Source() const {
484     return source_;
485   }
486 
Dest() const487   uintptr_t Dest() const {
488     return dest_;
489   }
490 
Length() const491   uintptr_t Length() const {
492     return length_;
493   }
494 
495  private:
496   const uintptr_t source_;
497   const uintptr_t dest_;
498   const uintptr_t length_;
499 };
500 
operator <<(std::ostream & os,const RelocationRange & reloc)501 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
502   return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
503             << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
504             << reinterpret_cast<const void*>(reloc.Dest()) << "-"
505             << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
506 }
507 
508 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a
509 // friend class), but not declare functions in the header.
510 class ImageSpaceLoader {
511  public:
Load(const char * image_location,const std::string & image_filename,bool is_zygote,bool is_global_cache,bool validate_oat_file,std::string * error_msg)512   static std::unique_ptr<ImageSpace> Load(const char* image_location,
513                                           const std::string& image_filename,
514                                           bool is_zygote,
515                                           bool is_global_cache,
516                                           bool validate_oat_file,
517                                           std::string* error_msg)
518       REQUIRES_SHARED(Locks::mutator_lock_) {
519     // Should this be a RDWR lock? This is only a defensive measure, as at
520     // this point the image should exist.
521     // However, only the zygote can write into the global dalvik-cache, so
522     // restrict to zygote processes, or any process that isn't using
523     // /data/dalvik-cache (which we assume to be allowed to write there).
524     const bool rw_lock = is_zygote || !is_global_cache;
525 
526     // Note that we must not use the file descriptor associated with
527     // ScopedFlock::GetFile to Init the image file. We want the file
528     // descriptor (and the associated exclusive lock) to be released when
529     // we leave Create.
530     ScopedFlock image = LockedFile::Open(image_filename.c_str(),
531                                          rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */,
532                                          true /* block */,
533                                          error_msg);
534 
535     VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
536                   << image_location;
537     // If we are in /system we can assume the image is good. We can also
538     // assume this if we are using a relocated image (i.e. image checksum
539     // matches) since this is only different by the offset. We need this to
540     // make sure that host tests continue to work.
541     // Since we are the boot image, pass null since we load the oat file from the boot image oat
542     // file name.
543     return Init(image_filename.c_str(),
544                 image_location,
545                 validate_oat_file,
546                 /* oat_file */nullptr,
547                 error_msg);
548   }
549 
Init(const char * image_filename,const char * image_location,bool validate_oat_file,const OatFile * oat_file,std::string * error_msg)550   static std::unique_ptr<ImageSpace> Init(const char* image_filename,
551                                           const char* image_location,
552                                           bool validate_oat_file,
553                                           const OatFile* oat_file,
554                                           std::string* error_msg)
555       REQUIRES_SHARED(Locks::mutator_lock_) {
556     CHECK(image_filename != nullptr);
557     CHECK(image_location != nullptr);
558 
559     TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image));
560     VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
561 
562     std::unique_ptr<File> file;
563     {
564       TimingLogger::ScopedTiming timing("OpenImageFile", &logger);
565       file.reset(OS::OpenFileForReading(image_filename));
566       if (file == nullptr) {
567         *error_msg = StringPrintf("Failed to open '%s'", image_filename);
568         return nullptr;
569       }
570     }
571     ImageHeader temp_image_header;
572     ImageHeader* image_header = &temp_image_header;
573     {
574       TimingLogger::ScopedTiming timing("ReadImageHeader", &logger);
575       bool success = file->ReadFully(image_header, sizeof(*image_header));
576       if (!success || !image_header->IsValid()) {
577         *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
578         return nullptr;
579       }
580     }
581     // Check that the file is larger or equal to the header size + data size.
582     const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
583     if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
584       *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
585                                 image_file_size,
586                                 sizeof(ImageHeader) + image_header->GetDataSize());
587       return nullptr;
588     }
589 
590     if (oat_file != nullptr) {
591       // If we have an oat file, check the oat file checksum. The oat file is only non-null for the
592       // app image case. Otherwise, we open the oat file after the image and check the checksum there.
593       const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
594       const uint32_t image_oat_checksum = image_header->GetOatChecksum();
595       if (oat_checksum != image_oat_checksum) {
596         *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
597                                   oat_checksum,
598                                   image_oat_checksum,
599                                   image_filename);
600         return nullptr;
601       }
602     }
603 
604     if (VLOG_IS_ON(startup)) {
605       LOG(INFO) << "Dumping image sections";
606       for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
607         const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
608         auto& section = image_header->GetImageSection(section_idx);
609         LOG(INFO) << section_idx << " start="
610             << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
611             << section;
612       }
613     }
614 
615     const auto& bitmap_section = image_header->GetImageBitmapSection();
616     // The location we want to map from is the first aligned page after the end of the stored
617     // (possibly compressed) data.
618     const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
619                                                kPageSize);
620     const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
621     if (end_of_bitmap != image_file_size) {
622       *error_msg = StringPrintf(
623           "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size,
624           end_of_bitmap);
625       return nullptr;
626     }
627 
628     std::unique_ptr<MemMap> map;
629 
630     // GetImageBegin is the preferred address to map the image. If we manage to map the
631     // image at the image begin, the amount of fixup work required is minimized.
632     // If it is pic we will retry with error_msg for the failure case. Pass a null error_msg to
633     // avoid reading proc maps for a mapping failure and slowing everything down.
634     map.reset(LoadImageFile(image_filename,
635                             image_location,
636                             *image_header,
637                             image_header->GetImageBegin(),
638                             file->Fd(),
639                             logger,
640                             image_header->IsPic() ? nullptr : error_msg));
641     // If the header specifies PIC mode, we can also map at a random low_4gb address since we can
642     // relocate in-place.
643     if (map == nullptr && image_header->IsPic()) {
644       map.reset(LoadImageFile(image_filename,
645                               image_location,
646                               *image_header,
647                               /* address */ nullptr,
648                               file->Fd(),
649                               logger,
650                               error_msg));
651     }
652     // Were we able to load something and continue?
653     if (map == nullptr) {
654       DCHECK(!error_msg->empty());
655       return nullptr;
656     }
657     DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader)));
658 
659     std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr,
660                                                                       bitmap_section.Size(),
661                                                                       PROT_READ, MAP_PRIVATE,
662                                                                       file->Fd(),
663                                                                       image_bitmap_offset,
664                                                                       /*low_4gb*/false,
665                                                                       /*reuse*/false,
666                                                                       image_filename,
667                                                                       error_msg));
668     if (image_bitmap_map == nullptr) {
669       *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
670       return nullptr;
671     }
672     // Loaded the map, use the image header from the file now in case we patch it with
673     // RelocateInPlace.
674     image_header = reinterpret_cast<ImageHeader*>(map->Begin());
675     const uint32_t bitmap_index = ImageSpace::bitmap_index_.FetchAndAddSequentiallyConsistent(1);
676     std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
677                                          image_filename,
678                                          bitmap_index));
679     // Bitmap only needs to cover until the end of the mirror objects section.
680     const ImageSection& image_objects = image_header->GetObjectsSection();
681     // We only want the mirror object, not the ArtFields and ArtMethods.
682     uint8_t* const image_end = map->Begin() + image_objects.End();
683     std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
684     {
685       TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger);
686       bitmap.reset(
687           accounting::ContinuousSpaceBitmap::CreateFromMemMap(
688               bitmap_name,
689               image_bitmap_map.release(),
690               reinterpret_cast<uint8_t*>(map->Begin()),
691               // Make sure the bitmap is aligned to card size instead of just bitmap word size.
692               RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize)));
693       if (bitmap == nullptr) {
694         *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
695         return nullptr;
696       }
697     }
698     {
699       TimingLogger::ScopedTiming timing("RelocateImage", &logger);
700       if (!RelocateInPlace(*image_header,
701                            map->Begin(),
702                            bitmap.get(),
703                            oat_file,
704                            error_msg)) {
705         return nullptr;
706       }
707     }
708     // We only want the mirror object, not the ArtFields and ArtMethods.
709     std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
710                                                      image_location,
711                                                      map.release(),
712                                                      bitmap.release(),
713                                                      image_end));
714 
715     // VerifyImageAllocations() will be called later in Runtime::Init()
716     // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
717     // and ArtField::java_lang_reflect_ArtField_, which are used from
718     // Object::SizeOf() which VerifyImageAllocations() calls, are not
719     // set yet at this point.
720     if (oat_file == nullptr) {
721       TimingLogger::ScopedTiming timing("OpenOatFile", &logger);
722       space->oat_file_ = OpenOatFile(*space, image_filename, error_msg);
723       if (space->oat_file_ == nullptr) {
724         DCHECK(!error_msg->empty());
725         return nullptr;
726       }
727       space->oat_file_non_owned_ = space->oat_file_.get();
728     } else {
729       space->oat_file_non_owned_ = oat_file;
730     }
731 
732     if (validate_oat_file) {
733       TimingLogger::ScopedTiming timing("ValidateOatFile", &logger);
734       CHECK(space->oat_file_ != nullptr);
735       if (!ImageSpace::ValidateOatFile(*space->oat_file_, error_msg)) {
736         DCHECK(!error_msg->empty());
737         return nullptr;
738       }
739     }
740 
741     Runtime* runtime = Runtime::Current();
742 
743     // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space
744     // to set the runtime methods.
745     CHECK_EQ(oat_file != nullptr, image_header->IsAppImage());
746     if (image_header->IsAppImage()) {
747       CHECK_EQ(runtime->GetResolutionMethod(),
748                image_header->GetImageMethod(ImageHeader::kResolutionMethod));
749       CHECK_EQ(runtime->GetImtConflictMethod(),
750                image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
751       CHECK_EQ(runtime->GetImtUnimplementedMethod(),
752                image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
753       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves),
754                image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod));
755       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly),
756                image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod));
757       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs),
758                image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod));
759       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything),
760                image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod));
761       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit),
762                image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit));
763       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck),
764                image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck));
765     } else if (!runtime->HasResolutionMethod()) {
766       runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet());
767       runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod));
768       runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
769       runtime->SetImtUnimplementedMethod(
770           image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
771       runtime->SetCalleeSaveMethod(
772           image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod),
773           CalleeSaveType::kSaveAllCalleeSaves);
774       runtime->SetCalleeSaveMethod(
775           image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod),
776           CalleeSaveType::kSaveRefsOnly);
777       runtime->SetCalleeSaveMethod(
778           image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod),
779           CalleeSaveType::kSaveRefsAndArgs);
780       runtime->SetCalleeSaveMethod(
781           image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod),
782           CalleeSaveType::kSaveEverything);
783       runtime->SetCalleeSaveMethod(
784           image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit),
785           CalleeSaveType::kSaveEverythingForClinit);
786       runtime->SetCalleeSaveMethod(
787           image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck),
788           CalleeSaveType::kSaveEverythingForSuspendCheck);
789     }
790 
791     VLOG(image) << "ImageSpace::Init exiting " << *space.get();
792     if (VLOG_IS_ON(image)) {
793       logger.Dump(LOG_STREAM(INFO));
794     }
795     return space;
796   }
797 
798  private:
LoadImageFile(const char * image_filename,const char * image_location,const ImageHeader & image_header,uint8_t * address,int fd,TimingLogger & logger,std::string * error_msg)799   static MemMap* LoadImageFile(const char* image_filename,
800                                const char* image_location,
801                                const ImageHeader& image_header,
802                                uint8_t* address,
803                                int fd,
804                                TimingLogger& logger,
805                                std::string* error_msg) {
806     TimingLogger::ScopedTiming timing("MapImageFile", &logger);
807     const ImageHeader::StorageMode storage_mode = image_header.GetStorageMode();
808     if (storage_mode == ImageHeader::kStorageModeUncompressed) {
809       return MemMap::MapFileAtAddress(address,
810                                       image_header.GetImageSize(),
811                                       PROT_READ | PROT_WRITE,
812                                       MAP_PRIVATE,
813                                       fd,
814                                       0,
815                                       /*low_4gb*/true,
816                                       /*reuse*/false,
817                                       image_filename,
818                                       error_msg);
819     }
820 
821     if (storage_mode != ImageHeader::kStorageModeLZ4 &&
822         storage_mode != ImageHeader::kStorageModeLZ4HC) {
823       if (error_msg != nullptr) {
824         *error_msg = StringPrintf("Invalid storage mode in image header %d",
825                                   static_cast<int>(storage_mode));
826       }
827       return nullptr;
828     }
829 
830     // Reserve output and decompress into it.
831     std::unique_ptr<MemMap> map(MemMap::MapAnonymous(image_location,
832                                                      address,
833                                                      image_header.GetImageSize(),
834                                                      PROT_READ | PROT_WRITE,
835                                                      /*low_4gb*/true,
836                                                      /*reuse*/false,
837                                                      error_msg));
838     if (map != nullptr) {
839       const size_t stored_size = image_header.GetDataSize();
840       const size_t decompress_offset = sizeof(ImageHeader);  // Skip the header.
841       std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size,
842                                                        PROT_READ,
843                                                        MAP_PRIVATE,
844                                                        fd,
845                                                        /*offset*/0,
846                                                        /*low_4gb*/false,
847                                                        image_filename,
848                                                        error_msg));
849       if (temp_map == nullptr) {
850         DCHECK(error_msg == nullptr || !error_msg->empty());
851         return nullptr;
852       }
853       memcpy(map->Begin(), &image_header, sizeof(ImageHeader));
854       const uint64_t start = NanoTime();
855       // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
856       TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger);
857       const size_t decompressed_size = LZ4_decompress_safe(
858           reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader),
859           reinterpret_cast<char*>(map->Begin()) + decompress_offset,
860           stored_size,
861           map->Size() - decompress_offset);
862       const uint64_t time = NanoTime() - start;
863       // Add one 1 ns to prevent possible divide by 0.
864       VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
865                   << PrettySize(static_cast<uint64_t>(map->Size()) * MsToNs(1000) / (time + 1))
866                   << "/s)";
867       if (decompressed_size + sizeof(ImageHeader) != image_header.GetImageSize()) {
868         if (error_msg != nullptr) {
869           *error_msg = StringPrintf(
870               "Decompressed size does not match expected image size %zu vs %zu",
871               decompressed_size + sizeof(ImageHeader),
872               image_header.GetImageSize());
873         }
874         return nullptr;
875       }
876     }
877 
878     return map.release();
879   }
880 
881   class FixupVisitor : public ValueObject {
882    public:
FixupVisitor(const RelocationRange & boot_image,const RelocationRange & boot_oat,const RelocationRange & app_image,const RelocationRange & app_oat)883     FixupVisitor(const RelocationRange& boot_image,
884                  const RelocationRange& boot_oat,
885                  const RelocationRange& app_image,
886                  const RelocationRange& app_oat)
887         : boot_image_(boot_image),
888           boot_oat_(boot_oat),
889           app_image_(app_image),
890           app_oat_(app_oat) {}
891 
892     // Return the relocated address of a heap object.
893     template <typename T>
ForwardObject(T * src) const894     ALWAYS_INLINE T* ForwardObject(T* src) const {
895       const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
896       if (boot_image_.InSource(uint_src)) {
897         return reinterpret_cast<T*>(boot_image_.ToDest(uint_src));
898       }
899       if (app_image_.InSource(uint_src)) {
900         return reinterpret_cast<T*>(app_image_.ToDest(uint_src));
901       }
902       // Since we are fixing up the app image, there should only be pointers to the app image and
903       // boot image.
904       DCHECK(src == nullptr) << reinterpret_cast<const void*>(src);
905       return src;
906     }
907 
908     // Return the relocated address of a code pointer (contained by an oat file).
ForwardCode(const void * src) const909     ALWAYS_INLINE const void* ForwardCode(const void* src) const {
910       const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
911       if (boot_oat_.InSource(uint_src)) {
912         return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src));
913       }
914       if (app_oat_.InSource(uint_src)) {
915         return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src));
916       }
917       DCHECK(src == nullptr) << src;
918       return src;
919     }
920 
921     // Must be called on pointers that already have been relocated to the destination relocation.
IsInAppImage(mirror::Object * object) const922     ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const {
923       return app_image_.InDest(reinterpret_cast<uintptr_t>(object));
924     }
925 
926    protected:
927     // Source section.
928     const RelocationRange boot_image_;
929     const RelocationRange boot_oat_;
930     const RelocationRange app_image_;
931     const RelocationRange app_oat_;
932   };
933 
934   // Adapt for mirror::Class::FixupNativePointers.
935   class FixupObjectAdapter : public FixupVisitor {
936    public:
937     template<typename... Args>
FixupObjectAdapter(Args...args)938     explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {}
939 
940     template <typename T>
operator ()(T * obj,void ** dest_addr ATTRIBUTE_UNUSED=nullptr) const941     T* operator()(T* obj, void** dest_addr ATTRIBUTE_UNUSED = nullptr) const {
942       return ForwardObject(obj);
943     }
944   };
945 
946   class FixupRootVisitor : public FixupVisitor {
947    public:
948     template<typename... Args>
FixupRootVisitor(Args...args)949     explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {}
950 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const951     ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
952         REQUIRES_SHARED(Locks::mutator_lock_) {
953       if (!root->IsNull()) {
954         VisitRoot(root);
955       }
956     }
957 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const958     ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
959         REQUIRES_SHARED(Locks::mutator_lock_) {
960       mirror::Object* ref = root->AsMirrorPtr();
961       mirror::Object* new_ref = ForwardObject(ref);
962       if (ref != new_ref) {
963         root->Assign(new_ref);
964       }
965     }
966   };
967 
968   class FixupObjectVisitor : public FixupVisitor {
969    public:
970     template<typename... Args>
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const PointerSize pointer_size,Args...args)971     explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
972                                 const PointerSize pointer_size,
973                                 Args... args)
974         : FixupVisitor(args...),
975           pointer_size_(pointer_size),
976           visited_(visited) {}
977 
978     // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const979     ALWAYS_INLINE void VisitRootIfNonNull(
980         mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
981 
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const982     ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
983         const {}
984 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const985     ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
986                                   MemberOffset offset,
987                                   bool is_static ATTRIBUTE_UNUSED) const
988         NO_THREAD_SAFETY_ANALYSIS {
989       // There could be overlap between ranges, we must avoid visiting the same reference twice.
990       // Avoid the class field since we already fixed it up in FixupClassVisitor.
991       if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
992         // Space is not yet added to the heap, don't do a read barrier.
993         mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
994             offset);
995         // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
996         // image.
997         obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref));
998       }
999     }
1000 
1001     // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the
1002     // boot image. Uses the bitmap to ensure the same array is not visited multiple times.
1003     template <typename Visitor>
UpdatePointerArrayContents(mirror::PointerArray * array,const Visitor & visitor) const1004     void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const
1005         NO_THREAD_SAFETY_ANALYSIS {
1006       DCHECK(array != nullptr);
1007       DCHECK(visitor.IsInAppImage(array));
1008       // The bit for the array contents is different than the bit for the array. Since we may have
1009       // already visited the array as a long / int array from walking the bitmap without knowing it
1010       // was a pointer array.
1011       static_assert(kObjectAlignment == 8u, "array bit may be in another object");
1012       mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>(
1013           reinterpret_cast<uintptr_t>(array) + kObjectAlignment);
1014       // If the bit is not set then the contents have not yet been updated.
1015       if (!visited_->Test(contents_bit)) {
1016         array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor);
1017         visited_->Set(contents_bit);
1018       }
1019     }
1020 
1021     // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1022     void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1023                     ObjPtr<mirror::Reference> ref) const
1024         REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1025       mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
1026       ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1027           mirror::Reference::ReferentOffset(),
1028           ForwardObject(obj));
1029     }
1030 
operator ()(mirror::Object * obj) const1031     void operator()(mirror::Object* obj) const
1032         NO_THREAD_SAFETY_ANALYSIS {
1033       if (visited_->Test(obj)) {
1034         // Already visited.
1035         return;
1036       }
1037       visited_->Set(obj);
1038 
1039       // Handle class specially first since we need it to be updated to properly visit the rest of
1040       // the instance fields.
1041       {
1042         mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
1043         DCHECK(klass != nullptr) << "Null class in image";
1044         // No AsClass since our fields aren't quite fixed up yet.
1045         mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass));
1046         if (klass != new_klass) {
1047           obj->SetClass<kVerifyNone>(new_klass);
1048         }
1049         if (new_klass != klass && IsInAppImage(new_klass)) {
1050           // Make sure the klass contents are fixed up since we depend on it to walk the fields.
1051           operator()(new_klass);
1052         }
1053       }
1054 
1055       if (obj->IsClass()) {
1056         mirror::Class* klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
1057         // Fixup super class before visiting instance fields which require
1058         // information from their super class to calculate offsets.
1059         mirror::Class* super_class = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
1060         if (super_class != nullptr) {
1061           mirror::Class* new_super_class = down_cast<mirror::Class*>(ForwardObject(super_class));
1062           if (new_super_class != super_class && IsInAppImage(new_super_class)) {
1063             // Recursively fix all dependencies.
1064             operator()(new_super_class);
1065           }
1066         }
1067       }
1068 
1069       obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
1070           *this,
1071           *this);
1072       // Note that this code relies on no circular dependencies.
1073       // We want to use our own class loader and not the one in the image.
1074       if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) {
1075         mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
1076         FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_);
1077         as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass,
1078                                                                         pointer_size_,
1079                                                                         visitor);
1080         // Deal with the pointer arrays. Use the helper function since multiple classes can reference
1081         // the same arrays.
1082         mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1083         if (vtable != nullptr && IsInAppImage(vtable)) {
1084           operator()(vtable);
1085           UpdatePointerArrayContents(vtable, visitor);
1086         }
1087         mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1088         // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid
1089         // contents.
1090         if (IsInAppImage(iftable)) {
1091           operator()(iftable);
1092           for (int32_t i = 0, count = iftable->Count(); i < count; ++i) {
1093             if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) {
1094               mirror::PointerArray* methods =
1095                   iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i);
1096               if (visitor.IsInAppImage(methods)) {
1097                 operator()(methods);
1098                 DCHECK(methods != nullptr);
1099                 UpdatePointerArrayContents(methods, visitor);
1100               }
1101             }
1102           }
1103         }
1104       }
1105     }
1106 
1107    private:
1108     const PointerSize pointer_size_;
1109     gc::accounting::ContinuousSpaceBitmap* const visited_;
1110   };
1111 
1112   class ForwardObjectAdapter {
1113    public:
ForwardObjectAdapter(const FixupVisitor * visitor)1114     ALWAYS_INLINE explicit ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {}
1115 
1116     template <typename T>
operator ()(T * src) const1117     ALWAYS_INLINE T* operator()(T* src) const {
1118       return visitor_->ForwardObject(src);
1119     }
1120 
1121    private:
1122     const FixupVisitor* const visitor_;
1123   };
1124 
1125   class ForwardCodeAdapter {
1126    public:
ForwardCodeAdapter(const FixupVisitor * visitor)1127     ALWAYS_INLINE explicit ForwardCodeAdapter(const FixupVisitor* visitor)
1128         : visitor_(visitor) {}
1129 
1130     template <typename T>
operator ()(T * src) const1131     ALWAYS_INLINE T* operator()(T* src) const {
1132       return visitor_->ForwardCode(src);
1133     }
1134 
1135    private:
1136     const FixupVisitor* const visitor_;
1137   };
1138 
1139   class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor {
1140    public:
1141     template<typename... Args>
FixupArtMethodVisitor(bool fixup_heap_objects,PointerSize pointer_size,Args...args)1142     explicit FixupArtMethodVisitor(bool fixup_heap_objects, PointerSize pointer_size, Args... args)
1143         : FixupVisitor(args...),
1144           fixup_heap_objects_(fixup_heap_objects),
1145           pointer_size_(pointer_size) {}
1146 
Visit(ArtMethod * method)1147     virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS {
1148       // TODO: Separate visitor for runtime vs normal methods.
1149       if (UNLIKELY(method->IsRuntimeMethod())) {
1150         ImtConflictTable* table = method->GetImtConflictTable(pointer_size_);
1151         if (table != nullptr) {
1152           ImtConflictTable* new_table = ForwardObject(table);
1153           if (table != new_table) {
1154             method->SetImtConflictTable(new_table, pointer_size_);
1155           }
1156         }
1157         const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_);
1158         const void* new_code = ForwardCode(old_code);
1159         if (old_code != new_code) {
1160           method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_);
1161         }
1162       } else {
1163         if (fixup_heap_objects_) {
1164           method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this));
1165         }
1166         method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_);
1167       }
1168     }
1169 
1170    private:
1171     const bool fixup_heap_objects_;
1172     const PointerSize pointer_size_;
1173   };
1174 
1175   class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor {
1176    public:
1177     template<typename... Args>
FixupArtFieldVisitor(Args...args)1178     explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {}
1179 
Visit(ArtField * field)1180     virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS {
1181       field->UpdateObjects(ForwardObjectAdapter(this));
1182     }
1183   };
1184 
1185   // Relocate an image space mapped at target_base which possibly used to be at a different base
1186   // address. Only needs a single image space, not one for both source and destination.
1187   // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace
1188   // to another.
RelocateInPlace(ImageHeader & image_header,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)1189   static bool RelocateInPlace(ImageHeader& image_header,
1190                               uint8_t* target_base,
1191                               accounting::ContinuousSpaceBitmap* bitmap,
1192                               const OatFile* app_oat_file,
1193                               std::string* error_msg) {
1194     DCHECK(error_msg != nullptr);
1195     if (!image_header.IsPic()) {
1196       if (image_header.GetImageBegin() == target_base) {
1197         return true;
1198       }
1199       *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s",
1200                                 (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : "");
1201       return false;
1202     }
1203     // Set up sections.
1204     uint32_t boot_image_begin = 0;
1205     uint32_t boot_image_end = 0;
1206     uint32_t boot_oat_begin = 0;
1207     uint32_t boot_oat_end = 0;
1208     const PointerSize pointer_size = image_header.GetPointerSize();
1209     gc::Heap* const heap = Runtime::Current()->GetHeap();
1210     heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
1211     if (boot_image_begin == boot_image_end) {
1212       *error_msg = "Can not relocate app image without boot image space";
1213       return false;
1214     }
1215     if (boot_oat_begin == boot_oat_end) {
1216       *error_msg = "Can not relocate app image without boot oat file";
1217       return false;
1218     }
1219     const uint32_t boot_image_size = boot_image_end - boot_image_begin;
1220     const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin;
1221     const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
1222     const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize();
1223     if (boot_image_size != image_header_boot_image_size) {
1224       *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
1225                                     PRIu64,
1226                                 static_cast<uint64_t>(boot_image_size),
1227                                 static_cast<uint64_t>(image_header_boot_image_size));
1228       return false;
1229     }
1230     if (boot_oat_size != image_header_boot_oat_size) {
1231       *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %"
1232                                     PRIu64,
1233                                 static_cast<uint64_t>(boot_oat_size),
1234                                 static_cast<uint64_t>(image_header_boot_oat_size));
1235       return false;
1236     }
1237     TimingLogger logger(__FUNCTION__, true, false);
1238     RelocationRange boot_image(image_header.GetBootImageBegin(),
1239                                boot_image_begin,
1240                                boot_image_size);
1241     RelocationRange boot_oat(image_header.GetBootOatBegin(),
1242                              boot_oat_begin,
1243                              boot_oat_size);
1244     RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()),
1245                               reinterpret_cast<uintptr_t>(target_base),
1246                               image_header.GetImageSize());
1247     // Use the oat data section since this is where the OatFile::Begin is.
1248     RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
1249                             // Not necessarily in low 4GB.
1250                             reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1251                             image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
1252     VLOG(image) << "App image " << app_image;
1253     VLOG(image) << "App oat " << app_oat;
1254     VLOG(image) << "Boot image " << boot_image;
1255     VLOG(image) << "Boot oat " << boot_oat;
1256     // True if we need to fixup any heap pointers, otherwise only code pointers.
1257     const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0;
1258     const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0;
1259     if (!fixup_image && !fixup_code) {
1260       // Nothing to fix up.
1261       return true;
1262     }
1263     ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1264     // Need to update the image to be at the target base.
1265     const ImageSection& objects_section = image_header.GetObjectsSection();
1266     uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1267     uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1268     FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat);
1269     if (fixup_image) {
1270       // Two pass approach, fix up all classes first, then fix up non class-objects.
1271       // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1272       std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
1273           gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1274                                                         target_base,
1275                                                         image_header.GetImageSize()));
1276       FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(),
1277                                               pointer_size,
1278                                               boot_image,
1279                                               boot_oat,
1280                                               app_image,
1281                                               app_oat);
1282       TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1283       // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though
1284       // its probably not required.
1285       ScopedObjectAccess soa(Thread::Current());
1286       timing.NewTiming("Fixup objects");
1287       bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1288       // Fixup image roots.
1289       CHECK(app_image.InSource(reinterpret_cast<uintptr_t>(
1290           image_header.GetImageRoots<kWithoutReadBarrier>())));
1291       image_header.RelocateImageObjects(app_image.Delta());
1292       CHECK_EQ(image_header.GetImageBegin(), target_base);
1293       // Fix up dex cache DexFile pointers.
1294       auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
1295           AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>();
1296       for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
1297         mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
1298         // Fix up dex cache pointers.
1299         mirror::StringDexCacheType* strings = dex_cache->GetStrings();
1300         if (strings != nullptr) {
1301           mirror::StringDexCacheType* new_strings = fixup_adapter.ForwardObject(strings);
1302           if (strings != new_strings) {
1303             dex_cache->SetStrings(new_strings);
1304           }
1305           dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter);
1306         }
1307         mirror::TypeDexCacheType* types = dex_cache->GetResolvedTypes();
1308         if (types != nullptr) {
1309           mirror::TypeDexCacheType* new_types = fixup_adapter.ForwardObject(types);
1310           if (types != new_types) {
1311             dex_cache->SetResolvedTypes(new_types);
1312           }
1313           dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter);
1314         }
1315         mirror::MethodDexCacheType* methods = dex_cache->GetResolvedMethods();
1316         if (methods != nullptr) {
1317           mirror::MethodDexCacheType* new_methods = fixup_adapter.ForwardObject(methods);
1318           if (methods != new_methods) {
1319             dex_cache->SetResolvedMethods(new_methods);
1320           }
1321           for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) {
1322             auto pair = mirror::DexCache::GetNativePairPtrSize(new_methods, j, pointer_size);
1323             ArtMethod* orig = pair.object;
1324             ArtMethod* copy = fixup_adapter.ForwardObject(orig);
1325             if (orig != copy) {
1326               pair.object = copy;
1327               mirror::DexCache::SetNativePairPtrSize(new_methods, j, pair, pointer_size);
1328             }
1329           }
1330         }
1331         mirror::FieldDexCacheType* fields = dex_cache->GetResolvedFields();
1332         if (fields != nullptr) {
1333           mirror::FieldDexCacheType* new_fields = fixup_adapter.ForwardObject(fields);
1334           if (fields != new_fields) {
1335             dex_cache->SetResolvedFields(new_fields);
1336           }
1337           for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) {
1338             mirror::FieldDexCachePair orig =
1339                 mirror::DexCache::GetNativePairPtrSize(new_fields, j, pointer_size);
1340             mirror::FieldDexCachePair copy(fixup_adapter.ForwardObject(orig.object), orig.index);
1341             if (orig.object != copy.object) {
1342               mirror::DexCache::SetNativePairPtrSize(new_fields, j, copy, pointer_size);
1343             }
1344           }
1345         }
1346 
1347         mirror::MethodTypeDexCacheType* method_types = dex_cache->GetResolvedMethodTypes();
1348         if (method_types != nullptr) {
1349           mirror::MethodTypeDexCacheType* new_method_types =
1350               fixup_adapter.ForwardObject(method_types);
1351           if (method_types != new_method_types) {
1352             dex_cache->SetResolvedMethodTypes(new_method_types);
1353           }
1354           dex_cache->FixupResolvedMethodTypes<kWithoutReadBarrier>(new_method_types, fixup_adapter);
1355         }
1356         GcRoot<mirror::CallSite>* call_sites = dex_cache->GetResolvedCallSites();
1357         if (call_sites != nullptr) {
1358           GcRoot<mirror::CallSite>* new_call_sites = fixup_adapter.ForwardObject(call_sites);
1359           if (call_sites != new_call_sites) {
1360             dex_cache->SetResolvedCallSites(new_call_sites);
1361           }
1362           dex_cache->FixupResolvedCallSites<kWithoutReadBarrier>(new_call_sites, fixup_adapter);
1363         }
1364       }
1365     }
1366     {
1367       // Only touches objects in the app image, no need for mutator lock.
1368       TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1369       FixupArtMethodVisitor method_visitor(fixup_image,
1370                                            pointer_size,
1371                                            boot_image,
1372                                            boot_oat,
1373                                            app_image,
1374                                            app_oat);
1375       image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size);
1376     }
1377     if (fixup_image) {
1378       {
1379         // Only touches objects in the app image, no need for mutator lock.
1380         TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1381         FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat);
1382         image_header.VisitPackedArtFields(&field_visitor, target_base);
1383       }
1384       {
1385         TimingLogger::ScopedTiming timing("Fixup imt", &logger);
1386         image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size);
1387       }
1388       {
1389         TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1390         image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size);
1391       }
1392       // In the app image case, the image methods are actually in the boot image.
1393       image_header.RelocateImageMethods(boot_image.Delta());
1394       const auto& class_table_section = image_header.GetClassTableSection();
1395       if (class_table_section.Size() > 0u) {
1396         // Note that we require that ReadFromMemory does not make an internal copy of the elements.
1397         // This also relies on visit roots not doing any verification which could fail after we update
1398         // the roots to be the image addresses.
1399         ScopedObjectAccess soa(Thread::Current());
1400         WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1401         ClassTable temp_table;
1402         temp_table.ReadFromMemory(target_base + class_table_section.Offset());
1403         FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat);
1404         temp_table.VisitRoots(root_visitor);
1405       }
1406     }
1407     if (VLOG_IS_ON(image)) {
1408       logger.Dump(LOG_STREAM(INFO));
1409     }
1410     return true;
1411   }
1412 
OpenOatFile(const ImageSpace & image,const char * image_path,std::string * error_msg)1413   static std::unique_ptr<OatFile> OpenOatFile(const ImageSpace& image,
1414                                               const char* image_path,
1415                                               std::string* error_msg) {
1416     const ImageHeader& image_header = image.GetImageHeader();
1417     std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);
1418 
1419     CHECK(image_header.GetOatDataBegin() != nullptr);
1420 
1421     std::unique_ptr<OatFile> oat_file(OatFile::Open(/* zip_fd */ -1,
1422                                                     oat_filename,
1423                                                     oat_filename,
1424                                                     image_header.GetOatDataBegin(),
1425                                                     image_header.GetOatFileBegin(),
1426                                                     !Runtime::Current()->IsAotCompiler(),
1427                                                     /*low_4gb*/false,
1428                                                     nullptr,
1429                                                     error_msg));
1430     if (oat_file == nullptr) {
1431       *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
1432                                 oat_filename.c_str(),
1433                                 image.GetName(),
1434                                 error_msg->c_str());
1435       return nullptr;
1436     }
1437     uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
1438     uint32_t image_oat_checksum = image_header.GetOatChecksum();
1439     if (oat_checksum != image_oat_checksum) {
1440       *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
1441                                 " in image %s",
1442                                 oat_checksum,
1443                                 image_oat_checksum,
1444                                 image.GetName());
1445       return nullptr;
1446     }
1447     int32_t image_patch_delta = image_header.GetPatchDelta();
1448     int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
1449     if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) {
1450       // We should have already relocated by this point. Bail out.
1451       *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
1452                                 "in image %s",
1453                                 oat_patch_delta,
1454                                 image_patch_delta,
1455                                 image.GetName());
1456       return nullptr;
1457     }
1458 
1459     return oat_file;
1460   }
1461 };
1462 
1463 static constexpr uint64_t kLowSpaceValue = 50 * MB;
1464 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
1465 
1466 // Read the free space of the cache partition and make a decision whether to keep the generated
1467 // image. This is to try to mitigate situations where the system might run out of space later.
CheckSpace(const std::string & cache_filename,std::string * error_msg)1468 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
1469   // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
1470   struct statvfs buf;
1471 
1472   int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
1473   if (res != 0) {
1474     // Could not stat. Conservatively tell the system to delete the image.
1475     *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
1476     return false;
1477   }
1478 
1479   uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
1480   // Zygote is privileged, but other things are not. Use bavail.
1481   uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
1482 
1483   // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
1484   // environment. We do not want to fail quickening the boot image there, as it is beneficial
1485   // for time-to-UI.
1486   if (fs_overall_size > kTmpFsSentinelValue) {
1487     if (fs_free_size < kLowSpaceValue) {
1488       *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at "
1489                                 "least %" PRIu64 ".",
1490                                 static_cast<double>(fs_free_size) / MB,
1491                                 kLowSpaceValue / MB);
1492       return false;
1493     }
1494   }
1495   return true;
1496 }
1497 
CreateBootImage(const char * image_location,const InstructionSet image_isa,bool secondary_image,std::string * error_msg)1498 std::unique_ptr<ImageSpace> ImageSpace::CreateBootImage(const char* image_location,
1499                                                         const InstructionSet image_isa,
1500                                                         bool secondary_image,
1501                                                         std::string* error_msg) {
1502   ScopedTrace trace(__FUNCTION__);
1503 
1504   // Step 0: Extra zygote work.
1505 
1506   // Step 0.a: If we're the zygote, mark boot.
1507   const bool is_zygote = Runtime::Current()->IsZygote();
1508   if (is_zygote && !secondary_image && CanWriteToDalvikCache(image_isa)) {
1509     MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
1510   }
1511 
1512   // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively,
1513   //           if necessary. While the runtime may be fine (it is pretty tolerant to
1514   //           out-of-disk-space situations), other parts of the platform are not.
1515   //
1516   //           The advantage of doing this proactively is that the later steps are simplified,
1517   //           i.e., we do not need to code retries.
1518   std::string system_filename;
1519   bool has_system = false;
1520   std::string cache_filename;
1521   bool has_cache = false;
1522   bool dalvik_cache_exists = false;
1523   bool is_global_cache = true;
1524   std::string dalvik_cache;
1525   bool found_image = FindImageFilenameImpl(image_location,
1526                                            image_isa,
1527                                            &has_system,
1528                                            &system_filename,
1529                                            &dalvik_cache_exists,
1530                                            &dalvik_cache,
1531                                            &is_global_cache,
1532                                            &has_cache,
1533                                            &cache_filename);
1534 
1535   bool dex2oat_enabled = Runtime::Current()->IsImageDex2OatEnabled();
1536 
1537   if (is_zygote && dalvik_cache_exists && !secondary_image) {
1538     // Extra checks for the zygote. These only apply when loading the first image, explained below.
1539     DCHECK(!dalvik_cache.empty());
1540     std::string local_error_msg;
1541     // All secondary images are verified when the primary image is verified.
1542     bool verified = VerifyImage(image_location, dalvik_cache.c_str(), image_isa, &local_error_msg);
1543     // If we prune for space at a secondary image, we may end up in a crash loop with the _exit
1544     // path.
1545     bool check_space = CheckSpace(dalvik_cache, &local_error_msg);
1546     if (!verified || !check_space) {
1547       // Note: it is important to only prune for space on the primary image, or we will hit the
1548       //       restart path.
1549       LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache.";
1550       PruneDalvikCache(image_isa);
1551 
1552       // Re-evaluate the image.
1553       found_image = FindImageFilenameImpl(image_location,
1554                                           image_isa,
1555                                           &has_system,
1556                                           &system_filename,
1557                                           &dalvik_cache_exists,
1558                                           &dalvik_cache,
1559                                           &is_global_cache,
1560                                           &has_cache,
1561                                           &cache_filename);
1562     }
1563     if (!check_space) {
1564       // Disable compilation/patching - we do not want to fill up the space again.
1565       dex2oat_enabled = false;
1566     }
1567   }
1568 
1569   // Collect all the errors.
1570   std::vector<std::string> error_msgs;
1571 
1572   // Step 1: Check if we have an existing and relocated image.
1573 
1574   // Step 1.a: Have files in system and cache. Then they need to match.
1575   if (found_image && has_system && has_cache) {
1576     std::string local_error_msg;
1577     // Check that the files are matching.
1578     if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str(), &local_error_msg)) {
1579       std::unique_ptr<ImageSpace> relocated_space =
1580           ImageSpaceLoader::Load(image_location,
1581                                  cache_filename,
1582                                  is_zygote,
1583                                  is_global_cache,
1584                                  /* validate_oat_file */ false,
1585                                  &local_error_msg);
1586       if (relocated_space != nullptr) {
1587         return relocated_space;
1588       }
1589     }
1590     error_msgs.push_back(local_error_msg);
1591   }
1592 
1593   // Step 1.b: Only have a cache file.
1594   if (found_image && !has_system && has_cache) {
1595     std::string local_error_msg;
1596     std::unique_ptr<ImageSpace> cache_space =
1597         ImageSpaceLoader::Load(image_location,
1598                                cache_filename,
1599                                is_zygote,
1600                                is_global_cache,
1601                                /* validate_oat_file */ true,
1602                                &local_error_msg);
1603     if (cache_space != nullptr) {
1604       return cache_space;
1605     }
1606     error_msgs.push_back(local_error_msg);
1607   }
1608 
1609   // Step 2: We have an existing image in /system.
1610 
1611   // Step 2.a: We are not required to relocate it. Then we can use it directly.
1612   bool relocate = Runtime::Current()->ShouldRelocate();
1613 
1614   if (found_image && has_system && !relocate) {
1615     std::string local_error_msg;
1616     std::unique_ptr<ImageSpace> system_space =
1617         ImageSpaceLoader::Load(image_location,
1618                                system_filename,
1619                                is_zygote,
1620                                is_global_cache,
1621                                /* validate_oat_file */ false,
1622                                &local_error_msg);
1623     if (system_space != nullptr) {
1624       return system_space;
1625     }
1626     error_msgs.push_back(local_error_msg);
1627   }
1628 
1629   // Step 2.b: We require a relocated image. Then we must patch it. This step fails if this is a
1630   //           secondary image.
1631   if (found_image && has_system && relocate) {
1632     std::string local_error_msg;
1633     if (!dex2oat_enabled) {
1634       local_error_msg = "Patching disabled.";
1635     } else if (secondary_image) {
1636       // We really want a working image. Prune and restart.
1637       PruneDalvikCache(image_isa);
1638       _exit(1);
1639     } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) {
1640       bool patch_success =
1641           RelocateImage(image_location, dalvik_cache.c_str(), image_isa, &local_error_msg);
1642       if (patch_success) {
1643         std::unique_ptr<ImageSpace> patched_space =
1644             ImageSpaceLoader::Load(image_location,
1645                                    cache_filename,
1646                                    is_zygote,
1647                                    is_global_cache,
1648                                    /* validate_oat_file */ false,
1649                                    &local_error_msg);
1650         if (patched_space != nullptr) {
1651           return patched_space;
1652         }
1653       }
1654     }
1655     error_msgs.push_back(StringPrintf("Cannot relocate image %s to %s: %s",
1656                                       image_location,
1657                                       cache_filename.c_str(),
1658                                       local_error_msg.c_str()));
1659   }
1660 
1661   // Step 3: We do not have an existing image in /system, so generate an image into the dalvik
1662   //         cache. This step fails if this is a secondary image.
1663   if (!has_system) {
1664     std::string local_error_msg;
1665     if (!dex2oat_enabled) {
1666       local_error_msg = "Image compilation disabled.";
1667     } else if (secondary_image) {
1668       local_error_msg = "Cannot compile a secondary image.";
1669     } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) {
1670       bool compilation_success = GenerateImage(cache_filename, image_isa, &local_error_msg);
1671       if (compilation_success) {
1672         std::unique_ptr<ImageSpace> compiled_space =
1673             ImageSpaceLoader::Load(image_location,
1674                                    cache_filename,
1675                                    is_zygote,
1676                                    is_global_cache,
1677                                    /* validate_oat_file */ false,
1678                                    &local_error_msg);
1679         if (compiled_space != nullptr) {
1680           return compiled_space;
1681         }
1682       }
1683     }
1684     error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s",
1685                                       cache_filename.c_str(),
1686                                       local_error_msg.c_str()));
1687   }
1688 
1689   // We failed. Prune the cache the free up space, create a compound error message and return no
1690   // image.
1691   PruneDalvikCache(image_isa);
1692 
1693   std::ostringstream oss;
1694   bool first = true;
1695   for (const auto& msg : error_msgs) {
1696     if (!first) {
1697       oss << "\n    ";
1698     }
1699     oss << msg;
1700   }
1701   *error_msg = oss.str();
1702 
1703   return nullptr;
1704 }
1705 
LoadBootImage(const std::string & image_file_name,const InstructionSet image_instruction_set,std::vector<space::ImageSpace * > * boot_image_spaces,uint8_t ** oat_file_end)1706 bool ImageSpace::LoadBootImage(const std::string& image_file_name,
1707                                const InstructionSet image_instruction_set,
1708                                std::vector<space::ImageSpace*>* boot_image_spaces,
1709                                uint8_t** oat_file_end) {
1710   DCHECK(boot_image_spaces != nullptr);
1711   DCHECK(boot_image_spaces->empty());
1712   DCHECK(oat_file_end != nullptr);
1713   DCHECK_NE(image_instruction_set, InstructionSet::kNone);
1714 
1715   if (image_file_name.empty()) {
1716     return false;
1717   }
1718 
1719   // For code reuse, handle this like a work queue.
1720   std::vector<std::string> image_file_names;
1721   image_file_names.push_back(image_file_name);
1722 
1723   bool error = false;
1724   uint8_t* oat_file_end_tmp = *oat_file_end;
1725 
1726   for (size_t index = 0; index < image_file_names.size(); ++index) {
1727     std::string& image_name = image_file_names[index];
1728     std::string error_msg;
1729     std::unique_ptr<space::ImageSpace> boot_image_space_uptr = CreateBootImage(
1730         image_name.c_str(),
1731         image_instruction_set,
1732         index > 0,
1733         &error_msg);
1734     if (boot_image_space_uptr != nullptr) {
1735       space::ImageSpace* boot_image_space = boot_image_space_uptr.release();
1736       boot_image_spaces->push_back(boot_image_space);
1737       // Oat files referenced by image files immediately follow them in memory, ensure alloc space
1738       // isn't going to get in the middle
1739       uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd();
1740       CHECK_GT(oat_file_end_addr, boot_image_space->End());
1741       oat_file_end_tmp = AlignUp(oat_file_end_addr, kPageSize);
1742 
1743       if (index == 0) {
1744         // If this was the first space, check whether there are more images to load.
1745         const OatFile* boot_oat_file = boot_image_space->GetOatFile();
1746         if (boot_oat_file == nullptr) {
1747           continue;
1748         }
1749 
1750         const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader();
1751         const char* boot_classpath =
1752             boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
1753         if (boot_classpath == nullptr) {
1754           continue;
1755         }
1756 
1757         ExtractMultiImageLocations(image_file_name, boot_classpath, &image_file_names);
1758       }
1759     } else {
1760       error = true;
1761       LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
1762           << "Attempting to fall back to imageless running. Error was: " << error_msg
1763           << "\nAttempted image: " << image_name;
1764       break;
1765     }
1766   }
1767 
1768   if (error) {
1769     // Remove already loaded spaces.
1770     for (space::Space* loaded_space : *boot_image_spaces) {
1771       delete loaded_space;
1772     }
1773     boot_image_spaces->clear();
1774     return false;
1775   }
1776 
1777   *oat_file_end = oat_file_end_tmp;
1778   return true;
1779 }
1780 
~ImageSpace()1781 ImageSpace::~ImageSpace() {
1782   Runtime* runtime = Runtime::Current();
1783   if (runtime == nullptr) {
1784     return;
1785   }
1786 
1787   if (GetImageHeader().IsAppImage()) {
1788     // This image space did not modify resolution method then in Init.
1789     return;
1790   }
1791 
1792   if (!runtime->HasResolutionMethod()) {
1793     // Another image space has already unloaded the below methods.
1794     return;
1795   }
1796 
1797   runtime->ClearInstructionSet();
1798   runtime->ClearResolutionMethod();
1799   runtime->ClearImtConflictMethod();
1800   runtime->ClearImtUnimplementedMethod();
1801   runtime->ClearCalleeSaveMethods();
1802 }
1803 
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)1804 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
1805                                                            const OatFile* oat_file,
1806                                                            std::string* error_msg) {
1807   return ImageSpaceLoader::Init(image,
1808                                 image,
1809                                 /*validate_oat_file*/false,
1810                                 oat_file,
1811                                 /*out*/error_msg);
1812 }
1813 
GetOatFile() const1814 const OatFile* ImageSpace::GetOatFile() const {
1815   return oat_file_non_owned_;
1816 }
1817 
ReleaseOatFile()1818 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
1819   CHECK(oat_file_ != nullptr);
1820   return std::move(oat_file_);
1821 }
1822 
Dump(std::ostream & os) const1823 void ImageSpace::Dump(std::ostream& os) const {
1824   os << GetType()
1825       << " begin=" << reinterpret_cast<void*>(Begin())
1826       << ",end=" << reinterpret_cast<void*>(End())
1827       << ",size=" << PrettySize(Size())
1828       << ",name=\"" << GetName() << "\"]";
1829 }
1830 
GetMultiImageBootClassPath(const std::vector<const char * > & dex_locations,const std::vector<const char * > & oat_filenames,const std::vector<const char * > & image_filenames)1831 std::string ImageSpace::GetMultiImageBootClassPath(
1832     const std::vector<const char*>& dex_locations,
1833     const std::vector<const char*>& oat_filenames,
1834     const std::vector<const char*>& image_filenames) {
1835   DCHECK_GT(oat_filenames.size(), 1u);
1836   // If the image filename was adapted (e.g., for our tests), we need to change this here,
1837   // too, but need to strip all path components (they will be re-established when loading).
1838   std::ostringstream bootcp_oss;
1839   bool first_bootcp = true;
1840   for (size_t i = 0; i < dex_locations.size(); ++i) {
1841     if (!first_bootcp) {
1842       bootcp_oss << ":";
1843     }
1844 
1845     std::string dex_loc = dex_locations[i];
1846     std::string image_filename = image_filenames[i];
1847 
1848     // Use the dex_loc path, but the image_filename name (without path elements).
1849     size_t dex_last_slash = dex_loc.rfind('/');
1850 
1851     // npos is max(size_t). That makes this a bit ugly.
1852     size_t image_last_slash = image_filename.rfind('/');
1853     size_t image_last_at = image_filename.rfind('@');
1854     size_t image_last_sep = (image_last_slash == std::string::npos)
1855                                 ? image_last_at
1856                                 : (image_last_at == std::string::npos)
1857                                       ? std::string::npos
1858                                       : std::max(image_last_slash, image_last_at);
1859     // Note: whenever image_last_sep == npos, +1 overflow means using the full string.
1860 
1861     if (dex_last_slash == std::string::npos) {
1862       dex_loc = image_filename.substr(image_last_sep + 1);
1863     } else {
1864       dex_loc = dex_loc.substr(0, dex_last_slash + 1) +
1865           image_filename.substr(image_last_sep + 1);
1866     }
1867 
1868     // Image filenames already end with .art, no need to replace.
1869 
1870     bootcp_oss << dex_loc;
1871     first_bootcp = false;
1872   }
1873   return bootcp_oss.str();
1874 }
1875 
ValidateOatFile(const OatFile & oat_file,std::string * error_msg)1876 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
1877   const ArtDexFileLoader dex_file_loader;
1878   for (const OatFile::OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
1879     const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
1880 
1881     // Skip multidex locations - These will be checked when we visit their
1882     // corresponding primary non-multidex location.
1883     if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) {
1884       continue;
1885     }
1886 
1887     std::vector<uint32_t> checksums;
1888     if (!dex_file_loader.GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) {
1889       *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
1890                                 "referenced by oat file %s: %s",
1891                                 dex_file_location.c_str(),
1892                                 oat_file.GetLocation().c_str(),
1893                                 error_msg->c_str());
1894       return false;
1895     }
1896     CHECK(!checksums.empty());
1897     if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
1898       *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
1899                                 "'%s' and dex file '%s' (0x%x != 0x%x)",
1900                                 oat_file.GetLocation().c_str(),
1901                                 dex_file_location.c_str(),
1902                                 oat_dex_file->GetDexFileLocationChecksum(),
1903                                 checksums[0]);
1904       return false;
1905     }
1906 
1907     // Verify checksums for any related multidex entries.
1908     for (size_t i = 1; i < checksums.size(); i++) {
1909       std::string multi_dex_location = DexFileLoader::GetMultiDexLocation(
1910           i,
1911           dex_file_location.c_str());
1912       const OatFile::OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
1913                                                                     nullptr,
1914                                                                     error_msg);
1915       if (multi_dex == nullptr) {
1916         *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
1917                                   oat_file.GetLocation().c_str(),
1918                                   multi_dex_location.c_str());
1919         return false;
1920       }
1921 
1922       if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
1923         *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
1924                                   "'%s' and dex file '%s' (0x%x != 0x%x)",
1925                                   oat_file.GetLocation().c_str(),
1926                                   multi_dex_location.c_str(),
1927                                   multi_dex->GetDexFileLocationChecksum(),
1928                                   checksums[i]);
1929         return false;
1930       }
1931     }
1932   }
1933   return true;
1934 }
1935 
ExtractMultiImageLocations(const std::string & input_image_file_name,const std::string & boot_classpath,std::vector<std::string> * image_file_names)1936 void ImageSpace::ExtractMultiImageLocations(const std::string& input_image_file_name,
1937                                             const std::string& boot_classpath,
1938                                             std::vector<std::string>* image_file_names) {
1939   DCHECK(image_file_names != nullptr);
1940 
1941   std::vector<std::string> images;
1942   Split(boot_classpath, ':', &images);
1943 
1944   // Add the rest into the list. We have to adjust locations, possibly:
1945   //
1946   // For example, image_file_name is /a/b/c/d/e.art
1947   //              images[0] is          f/c/d/e.art
1948   // ----------------------------------------------
1949   //              images[1] is          g/h/i/j.art  -> /a/b/h/i/j.art
1950   const std::string& first_image = images[0];
1951   // Length of common suffix.
1952   size_t common = 0;
1953   while (common < input_image_file_name.size() &&
1954          common < first_image.size() &&
1955          *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) {
1956     ++common;
1957   }
1958   // We want to replace the prefix of the input image with the prefix of the boot class path.
1959   // This handles the case where the image file contains @ separators.
1960   // Example image_file_name is oats/system@framework@boot.art
1961   // images[0] is .../arm/boot.art
1962   // means that the image name prefix will be oats/system@framework@
1963   // so that the other images are openable.
1964   const size_t old_prefix_length = first_image.size() - common;
1965   const std::string new_prefix = input_image_file_name.substr(
1966       0,
1967       input_image_file_name.size() - common);
1968 
1969   // Apply pattern to images[1] .. images[n].
1970   for (size_t i = 1; i < images.size(); ++i) {
1971     const std::string& image = images[i];
1972     CHECK_GT(image.length(), old_prefix_length);
1973     std::string suffix = image.substr(old_prefix_length);
1974     image_file_names->push_back(new_prefix + suffix);
1975   }
1976 }
1977 
DumpSections(std::ostream & os) const1978 void ImageSpace::DumpSections(std::ostream& os) const {
1979   const uint8_t* base = Begin();
1980   const ImageHeader& header = GetImageHeader();
1981   for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
1982     auto section_type = static_cast<ImageHeader::ImageSections>(i);
1983     const ImageSection& section = header.GetImageSection(section_type);
1984     os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
1985        << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
1986   }
1987 }
1988 
1989 }  // namespace space
1990 }  // namespace gc
1991 }  // namespace art
1992