1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Speed-critical encoding functions.
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13
14 #include <assert.h>
15 #include <stdlib.h> // for abs()
16
17 #include "src/dsp/dsp.h"
18 #include "src/enc/vp8i_enc.h"
19
clip_8b(int v)20 static WEBP_INLINE uint8_t clip_8b(int v) {
21 return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255;
22 }
23
24 #if !WEBP_NEON_OMIT_C_CODE
clip_max(int v,int max)25 static WEBP_INLINE int clip_max(int v, int max) {
26 return (v > max) ? max : v;
27 }
28 #endif // !WEBP_NEON_OMIT_C_CODE
29
30 //------------------------------------------------------------------------------
31 // Compute susceptibility based on DCT-coeff histograms:
32 // the higher, the "easier" the macroblock is to compress.
33
34 const int VP8DspScan[16 + 4 + 4] = {
35 // Luma
36 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
37 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
38 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
39 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
40
41 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U
42 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
43 };
44
45 // general-purpose util function
VP8SetHistogramData(const int distribution[MAX_COEFF_THRESH+1],VP8Histogram * const histo)46 void VP8SetHistogramData(const int distribution[MAX_COEFF_THRESH + 1],
47 VP8Histogram* const histo) {
48 int max_value = 0, last_non_zero = 1;
49 int k;
50 for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
51 const int value = distribution[k];
52 if (value > 0) {
53 if (value > max_value) max_value = value;
54 last_non_zero = k;
55 }
56 }
57 histo->max_value = max_value;
58 histo->last_non_zero = last_non_zero;
59 }
60
61 #if !WEBP_NEON_OMIT_C_CODE
CollectHistogram_C(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)62 static void CollectHistogram_C(const uint8_t* ref, const uint8_t* pred,
63 int start_block, int end_block,
64 VP8Histogram* const histo) {
65 int j;
66 int distribution[MAX_COEFF_THRESH + 1] = { 0 };
67 for (j = start_block; j < end_block; ++j) {
68 int k;
69 int16_t out[16];
70
71 VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
72
73 // Convert coefficients to bin.
74 for (k = 0; k < 16; ++k) {
75 const int v = abs(out[k]) >> 3;
76 const int clipped_value = clip_max(v, MAX_COEFF_THRESH);
77 ++distribution[clipped_value];
78 }
79 }
80 VP8SetHistogramData(distribution, histo);
81 }
82 #endif // !WEBP_NEON_OMIT_C_CODE
83
84 //------------------------------------------------------------------------------
85 // run-time tables (~4k)
86
87 static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255]
88
89 // We declare this variable 'volatile' to prevent instruction reordering
90 // and make sure it's set to true _last_ (so as to be thread-safe)
91 static volatile int tables_ok = 0;
92
InitTables(void)93 static WEBP_TSAN_IGNORE_FUNCTION void InitTables(void) {
94 if (!tables_ok) {
95 int i;
96 for (i = -255; i <= 255 + 255; ++i) {
97 clip1[255 + i] = clip_8b(i);
98 }
99 tables_ok = 1;
100 }
101 }
102
103
104 //------------------------------------------------------------------------------
105 // Transforms (Paragraph 14.4)
106
107 #if !WEBP_NEON_OMIT_C_CODE
108
109 #define STORE(x, y, v) \
110 dst[(x) + (y) * BPS] = clip_8b(ref[(x) + (y) * BPS] + ((v) >> 3))
111
112 static const int kC1 = 20091 + (1 << 16);
113 static const int kC2 = 35468;
114 #define MUL(a, b) (((a) * (b)) >> 16)
115
ITransformOne(const uint8_t * ref,const int16_t * in,uint8_t * dst)116 static WEBP_INLINE void ITransformOne(const uint8_t* ref, const int16_t* in,
117 uint8_t* dst) {
118 int C[4 * 4], *tmp;
119 int i;
120 tmp = C;
121 for (i = 0; i < 4; ++i) { // vertical pass
122 const int a = in[0] + in[8];
123 const int b = in[0] - in[8];
124 const int c = MUL(in[4], kC2) - MUL(in[12], kC1);
125 const int d = MUL(in[4], kC1) + MUL(in[12], kC2);
126 tmp[0] = a + d;
127 tmp[1] = b + c;
128 tmp[2] = b - c;
129 tmp[3] = a - d;
130 tmp += 4;
131 in++;
132 }
133
134 tmp = C;
135 for (i = 0; i < 4; ++i) { // horizontal pass
136 const int dc = tmp[0] + 4;
137 const int a = dc + tmp[8];
138 const int b = dc - tmp[8];
139 const int c = MUL(tmp[4], kC2) - MUL(tmp[12], kC1);
140 const int d = MUL(tmp[4], kC1) + MUL(tmp[12], kC2);
141 STORE(0, i, a + d);
142 STORE(1, i, b + c);
143 STORE(2, i, b - c);
144 STORE(3, i, a - d);
145 tmp++;
146 }
147 }
148
ITransform_C(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)149 static void ITransform_C(const uint8_t* ref, const int16_t* in, uint8_t* dst,
150 int do_two) {
151 ITransformOne(ref, in, dst);
152 if (do_two) {
153 ITransformOne(ref + 4, in + 16, dst + 4);
154 }
155 }
156
FTransform_C(const uint8_t * src,const uint8_t * ref,int16_t * out)157 static void FTransform_C(const uint8_t* src, const uint8_t* ref, int16_t* out) {
158 int i;
159 int tmp[16];
160 for (i = 0; i < 4; ++i, src += BPS, ref += BPS) {
161 const int d0 = src[0] - ref[0]; // 9bit dynamic range ([-255,255])
162 const int d1 = src[1] - ref[1];
163 const int d2 = src[2] - ref[2];
164 const int d3 = src[3] - ref[3];
165 const int a0 = (d0 + d3); // 10b [-510,510]
166 const int a1 = (d1 + d2);
167 const int a2 = (d1 - d2);
168 const int a3 = (d0 - d3);
169 tmp[0 + i * 4] = (a0 + a1) * 8; // 14b [-8160,8160]
170 tmp[1 + i * 4] = (a2 * 2217 + a3 * 5352 + 1812) >> 9; // [-7536,7542]
171 tmp[2 + i * 4] = (a0 - a1) * 8;
172 tmp[3 + i * 4] = (a3 * 2217 - a2 * 5352 + 937) >> 9;
173 }
174 for (i = 0; i < 4; ++i) {
175 const int a0 = (tmp[0 + i] + tmp[12 + i]); // 15b
176 const int a1 = (tmp[4 + i] + tmp[ 8 + i]);
177 const int a2 = (tmp[4 + i] - tmp[ 8 + i]);
178 const int a3 = (tmp[0 + i] - tmp[12 + i]);
179 out[0 + i] = (a0 + a1 + 7) >> 4; // 12b
180 out[4 + i] = ((a2 * 2217 + a3 * 5352 + 12000) >> 16) + (a3 != 0);
181 out[8 + i] = (a0 - a1 + 7) >> 4;
182 out[12+ i] = ((a3 * 2217 - a2 * 5352 + 51000) >> 16);
183 }
184 }
185 #endif // !WEBP_NEON_OMIT_C_CODE
186
FTransform2_C(const uint8_t * src,const uint8_t * ref,int16_t * out)187 static void FTransform2_C(const uint8_t* src, const uint8_t* ref,
188 int16_t* out) {
189 VP8FTransform(src, ref, out);
190 VP8FTransform(src + 4, ref + 4, out + 16);
191 }
192
193 #if !WEBP_NEON_OMIT_C_CODE
FTransformWHT_C(const int16_t * in,int16_t * out)194 static void FTransformWHT_C(const int16_t* in, int16_t* out) {
195 // input is 12b signed
196 int32_t tmp[16];
197 int i;
198 for (i = 0; i < 4; ++i, in += 64) {
199 const int a0 = (in[0 * 16] + in[2 * 16]); // 13b
200 const int a1 = (in[1 * 16] + in[3 * 16]);
201 const int a2 = (in[1 * 16] - in[3 * 16]);
202 const int a3 = (in[0 * 16] - in[2 * 16]);
203 tmp[0 + i * 4] = a0 + a1; // 14b
204 tmp[1 + i * 4] = a3 + a2;
205 tmp[2 + i * 4] = a3 - a2;
206 tmp[3 + i * 4] = a0 - a1;
207 }
208 for (i = 0; i < 4; ++i) {
209 const int a0 = (tmp[0 + i] + tmp[8 + i]); // 15b
210 const int a1 = (tmp[4 + i] + tmp[12+ i]);
211 const int a2 = (tmp[4 + i] - tmp[12+ i]);
212 const int a3 = (tmp[0 + i] - tmp[8 + i]);
213 const int b0 = a0 + a1; // 16b
214 const int b1 = a3 + a2;
215 const int b2 = a3 - a2;
216 const int b3 = a0 - a1;
217 out[ 0 + i] = b0 >> 1; // 15b
218 out[ 4 + i] = b1 >> 1;
219 out[ 8 + i] = b2 >> 1;
220 out[12 + i] = b3 >> 1;
221 }
222 }
223 #endif // !WEBP_NEON_OMIT_C_CODE
224
225 #undef MUL
226 #undef STORE
227
228 //------------------------------------------------------------------------------
229 // Intra predictions
230
Fill(uint8_t * dst,int value,int size)231 static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) {
232 int j;
233 for (j = 0; j < size; ++j) {
234 memset(dst + j * BPS, value, size);
235 }
236 }
237
VerticalPred(uint8_t * dst,const uint8_t * top,int size)238 static WEBP_INLINE void VerticalPred(uint8_t* dst,
239 const uint8_t* top, int size) {
240 int j;
241 if (top != NULL) {
242 for (j = 0; j < size; ++j) memcpy(dst + j * BPS, top, size);
243 } else {
244 Fill(dst, 127, size);
245 }
246 }
247
HorizontalPred(uint8_t * dst,const uint8_t * left,int size)248 static WEBP_INLINE void HorizontalPred(uint8_t* dst,
249 const uint8_t* left, int size) {
250 if (left != NULL) {
251 int j;
252 for (j = 0; j < size; ++j) {
253 memset(dst + j * BPS, left[j], size);
254 }
255 } else {
256 Fill(dst, 129, size);
257 }
258 }
259
TrueMotion(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)260 static WEBP_INLINE void TrueMotion(uint8_t* dst, const uint8_t* left,
261 const uint8_t* top, int size) {
262 int y;
263 if (left != NULL) {
264 if (top != NULL) {
265 const uint8_t* const clip = clip1 + 255 - left[-1];
266 for (y = 0; y < size; ++y) {
267 const uint8_t* const clip_table = clip + left[y];
268 int x;
269 for (x = 0; x < size; ++x) {
270 dst[x] = clip_table[top[x]];
271 }
272 dst += BPS;
273 }
274 } else {
275 HorizontalPred(dst, left, size);
276 }
277 } else {
278 // true motion without left samples (hence: with default 129 value)
279 // is equivalent to VE prediction where you just copy the top samples.
280 // Note that if top samples are not available, the default value is
281 // then 129, and not 127 as in the VerticalPred case.
282 if (top != NULL) {
283 VerticalPred(dst, top, size);
284 } else {
285 Fill(dst, 129, size);
286 }
287 }
288 }
289
DCMode(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size,int round,int shift)290 static WEBP_INLINE void DCMode(uint8_t* dst, const uint8_t* left,
291 const uint8_t* top,
292 int size, int round, int shift) {
293 int DC = 0;
294 int j;
295 if (top != NULL) {
296 for (j = 0; j < size; ++j) DC += top[j];
297 if (left != NULL) { // top and left present
298 for (j = 0; j < size; ++j) DC += left[j];
299 } else { // top, but no left
300 DC += DC;
301 }
302 DC = (DC + round) >> shift;
303 } else if (left != NULL) { // left but no top
304 for (j = 0; j < size; ++j) DC += left[j];
305 DC += DC;
306 DC = (DC + round) >> shift;
307 } else { // no top, no left, nothing.
308 DC = 0x80;
309 }
310 Fill(dst, DC, size);
311 }
312
313 //------------------------------------------------------------------------------
314 // Chroma 8x8 prediction (paragraph 12.2)
315
IntraChromaPreds_C(uint8_t * dst,const uint8_t * left,const uint8_t * top)316 static void IntraChromaPreds_C(uint8_t* dst, const uint8_t* left,
317 const uint8_t* top) {
318 // U block
319 DCMode(C8DC8 + dst, left, top, 8, 8, 4);
320 VerticalPred(C8VE8 + dst, top, 8);
321 HorizontalPred(C8HE8 + dst, left, 8);
322 TrueMotion(C8TM8 + dst, left, top, 8);
323 // V block
324 dst += 8;
325 if (top != NULL) top += 8;
326 if (left != NULL) left += 16;
327 DCMode(C8DC8 + dst, left, top, 8, 8, 4);
328 VerticalPred(C8VE8 + dst, top, 8);
329 HorizontalPred(C8HE8 + dst, left, 8);
330 TrueMotion(C8TM8 + dst, left, top, 8);
331 }
332
333 //------------------------------------------------------------------------------
334 // luma 16x16 prediction (paragraph 12.3)
335
Intra16Preds_C(uint8_t * dst,const uint8_t * left,const uint8_t * top)336 static void Intra16Preds_C(uint8_t* dst,
337 const uint8_t* left, const uint8_t* top) {
338 DCMode(I16DC16 + dst, left, top, 16, 16, 5);
339 VerticalPred(I16VE16 + dst, top, 16);
340 HorizontalPred(I16HE16 + dst, left, 16);
341 TrueMotion(I16TM16 + dst, left, top, 16);
342 }
343
344 //------------------------------------------------------------------------------
345 // luma 4x4 prediction
346
347 #define DST(x, y) dst[(x) + (y) * BPS]
348 #define AVG3(a, b, c) ((uint8_t)(((a) + 2 * (b) + (c) + 2) >> 2))
349 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
350
VE4(uint8_t * dst,const uint8_t * top)351 static void VE4(uint8_t* dst, const uint8_t* top) { // vertical
352 const uint8_t vals[4] = {
353 AVG3(top[-1], top[0], top[1]),
354 AVG3(top[ 0], top[1], top[2]),
355 AVG3(top[ 1], top[2], top[3]),
356 AVG3(top[ 2], top[3], top[4])
357 };
358 int i;
359 for (i = 0; i < 4; ++i) {
360 memcpy(dst + i * BPS, vals, 4);
361 }
362 }
363
HE4(uint8_t * dst,const uint8_t * top)364 static void HE4(uint8_t* dst, const uint8_t* top) { // horizontal
365 const int X = top[-1];
366 const int I = top[-2];
367 const int J = top[-3];
368 const int K = top[-4];
369 const int L = top[-5];
370 WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
371 WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
372 WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
373 WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
374 }
375
DC4(uint8_t * dst,const uint8_t * top)376 static void DC4(uint8_t* dst, const uint8_t* top) {
377 uint32_t dc = 4;
378 int i;
379 for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
380 Fill(dst, dc >> 3, 4);
381 }
382
RD4(uint8_t * dst,const uint8_t * top)383 static void RD4(uint8_t* dst, const uint8_t* top) {
384 const int X = top[-1];
385 const int I = top[-2];
386 const int J = top[-3];
387 const int K = top[-4];
388 const int L = top[-5];
389 const int A = top[0];
390 const int B = top[1];
391 const int C = top[2];
392 const int D = top[3];
393 DST(0, 3) = AVG3(J, K, L);
394 DST(0, 2) = DST(1, 3) = AVG3(I, J, K);
395 DST(0, 1) = DST(1, 2) = DST(2, 3) = AVG3(X, I, J);
396 DST(0, 0) = DST(1, 1) = DST(2, 2) = DST(3, 3) = AVG3(A, X, I);
397 DST(1, 0) = DST(2, 1) = DST(3, 2) = AVG3(B, A, X);
398 DST(2, 0) = DST(3, 1) = AVG3(C, B, A);
399 DST(3, 0) = AVG3(D, C, B);
400 }
401
LD4(uint8_t * dst,const uint8_t * top)402 static void LD4(uint8_t* dst, const uint8_t* top) {
403 const int A = top[0];
404 const int B = top[1];
405 const int C = top[2];
406 const int D = top[3];
407 const int E = top[4];
408 const int F = top[5];
409 const int G = top[6];
410 const int H = top[7];
411 DST(0, 0) = AVG3(A, B, C);
412 DST(1, 0) = DST(0, 1) = AVG3(B, C, D);
413 DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E);
414 DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F);
415 DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G);
416 DST(3, 2) = DST(2, 3) = AVG3(F, G, H);
417 DST(3, 3) = AVG3(G, H, H);
418 }
419
VR4(uint8_t * dst,const uint8_t * top)420 static void VR4(uint8_t* dst, const uint8_t* top) {
421 const int X = top[-1];
422 const int I = top[-2];
423 const int J = top[-3];
424 const int K = top[-4];
425 const int A = top[0];
426 const int B = top[1];
427 const int C = top[2];
428 const int D = top[3];
429 DST(0, 0) = DST(1, 2) = AVG2(X, A);
430 DST(1, 0) = DST(2, 2) = AVG2(A, B);
431 DST(2, 0) = DST(3, 2) = AVG2(B, C);
432 DST(3, 0) = AVG2(C, D);
433
434 DST(0, 3) = AVG3(K, J, I);
435 DST(0, 2) = AVG3(J, I, X);
436 DST(0, 1) = DST(1, 3) = AVG3(I, X, A);
437 DST(1, 1) = DST(2, 3) = AVG3(X, A, B);
438 DST(2, 1) = DST(3, 3) = AVG3(A, B, C);
439 DST(3, 1) = AVG3(B, C, D);
440 }
441
VL4(uint8_t * dst,const uint8_t * top)442 static void VL4(uint8_t* dst, const uint8_t* top) {
443 const int A = top[0];
444 const int B = top[1];
445 const int C = top[2];
446 const int D = top[3];
447 const int E = top[4];
448 const int F = top[5];
449 const int G = top[6];
450 const int H = top[7];
451 DST(0, 0) = AVG2(A, B);
452 DST(1, 0) = DST(0, 2) = AVG2(B, C);
453 DST(2, 0) = DST(1, 2) = AVG2(C, D);
454 DST(3, 0) = DST(2, 2) = AVG2(D, E);
455
456 DST(0, 1) = AVG3(A, B, C);
457 DST(1, 1) = DST(0, 3) = AVG3(B, C, D);
458 DST(2, 1) = DST(1, 3) = AVG3(C, D, E);
459 DST(3, 1) = DST(2, 3) = AVG3(D, E, F);
460 DST(3, 2) = AVG3(E, F, G);
461 DST(3, 3) = AVG3(F, G, H);
462 }
463
HU4(uint8_t * dst,const uint8_t * top)464 static void HU4(uint8_t* dst, const uint8_t* top) {
465 const int I = top[-2];
466 const int J = top[-3];
467 const int K = top[-4];
468 const int L = top[-5];
469 DST(0, 0) = AVG2(I, J);
470 DST(2, 0) = DST(0, 1) = AVG2(J, K);
471 DST(2, 1) = DST(0, 2) = AVG2(K, L);
472 DST(1, 0) = AVG3(I, J, K);
473 DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
474 DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
475 DST(3, 2) = DST(2, 2) =
476 DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
477 }
478
HD4(uint8_t * dst,const uint8_t * top)479 static void HD4(uint8_t* dst, const uint8_t* top) {
480 const int X = top[-1];
481 const int I = top[-2];
482 const int J = top[-3];
483 const int K = top[-4];
484 const int L = top[-5];
485 const int A = top[0];
486 const int B = top[1];
487 const int C = top[2];
488
489 DST(0, 0) = DST(2, 1) = AVG2(I, X);
490 DST(0, 1) = DST(2, 2) = AVG2(J, I);
491 DST(0, 2) = DST(2, 3) = AVG2(K, J);
492 DST(0, 3) = AVG2(L, K);
493
494 DST(3, 0) = AVG3(A, B, C);
495 DST(2, 0) = AVG3(X, A, B);
496 DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
497 DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
498 DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
499 DST(1, 3) = AVG3(L, K, J);
500 }
501
TM4(uint8_t * dst,const uint8_t * top)502 static void TM4(uint8_t* dst, const uint8_t* top) {
503 int x, y;
504 const uint8_t* const clip = clip1 + 255 - top[-1];
505 for (y = 0; y < 4; ++y) {
506 const uint8_t* const clip_table = clip + top[-2 - y];
507 for (x = 0; x < 4; ++x) {
508 dst[x] = clip_table[top[x]];
509 }
510 dst += BPS;
511 }
512 }
513
514 #undef DST
515 #undef AVG3
516 #undef AVG2
517
518 // Left samples are top[-5 .. -2], top_left is top[-1], top are
519 // located at top[0..3], and top right is top[4..7]
Intra4Preds_C(uint8_t * dst,const uint8_t * top)520 static void Intra4Preds_C(uint8_t* dst, const uint8_t* top) {
521 DC4(I4DC4 + dst, top);
522 TM4(I4TM4 + dst, top);
523 VE4(I4VE4 + dst, top);
524 HE4(I4HE4 + dst, top);
525 RD4(I4RD4 + dst, top);
526 VR4(I4VR4 + dst, top);
527 LD4(I4LD4 + dst, top);
528 VL4(I4VL4 + dst, top);
529 HD4(I4HD4 + dst, top);
530 HU4(I4HU4 + dst, top);
531 }
532
533 //------------------------------------------------------------------------------
534 // Metric
535
536 #if !WEBP_NEON_OMIT_C_CODE
GetSSE(const uint8_t * a,const uint8_t * b,int w,int h)537 static WEBP_INLINE int GetSSE(const uint8_t* a, const uint8_t* b,
538 int w, int h) {
539 int count = 0;
540 int y, x;
541 for (y = 0; y < h; ++y) {
542 for (x = 0; x < w; ++x) {
543 const int diff = (int)a[x] - b[x];
544 count += diff * diff;
545 }
546 a += BPS;
547 b += BPS;
548 }
549 return count;
550 }
551
SSE16x16_C(const uint8_t * a,const uint8_t * b)552 static int SSE16x16_C(const uint8_t* a, const uint8_t* b) {
553 return GetSSE(a, b, 16, 16);
554 }
SSE16x8_C(const uint8_t * a,const uint8_t * b)555 static int SSE16x8_C(const uint8_t* a, const uint8_t* b) {
556 return GetSSE(a, b, 16, 8);
557 }
SSE8x8_C(const uint8_t * a,const uint8_t * b)558 static int SSE8x8_C(const uint8_t* a, const uint8_t* b) {
559 return GetSSE(a, b, 8, 8);
560 }
SSE4x4_C(const uint8_t * a,const uint8_t * b)561 static int SSE4x4_C(const uint8_t* a, const uint8_t* b) {
562 return GetSSE(a, b, 4, 4);
563 }
564 #endif // !WEBP_NEON_OMIT_C_CODE
565
Mean16x4_C(const uint8_t * ref,uint32_t dc[4])566 static void Mean16x4_C(const uint8_t* ref, uint32_t dc[4]) {
567 int k, x, y;
568 for (k = 0; k < 4; ++k) {
569 uint32_t avg = 0;
570 for (y = 0; y < 4; ++y) {
571 for (x = 0; x < 4; ++x) {
572 avg += ref[x + y * BPS];
573 }
574 }
575 dc[k] = avg;
576 ref += 4; // go to next 4x4 block.
577 }
578 }
579
580 //------------------------------------------------------------------------------
581 // Texture distortion
582 //
583 // We try to match the spectral content (weighted) between source and
584 // reconstructed samples.
585
586 #if !WEBP_NEON_OMIT_C_CODE
587 // Hadamard transform
588 // Returns the weighted sum of the absolute value of transformed coefficients.
589 // w[] contains a row-major 4 by 4 symmetric matrix.
TTransform(const uint8_t * in,const uint16_t * w)590 static int TTransform(const uint8_t* in, const uint16_t* w) {
591 int sum = 0;
592 int tmp[16];
593 int i;
594 // horizontal pass
595 for (i = 0; i < 4; ++i, in += BPS) {
596 const int a0 = in[0] + in[2];
597 const int a1 = in[1] + in[3];
598 const int a2 = in[1] - in[3];
599 const int a3 = in[0] - in[2];
600 tmp[0 + i * 4] = a0 + a1;
601 tmp[1 + i * 4] = a3 + a2;
602 tmp[2 + i * 4] = a3 - a2;
603 tmp[3 + i * 4] = a0 - a1;
604 }
605 // vertical pass
606 for (i = 0; i < 4; ++i, ++w) {
607 const int a0 = tmp[0 + i] + tmp[8 + i];
608 const int a1 = tmp[4 + i] + tmp[12+ i];
609 const int a2 = tmp[4 + i] - tmp[12+ i];
610 const int a3 = tmp[0 + i] - tmp[8 + i];
611 const int b0 = a0 + a1;
612 const int b1 = a3 + a2;
613 const int b2 = a3 - a2;
614 const int b3 = a0 - a1;
615
616 sum += w[ 0] * abs(b0);
617 sum += w[ 4] * abs(b1);
618 sum += w[ 8] * abs(b2);
619 sum += w[12] * abs(b3);
620 }
621 return sum;
622 }
623
Disto4x4_C(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)624 static int Disto4x4_C(const uint8_t* const a, const uint8_t* const b,
625 const uint16_t* const w) {
626 const int sum1 = TTransform(a, w);
627 const int sum2 = TTransform(b, w);
628 return abs(sum2 - sum1) >> 5;
629 }
630
Disto16x16_C(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)631 static int Disto16x16_C(const uint8_t* const a, const uint8_t* const b,
632 const uint16_t* const w) {
633 int D = 0;
634 int x, y;
635 for (y = 0; y < 16 * BPS; y += 4 * BPS) {
636 for (x = 0; x < 16; x += 4) {
637 D += Disto4x4_C(a + x + y, b + x + y, w);
638 }
639 }
640 return D;
641 }
642 #endif // !WEBP_NEON_OMIT_C_CODE
643
644 //------------------------------------------------------------------------------
645 // Quantization
646 //
647
648 static const uint8_t kZigzag[16] = {
649 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
650 };
651
652 // Simple quantization
QuantizeBlock_C(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)653 static int QuantizeBlock_C(int16_t in[16], int16_t out[16],
654 const VP8Matrix* const mtx) {
655 int last = -1;
656 int n;
657 for (n = 0; n < 16; ++n) {
658 const int j = kZigzag[n];
659 const int sign = (in[j] < 0);
660 const uint32_t coeff = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
661 if (coeff > mtx->zthresh_[j]) {
662 const uint32_t Q = mtx->q_[j];
663 const uint32_t iQ = mtx->iq_[j];
664 const uint32_t B = mtx->bias_[j];
665 int level = QUANTDIV(coeff, iQ, B);
666 if (level > MAX_LEVEL) level = MAX_LEVEL;
667 if (sign) level = -level;
668 in[j] = level * (int)Q;
669 out[n] = level;
670 if (level) last = n;
671 } else {
672 out[n] = 0;
673 in[j] = 0;
674 }
675 }
676 return (last >= 0);
677 }
678
679 #if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC
Quantize2Blocks_C(int16_t in[32],int16_t out[32],const VP8Matrix * const mtx)680 static int Quantize2Blocks_C(int16_t in[32], int16_t out[32],
681 const VP8Matrix* const mtx) {
682 int nz;
683 nz = VP8EncQuantizeBlock(in + 0 * 16, out + 0 * 16, mtx) << 0;
684 nz |= VP8EncQuantizeBlock(in + 1 * 16, out + 1 * 16, mtx) << 1;
685 return nz;
686 }
687 #endif // !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC
688
689 //------------------------------------------------------------------------------
690 // Block copy
691
Copy(const uint8_t * src,uint8_t * dst,int w,int h)692 static WEBP_INLINE void Copy(const uint8_t* src, uint8_t* dst, int w, int h) {
693 int y;
694 for (y = 0; y < h; ++y) {
695 memcpy(dst, src, w);
696 src += BPS;
697 dst += BPS;
698 }
699 }
700
Copy4x4_C(const uint8_t * src,uint8_t * dst)701 static void Copy4x4_C(const uint8_t* src, uint8_t* dst) {
702 Copy(src, dst, 4, 4);
703 }
704
Copy16x8_C(const uint8_t * src,uint8_t * dst)705 static void Copy16x8_C(const uint8_t* src, uint8_t* dst) {
706 Copy(src, dst, 16, 8);
707 }
708
709 //------------------------------------------------------------------------------
710 // Initialization
711
712 // Speed-critical function pointers. We have to initialize them to the default
713 // implementations within VP8EncDspInit().
714 VP8CHisto VP8CollectHistogram;
715 VP8Idct VP8ITransform;
716 VP8Fdct VP8FTransform;
717 VP8Fdct VP8FTransform2;
718 VP8WHT VP8FTransformWHT;
719 VP8Intra4Preds VP8EncPredLuma4;
720 VP8IntraPreds VP8EncPredLuma16;
721 VP8IntraPreds VP8EncPredChroma8;
722 VP8Metric VP8SSE16x16;
723 VP8Metric VP8SSE8x8;
724 VP8Metric VP8SSE16x8;
725 VP8Metric VP8SSE4x4;
726 VP8WMetric VP8TDisto4x4;
727 VP8WMetric VP8TDisto16x16;
728 VP8MeanMetric VP8Mean16x4;
729 VP8QuantizeBlock VP8EncQuantizeBlock;
730 VP8Quantize2Blocks VP8EncQuantize2Blocks;
731 VP8QuantizeBlockWHT VP8EncQuantizeBlockWHT;
732 VP8BlockCopy VP8Copy4x4;
733 VP8BlockCopy VP8Copy16x8;
734
735 extern void VP8EncDspInitSSE2(void);
736 extern void VP8EncDspInitSSE41(void);
737 extern void VP8EncDspInitAVX2(void);
738 extern void VP8EncDspInitNEON(void);
739 extern void VP8EncDspInitMIPS32(void);
740 extern void VP8EncDspInitMIPSdspR2(void);
741 extern void VP8EncDspInitMSA(void);
742
743 static volatile VP8CPUInfo enc_last_cpuinfo_used =
744 (VP8CPUInfo)&enc_last_cpuinfo_used;
745
VP8EncDspInit(void)746 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInit(void) {
747 if (enc_last_cpuinfo_used == VP8GetCPUInfo) return;
748
749 VP8DspInit(); // common inverse transforms
750 InitTables();
751
752 // default C implementations
753 #if !WEBP_NEON_OMIT_C_CODE
754 VP8ITransform = ITransform_C;
755 VP8FTransform = FTransform_C;
756 VP8FTransformWHT = FTransformWHT_C;
757 VP8TDisto4x4 = Disto4x4_C;
758 VP8TDisto16x16 = Disto16x16_C;
759 VP8CollectHistogram = CollectHistogram_C;
760 VP8SSE16x16 = SSE16x16_C;
761 VP8SSE16x8 = SSE16x8_C;
762 VP8SSE8x8 = SSE8x8_C;
763 VP8SSE4x4 = SSE4x4_C;
764 #endif
765
766 #if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC
767 VP8EncQuantizeBlock = QuantizeBlock_C;
768 VP8EncQuantize2Blocks = Quantize2Blocks_C;
769 #endif
770
771 VP8FTransform2 = FTransform2_C;
772 VP8EncPredLuma4 = Intra4Preds_C;
773 VP8EncPredLuma16 = Intra16Preds_C;
774 VP8EncPredChroma8 = IntraChromaPreds_C;
775 VP8Mean16x4 = Mean16x4_C;
776 VP8EncQuantizeBlockWHT = QuantizeBlock_C;
777 VP8Copy4x4 = Copy4x4_C;
778 VP8Copy16x8 = Copy16x8_C;
779
780 // If defined, use CPUInfo() to overwrite some pointers with faster versions.
781 if (VP8GetCPUInfo != NULL) {
782 #if defined(WEBP_USE_SSE2)
783 if (VP8GetCPUInfo(kSSE2)) {
784 VP8EncDspInitSSE2();
785 #if defined(WEBP_USE_SSE41)
786 if (VP8GetCPUInfo(kSSE4_1)) {
787 VP8EncDspInitSSE41();
788 }
789 #endif
790 }
791 #endif
792 #if defined(WEBP_USE_AVX2)
793 if (VP8GetCPUInfo(kAVX2)) {
794 VP8EncDspInitAVX2();
795 }
796 #endif
797 #if defined(WEBP_USE_MIPS32)
798 if (VP8GetCPUInfo(kMIPS32)) {
799 VP8EncDspInitMIPS32();
800 }
801 #endif
802 #if defined(WEBP_USE_MIPS_DSP_R2)
803 if (VP8GetCPUInfo(kMIPSdspR2)) {
804 VP8EncDspInitMIPSdspR2();
805 }
806 #endif
807 #if defined(WEBP_USE_MSA)
808 if (VP8GetCPUInfo(kMSA)) {
809 VP8EncDspInitMSA();
810 }
811 #endif
812 }
813
814 #if defined(WEBP_USE_NEON)
815 if (WEBP_NEON_OMIT_C_CODE ||
816 (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) {
817 VP8EncDspInitNEON();
818 }
819 #endif
820
821 assert(VP8ITransform != NULL);
822 assert(VP8FTransform != NULL);
823 assert(VP8FTransformWHT != NULL);
824 assert(VP8TDisto4x4 != NULL);
825 assert(VP8TDisto16x16 != NULL);
826 assert(VP8CollectHistogram != NULL);
827 assert(VP8SSE16x16 != NULL);
828 assert(VP8SSE16x8 != NULL);
829 assert(VP8SSE8x8 != NULL);
830 assert(VP8SSE4x4 != NULL);
831 assert(VP8EncQuantizeBlock != NULL);
832 assert(VP8EncQuantize2Blocks != NULL);
833 assert(VP8FTransform2 != NULL);
834 assert(VP8EncPredLuma4 != NULL);
835 assert(VP8EncPredLuma16 != NULL);
836 assert(VP8EncPredChroma8 != NULL);
837 assert(VP8Mean16x4 != NULL);
838 assert(VP8EncQuantizeBlockWHT != NULL);
839 assert(VP8Copy4x4 != NULL);
840 assert(VP8Copy16x8 != NULL);
841
842 enc_last_cpuinfo_used = VP8GetCPUInfo;
843 }
844