• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com)
11 //
12 #ifdef HAVE_CONFIG_H
13 #include "src/webp/config.h"
14 #endif
15 
16 #include <math.h>
17 
18 #include "src/enc/backward_references_enc.h"
19 #include "src/enc/histogram_enc.h"
20 #include "src/dsp/lossless.h"
21 #include "src/dsp/lossless_common.h"
22 #include "src/utils/utils.h"
23 
24 #define MAX_COST 1.e38
25 
26 // Number of partitions for the three dominant (literal, red and blue) symbol
27 // costs.
28 #define NUM_PARTITIONS 4
29 // The size of the bin-hash corresponding to the three dominant costs.
30 #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
31 // Maximum number of histograms allowed in greedy combining algorithm.
32 #define MAX_HISTO_GREEDY 100
33 
HistogramClear(VP8LHistogram * const p)34 static void HistogramClear(VP8LHistogram* const p) {
35   uint32_t* const literal = p->literal_;
36   const int cache_bits = p->palette_code_bits_;
37   const int histo_size = VP8LGetHistogramSize(cache_bits);
38   memset(p, 0, histo_size);
39   p->palette_code_bits_ = cache_bits;
40   p->literal_ = literal;
41 }
42 
43 // Swap two histogram pointers.
HistogramSwap(VP8LHistogram ** const A,VP8LHistogram ** const B)44 static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
45   VP8LHistogram* const tmp = *A;
46   *A = *B;
47   *B = tmp;
48 }
49 
HistogramCopy(const VP8LHistogram * const src,VP8LHistogram * const dst)50 static void HistogramCopy(const VP8LHistogram* const src,
51                           VP8LHistogram* const dst) {
52   uint32_t* const dst_literal = dst->literal_;
53   const int dst_cache_bits = dst->palette_code_bits_;
54   const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
55   assert(src->palette_code_bits_ == dst_cache_bits);
56   memcpy(dst, src, histo_size);
57   dst->literal_ = dst_literal;
58 }
59 
VP8LGetHistogramSize(int cache_bits)60 int VP8LGetHistogramSize(int cache_bits) {
61   const int literal_size = VP8LHistogramNumCodes(cache_bits);
62   const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
63   assert(total_size <= (size_t)0x7fffffff);
64   return (int)total_size;
65 }
66 
VP8LFreeHistogram(VP8LHistogram * const histo)67 void VP8LFreeHistogram(VP8LHistogram* const histo) {
68   WebPSafeFree(histo);
69 }
70 
VP8LFreeHistogramSet(VP8LHistogramSet * const histo)71 void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
72   WebPSafeFree(histo);
73 }
74 
VP8LHistogramStoreRefs(const VP8LBackwardRefs * const refs,VP8LHistogram * const histo)75 void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
76                             VP8LHistogram* const histo) {
77   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
78   while (VP8LRefsCursorOk(&c)) {
79     VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos, NULL, 0);
80     VP8LRefsCursorNext(&c);
81   }
82 }
83 
VP8LHistogramCreate(VP8LHistogram * const p,const VP8LBackwardRefs * const refs,int palette_code_bits)84 void VP8LHistogramCreate(VP8LHistogram* const p,
85                          const VP8LBackwardRefs* const refs,
86                          int palette_code_bits) {
87   if (palette_code_bits >= 0) {
88     p->palette_code_bits_ = palette_code_bits;
89   }
90   HistogramClear(p);
91   VP8LHistogramStoreRefs(refs, p);
92 }
93 
VP8LHistogramInit(VP8LHistogram * const p,int palette_code_bits)94 void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
95   p->palette_code_bits_ = palette_code_bits;
96   HistogramClear(p);
97 }
98 
VP8LAllocateHistogram(int cache_bits)99 VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
100   VP8LHistogram* histo = NULL;
101   const int total_size = VP8LGetHistogramSize(cache_bits);
102   uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
103   if (memory == NULL) return NULL;
104   histo = (VP8LHistogram*)memory;
105   // literal_ won't necessary be aligned.
106   histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
107   VP8LHistogramInit(histo, cache_bits);
108   return histo;
109 }
110 
VP8LAllocateHistogramSet(int size,int cache_bits)111 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
112   int i;
113   VP8LHistogramSet* set;
114   const int histo_size = VP8LGetHistogramSize(cache_bits);
115   const size_t total_size =
116       sizeof(*set) + size * (sizeof(*set->histograms) +
117       histo_size + WEBP_ALIGN_CST);
118   uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
119   if (memory == NULL) return NULL;
120 
121   set = (VP8LHistogramSet*)memory;
122   memory += sizeof(*set);
123   set->histograms = (VP8LHistogram**)memory;
124   memory += size * sizeof(*set->histograms);
125   set->max_size = size;
126   set->size = size;
127   for (i = 0; i < size; ++i) {
128     memory = (uint8_t*)WEBP_ALIGN(memory);
129     set->histograms[i] = (VP8LHistogram*)memory;
130     // literal_ won't necessary be aligned.
131     set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
132     VP8LHistogramInit(set->histograms[i], cache_bits);
133     memory += histo_size;
134   }
135   return set;
136 }
137 
138 // -----------------------------------------------------------------------------
139 
VP8LHistogramAddSinglePixOrCopy(VP8LHistogram * const histo,const PixOrCopy * const v,int (* const distance_modifier)(int,int),int distance_modifier_arg0)140 void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
141                                      const PixOrCopy* const v,
142                                      int (*const distance_modifier)(int, int),
143                                      int distance_modifier_arg0) {
144   if (PixOrCopyIsLiteral(v)) {
145     ++histo->alpha_[PixOrCopyLiteral(v, 3)];
146     ++histo->red_[PixOrCopyLiteral(v, 2)];
147     ++histo->literal_[PixOrCopyLiteral(v, 1)];
148     ++histo->blue_[PixOrCopyLiteral(v, 0)];
149   } else if (PixOrCopyIsCacheIdx(v)) {
150     const int literal_ix =
151         NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
152     ++histo->literal_[literal_ix];
153   } else {
154     int code, extra_bits;
155     VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
156     ++histo->literal_[NUM_LITERAL_CODES + code];
157     if (distance_modifier == NULL) {
158       VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
159     } else {
160       VP8LPrefixEncodeBits(
161           distance_modifier(distance_modifier_arg0, PixOrCopyDistance(v)),
162           &code, &extra_bits);
163     }
164     ++histo->distance_[code];
165   }
166 }
167 
168 // -----------------------------------------------------------------------------
169 // Entropy-related functions.
170 
BitsEntropyRefine(const VP8LBitEntropy * entropy)171 static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) {
172   double mix;
173   if (entropy->nonzeros < 5) {
174     if (entropy->nonzeros <= 1) {
175       return 0;
176     }
177     // Two symbols, they will be 0 and 1 in a Huffman code.
178     // Let's mix in a bit of entropy to favor good clustering when
179     // distributions of these are combined.
180     if (entropy->nonzeros == 2) {
181       return 0.99 * entropy->sum + 0.01 * entropy->entropy;
182     }
183     // No matter what the entropy says, we cannot be better than min_limit
184     // with Huffman coding. I am mixing a bit of entropy into the
185     // min_limit since it produces much better (~0.5 %) compression results
186     // perhaps because of better entropy clustering.
187     if (entropy->nonzeros == 3) {
188       mix = 0.95;
189     } else {
190       mix = 0.7;  // nonzeros == 4.
191     }
192   } else {
193     mix = 0.627;
194   }
195 
196   {
197     double min_limit = 2 * entropy->sum - entropy->max_val;
198     min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy;
199     return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
200   }
201 }
202 
VP8LBitsEntropy(const uint32_t * const array,int n,uint32_t * const trivial_symbol)203 double VP8LBitsEntropy(const uint32_t* const array, int n,
204                        uint32_t* const trivial_symbol) {
205   VP8LBitEntropy entropy;
206   VP8LBitsEntropyUnrefined(array, n, &entropy);
207   if (trivial_symbol != NULL) {
208     *trivial_symbol =
209         (entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM;
210   }
211 
212   return BitsEntropyRefine(&entropy);
213 }
214 
InitialHuffmanCost(void)215 static double InitialHuffmanCost(void) {
216   // Small bias because Huffman code length is typically not stored in
217   // full length.
218   static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
219   static const double kSmallBias = 9.1;
220   return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
221 }
222 
223 // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
FinalHuffmanCost(const VP8LStreaks * const stats)224 static double FinalHuffmanCost(const VP8LStreaks* const stats) {
225   // The constants in this function are experimental and got rounded from
226   // their original values in 1/8 when switched to 1/1024.
227   double retval = InitialHuffmanCost();
228   // Second coefficient: Many zeros in the histogram are covered efficiently
229   // by a run-length encode. Originally 2/8.
230   retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
231   // Second coefficient: Constant values are encoded less efficiently, but still
232   // RLE'ed. Originally 6/8.
233   retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
234   // 0s are usually encoded more efficiently than non-0s.
235   // Originally 15/8.
236   retval += 1.796875 * stats->streaks[0][0];
237   // Originally 26/8.
238   retval += 3.28125 * stats->streaks[1][0];
239   return retval;
240 }
241 
242 // Get the symbol entropy for the distribution 'population'.
243 // Set 'trivial_sym', if there's only one symbol present in the distribution.
PopulationCost(const uint32_t * const population,int length,uint32_t * const trivial_sym)244 static double PopulationCost(const uint32_t* const population, int length,
245                              uint32_t* const trivial_sym) {
246   VP8LBitEntropy bit_entropy;
247   VP8LStreaks stats;
248   VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats);
249   if (trivial_sym != NULL) {
250     *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code
251                                                : VP8L_NON_TRIVIAL_SYM;
252   }
253 
254   return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
255 }
256 
257 // trivial_at_end is 1 if the two histograms only have one element that is
258 // non-zero: both the zero-th one, or both the last one.
GetCombinedEntropy(const uint32_t * const X,const uint32_t * const Y,int length,int trivial_at_end)259 static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X,
260                                              const uint32_t* const Y,
261                                              int length, int trivial_at_end) {
262   VP8LStreaks stats;
263   if (trivial_at_end) {
264     // This configuration is due to palettization that transforms an indexed
265     // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap.
266     // BitsEntropyRefine is 0 for histograms with only one non-zero value.
267     // Only FinalHuffmanCost needs to be evaluated.
268     memset(&stats, 0, sizeof(stats));
269     // Deal with the non-zero value at index 0 or length-1.
270     stats.streaks[1][0] += 1;
271     // Deal with the following/previous zero streak.
272     stats.counts[0] += 1;
273     stats.streaks[0][1] += length - 1;
274     return FinalHuffmanCost(&stats);
275   } else {
276     VP8LBitEntropy bit_entropy;
277     VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
278 
279     return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
280   }
281 }
282 
283 // Estimates the Entropy + Huffman + other block overhead size cost.
VP8LHistogramEstimateBits(const VP8LHistogram * const p)284 double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
285   return
286       PopulationCost(
287           p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL)
288       + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL)
289       + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL)
290       + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL)
291       + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL)
292       + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
293       + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
294 }
295 
296 // -----------------------------------------------------------------------------
297 // Various histogram combine/cost-eval functions
298 
GetCombinedHistogramEntropy(const VP8LHistogram * const a,const VP8LHistogram * const b,double cost_threshold,double * cost)299 static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
300                                        const VP8LHistogram* const b,
301                                        double cost_threshold,
302                                        double* cost) {
303   const int palette_code_bits = a->palette_code_bits_;
304   int trivial_at_end = 0;
305   assert(a->palette_code_bits_ == b->palette_code_bits_);
306   *cost += GetCombinedEntropy(a->literal_, b->literal_,
307                               VP8LHistogramNumCodes(palette_code_bits), 0);
308   *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
309                                  b->literal_ + NUM_LITERAL_CODES,
310                                  NUM_LENGTH_CODES);
311   if (*cost > cost_threshold) return 0;
312 
313   if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM &&
314       a->trivial_symbol_ == b->trivial_symbol_) {
315     // A, R and B are all 0 or 0xff.
316     const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff;
317     const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff;
318     const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff;
319     if ((color_a == 0 || color_a == 0xff) &&
320         (color_r == 0 || color_r == 0xff) &&
321         (color_b == 0 || color_b == 0xff)) {
322       trivial_at_end = 1;
323     }
324   }
325 
326   *cost +=
327       GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, trivial_at_end);
328   if (*cost > cost_threshold) return 0;
329 
330   *cost +=
331       GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, trivial_at_end);
332   if (*cost > cost_threshold) return 0;
333 
334   *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES,
335                               trivial_at_end);
336   if (*cost > cost_threshold) return 0;
337 
338   *cost +=
339       GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, 0);
340   *cost +=
341       VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
342   if (*cost > cost_threshold) return 0;
343 
344   return 1;
345 }
346 
HistogramAdd(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out)347 static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a,
348                                      const VP8LHistogram* const b,
349                                      VP8LHistogram* const out) {
350   VP8LHistogramAdd(a, b, out);
351   out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_)
352                        ? a->trivial_symbol_
353                        : VP8L_NON_TRIVIAL_SYM;
354 }
355 
356 // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
357 // to the threshold value 'cost_threshold'. The score returned is
358 //  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
359 // Since the previous score passed is 'cost_threshold', we only need to compare
360 // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
361 // early.
HistogramAddEval(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out,double cost_threshold)362 static double HistogramAddEval(const VP8LHistogram* const a,
363                                const VP8LHistogram* const b,
364                                VP8LHistogram* const out,
365                                double cost_threshold) {
366   double cost = 0;
367   const double sum_cost = a->bit_cost_ + b->bit_cost_;
368   cost_threshold += sum_cost;
369 
370   if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
371     HistogramAdd(a, b, out);
372     out->bit_cost_ = cost;
373     out->palette_code_bits_ = a->palette_code_bits_;
374   }
375 
376   return cost - sum_cost;
377 }
378 
379 // Same as HistogramAddEval(), except that the resulting histogram
380 // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
381 // the term C(b) which is constant over all the evaluations.
HistogramAddThresh(const VP8LHistogram * const a,const VP8LHistogram * const b,double cost_threshold)382 static double HistogramAddThresh(const VP8LHistogram* const a,
383                                  const VP8LHistogram* const b,
384                                  double cost_threshold) {
385   double cost = -a->bit_cost_;
386   GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
387   return cost;
388 }
389 
390 // -----------------------------------------------------------------------------
391 
392 // The structure to keep track of cost range for the three dominant entropy
393 // symbols.
394 // TODO(skal): Evaluate if float can be used here instead of double for
395 // representing the entropy costs.
396 typedef struct {
397   double literal_max_;
398   double literal_min_;
399   double red_max_;
400   double red_min_;
401   double blue_max_;
402   double blue_min_;
403 } DominantCostRange;
404 
DominantCostRangeInit(DominantCostRange * const c)405 static void DominantCostRangeInit(DominantCostRange* const c) {
406   c->literal_max_ = 0.;
407   c->literal_min_ = MAX_COST;
408   c->red_max_ = 0.;
409   c->red_min_ = MAX_COST;
410   c->blue_max_ = 0.;
411   c->blue_min_ = MAX_COST;
412 }
413 
UpdateDominantCostRange(const VP8LHistogram * const h,DominantCostRange * const c)414 static void UpdateDominantCostRange(
415     const VP8LHistogram* const h, DominantCostRange* const c) {
416   if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
417   if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
418   if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
419   if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
420   if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
421   if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
422 }
423 
UpdateHistogramCost(VP8LHistogram * const h)424 static void UpdateHistogramCost(VP8LHistogram* const h) {
425   uint32_t alpha_sym, red_sym, blue_sym;
426   const double alpha_cost =
427       PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym);
428   const double distance_cost =
429       PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) +
430       VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
431   const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
432   h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) +
433                      VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
434                                    NUM_LENGTH_CODES);
435   h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym);
436   h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym);
437   h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
438                  alpha_cost + distance_cost;
439   if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
440     h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
441   } else {
442     h->trivial_symbol_ =
443         ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
444   }
445 }
446 
GetBinIdForEntropy(double min,double max,double val)447 static int GetBinIdForEntropy(double min, double max, double val) {
448   const double range = max - min;
449   if (range > 0.) {
450     const double delta = val - min;
451     return (int)((NUM_PARTITIONS - 1e-6) * delta / range);
452   } else {
453     return 0;
454   }
455 }
456 
GetHistoBinIndex(const VP8LHistogram * const h,const DominantCostRange * const c,int low_effort)457 static int GetHistoBinIndex(const VP8LHistogram* const h,
458                             const DominantCostRange* const c, int low_effort) {
459   int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
460                                   h->literal_cost_);
461   assert(bin_id < NUM_PARTITIONS);
462   if (!low_effort) {
463     bin_id = bin_id * NUM_PARTITIONS
464            + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_);
465     bin_id = bin_id * NUM_PARTITIONS
466            + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_);
467     assert(bin_id < BIN_SIZE);
468   }
469   return bin_id;
470 }
471 
472 // Construct the histograms from backward references.
HistogramBuild(int xsize,int histo_bits,const VP8LBackwardRefs * const backward_refs,VP8LHistogramSet * const image_histo)473 static void HistogramBuild(
474     int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
475     VP8LHistogramSet* const image_histo) {
476   int x = 0, y = 0;
477   const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
478   VP8LHistogram** const histograms = image_histo->histograms;
479   VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
480   assert(histo_bits > 0);
481   while (VP8LRefsCursorOk(&c)) {
482     const PixOrCopy* const v = c.cur_pos;
483     const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
484     VP8LHistogramAddSinglePixOrCopy(histograms[ix], v, NULL, 0);
485     x += PixOrCopyLength(v);
486     while (x >= xsize) {
487       x -= xsize;
488       ++y;
489     }
490     VP8LRefsCursorNext(&c);
491   }
492 }
493 
494 // Copies the histograms and computes its bit_cost.
HistogramCopyAndAnalyze(VP8LHistogramSet * const orig_histo,VP8LHistogramSet * const image_histo)495 static void HistogramCopyAndAnalyze(
496     VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) {
497   int i;
498   const int histo_size = orig_histo->size;
499   VP8LHistogram** const orig_histograms = orig_histo->histograms;
500   VP8LHistogram** const histograms = image_histo->histograms;
501   for (i = 0; i < histo_size; ++i) {
502     VP8LHistogram* const histo = orig_histograms[i];
503     UpdateHistogramCost(histo);
504     // Copy histograms from orig_histo[] to image_histo[].
505     HistogramCopy(histo, histograms[i]);
506   }
507 }
508 
509 // Partition histograms to different entropy bins for three dominant (literal,
510 // red and blue) symbol costs and compute the histogram aggregate bit_cost.
HistogramAnalyzeEntropyBin(VP8LHistogramSet * const image_histo,uint16_t * const bin_map,int low_effort)511 static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
512                                        uint16_t* const bin_map,
513                                        int low_effort) {
514   int i;
515   VP8LHistogram** const histograms = image_histo->histograms;
516   const int histo_size = image_histo->size;
517   DominantCostRange cost_range;
518   DominantCostRangeInit(&cost_range);
519 
520   // Analyze the dominant (literal, red and blue) entropy costs.
521   for (i = 0; i < histo_size; ++i) {
522     UpdateDominantCostRange(histograms[i], &cost_range);
523   }
524 
525   // bin-hash histograms on three of the dominant (literal, red and blue)
526   // symbol costs and store the resulting bin_id for each histogram.
527   for (i = 0; i < histo_size; ++i) {
528     bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort);
529   }
530 }
531 
532 // Compact image_histo[] by merging some histograms with same bin_id together if
533 // it's advantageous.
HistogramCombineEntropyBin(VP8LHistogramSet * const image_histo,VP8LHistogram * cur_combo,const uint16_t * const bin_map,int bin_map_size,int num_bins,double combine_cost_factor,int low_effort)534 static void HistogramCombineEntropyBin(VP8LHistogramSet* const image_histo,
535                                        VP8LHistogram* cur_combo,
536                                        const uint16_t* const bin_map,
537                                        int bin_map_size, int num_bins,
538                                        double combine_cost_factor,
539                                        int low_effort) {
540   VP8LHistogram** const histograms = image_histo->histograms;
541   int idx;
542   // Work in-place: processed histograms are put at the beginning of
543   // image_histo[]. At the end, we just have to truncate the array.
544   int size = 0;
545   struct {
546     int16_t first;    // position of the histogram that accumulates all
547                       // histograms with the same bin_id
548     uint16_t num_combine_failures;   // number of combine failures per bin_id
549   } bin_info[BIN_SIZE];
550 
551   assert(num_bins <= BIN_SIZE);
552   for (idx = 0; idx < num_bins; ++idx) {
553     bin_info[idx].first = -1;
554     bin_info[idx].num_combine_failures = 0;
555   }
556 
557   for (idx = 0; idx < bin_map_size; ++idx) {
558     const int bin_id = bin_map[idx];
559     const int first = bin_info[bin_id].first;
560     assert(size <= idx);
561     if (first == -1) {
562       // just move histogram #idx to its final position
563       histograms[size] = histograms[idx];
564       bin_info[bin_id].first = size++;
565     } else if (low_effort) {
566       HistogramAdd(histograms[idx], histograms[first], histograms[first]);
567     } else {
568       // try to merge #idx into #first (both share the same bin_id)
569       const double bit_cost = histograms[idx]->bit_cost_;
570       const double bit_cost_thresh = -bit_cost * combine_cost_factor;
571       const double curr_cost_diff =
572           HistogramAddEval(histograms[first], histograms[idx],
573                            cur_combo, bit_cost_thresh);
574       if (curr_cost_diff < bit_cost_thresh) {
575         // Try to merge two histograms only if the combo is a trivial one or
576         // the two candidate histograms are already non-trivial.
577         // For some images, 'try_combine' turns out to be false for a lot of
578         // histogram pairs. In that case, we fallback to combining
579         // histograms as usual to avoid increasing the header size.
580         const int try_combine =
581             (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
582             ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
583              (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
584         const int max_combine_failures = 32;
585         if (try_combine ||
586             bin_info[bin_id].num_combine_failures >= max_combine_failures) {
587           // move the (better) merged histogram to its final slot
588           HistogramSwap(&cur_combo, &histograms[first]);
589         } else {
590           histograms[size++] = histograms[idx];
591           ++bin_info[bin_id].num_combine_failures;
592         }
593       } else {
594         histograms[size++] = histograms[idx];
595       }
596     }
597   }
598   image_histo->size = size;
599   if (low_effort) {
600     // for low_effort case, update the final cost when everything is merged
601     for (idx = 0; idx < size; ++idx) {
602       UpdateHistogramCost(histograms[idx]);
603     }
604   }
605 }
606 
607 // Implement a Lehmer random number generator with a multiplicative constant of
608 // 48271 and a modulo constant of 2^31 − 1.
MyRand(uint32_t * const seed)609 static uint32_t MyRand(uint32_t* const seed) {
610   *seed = (uint32_t)(((uint64_t)(*seed) * 48271u) % 2147483647u);
611   assert(*seed > 0);
612   return *seed;
613 }
614 
615 // -----------------------------------------------------------------------------
616 // Histogram pairs priority queue
617 
618 // Pair of histograms. Negative idx1 value means that pair is out-of-date.
619 typedef struct {
620   int idx1;
621   int idx2;
622   double cost_diff;
623   double cost_combo;
624 } HistogramPair;
625 
626 typedef struct {
627   HistogramPair* queue;
628   int size;
629   int max_size;
630 } HistoQueue;
631 
HistoQueueInit(HistoQueue * const histo_queue,const int max_index)632 static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) {
633   histo_queue->size = 0;
634   // max_index^2 for the queue size is safe. If you look at
635   // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes
636   // data to the queue, you insert at most:
637   // - max_index*(max_index-1)/2 (the first two for loops)
638   // - max_index - 1 in the last for loop at the first iteration of the while
639   //   loop, max_index - 2 at the second iteration ... therefore
640   //   max_index*(max_index-1)/2 overall too
641   histo_queue->max_size = max_index * max_index;
642   // We allocate max_size + 1 because the last element at index "size" is
643   // used as temporary data (and it could be up to max_size).
644   histo_queue->queue = (HistogramPair*)WebPSafeMalloc(
645       histo_queue->max_size + 1, sizeof(*histo_queue->queue));
646   return histo_queue->queue != NULL;
647 }
648 
HistoQueueClear(HistoQueue * const histo_queue)649 static void HistoQueueClear(HistoQueue* const histo_queue) {
650   assert(histo_queue != NULL);
651   WebPSafeFree(histo_queue->queue);
652   histo_queue->size = 0;
653   histo_queue->max_size = 0;
654 }
655 
656 // Pop a specific pair in the queue by replacing it with the last one
657 // and shrinking the queue.
HistoQueuePopPair(HistoQueue * const histo_queue,HistogramPair * const pair)658 static void HistoQueuePopPair(HistoQueue* const histo_queue,
659                               HistogramPair* const pair) {
660   assert(pair >= histo_queue->queue &&
661          pair < (histo_queue->queue + histo_queue->size));
662   assert(histo_queue->size > 0);
663   *pair = histo_queue->queue[histo_queue->size - 1];
664   --histo_queue->size;
665 }
666 
667 // Check whether a pair in the queue should be updated as head or not.
HistoQueueUpdateHead(HistoQueue * const histo_queue,HistogramPair * const pair)668 static void HistoQueueUpdateHead(HistoQueue* const histo_queue,
669                                  HistogramPair* const pair) {
670   assert(pair->cost_diff < 0.);
671   assert(pair >= histo_queue->queue &&
672          pair < (histo_queue->queue + histo_queue->size));
673   assert(histo_queue->size > 0);
674   if (pair->cost_diff < histo_queue->queue[0].cost_diff) {
675     // Replace the best pair.
676     const HistogramPair tmp = histo_queue->queue[0];
677     histo_queue->queue[0] = *pair;
678     *pair = tmp;
679   }
680 }
681 
682 // Create a pair from indices "idx1" and "idx2" provided its cost
683 // is inferior to "threshold", a negative entropy.
684 // It returns the cost of the pair, or 0. if it superior to threshold.
HistoQueuePush(HistoQueue * const histo_queue,VP8LHistogram ** const histograms,int idx1,int idx2,double threshold)685 static double HistoQueuePush(HistoQueue* const histo_queue,
686                              VP8LHistogram** const histograms, int idx1,
687                              int idx2, double threshold) {
688   const VP8LHistogram* h1;
689   const VP8LHistogram* h2;
690   HistogramPair pair;
691   double sum_cost;
692 
693   assert(threshold <= 0.);
694   if (idx1 > idx2) {
695     const int tmp = idx2;
696     idx2 = idx1;
697     idx1 = tmp;
698   }
699   pair.idx1 = idx1;
700   pair.idx2 = idx2;
701   h1 = histograms[idx1];
702   h2 = histograms[idx2];
703   sum_cost = h1->bit_cost_ + h2->bit_cost_;
704   pair.cost_combo = 0.;
705   GetCombinedHistogramEntropy(h1, h2, sum_cost + threshold, &pair.cost_combo);
706   pair.cost_diff = pair.cost_combo - sum_cost;
707 
708   // Do not even consider the pair if it does not improve the entropy.
709   if (pair.cost_diff >= threshold) return 0.;
710 
711   // We cannot add more elements than the capacity.
712   assert(histo_queue->size < histo_queue->max_size);
713   histo_queue->queue[histo_queue->size++] = pair;
714   HistoQueueUpdateHead(histo_queue, &histo_queue->queue[histo_queue->size - 1]);
715 
716   return pair.cost_diff;
717 }
718 
719 // -----------------------------------------------------------------------------
720 
721 // Combines histograms by continuously choosing the one with the highest cost
722 // reduction.
HistogramCombineGreedy(VP8LHistogramSet * const image_histo)723 static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) {
724   int ok = 0;
725   int image_histo_size = image_histo->size;
726   int i, j;
727   VP8LHistogram** const histograms = image_histo->histograms;
728   // Indexes of remaining histograms.
729   int* const clusters =
730       (int*)WebPSafeMalloc(image_histo_size, sizeof(*clusters));
731   // Priority queue of histogram pairs.
732   HistoQueue histo_queue;
733 
734   if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) {
735     goto End;
736   }
737 
738   for (i = 0; i < image_histo_size; ++i) {
739     // Initialize clusters indexes.
740     clusters[i] = i;
741     for (j = i + 1; j < image_histo_size; ++j) {
742       // Initialize positions array.
743       HistoQueuePush(&histo_queue, histograms, i, j, 0.);
744     }
745   }
746 
747   while (image_histo_size > 1 && histo_queue.size > 0) {
748     const int idx1 = histo_queue.queue[0].idx1;
749     const int idx2 = histo_queue.queue[0].idx2;
750     HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
751     histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
752     // Remove merged histogram.
753     for (i = 0; i + 1 < image_histo_size; ++i) {
754       if (clusters[i] >= idx2) {
755         clusters[i] = clusters[i + 1];
756       }
757     }
758     --image_histo_size;
759 
760     // Remove pairs intersecting the just combined best pair.
761     for (i = 0; i < histo_queue.size;) {
762       HistogramPair* const p = histo_queue.queue + i;
763       if (p->idx1 == idx1 || p->idx2 == idx1 ||
764           p->idx1 == idx2 || p->idx2 == idx2) {
765         HistoQueuePopPair(&histo_queue, p);
766       } else {
767         HistoQueueUpdateHead(&histo_queue, p);
768         ++i;
769       }
770     }
771 
772     // Push new pairs formed with combined histogram to the queue.
773     for (i = 0; i < image_histo_size; ++i) {
774       if (clusters[i] != idx1) {
775         HistoQueuePush(&histo_queue, histograms, idx1, clusters[i], 0.);
776       }
777     }
778   }
779   // Move remaining histograms to the beginning of the array.
780   for (i = 0; i < image_histo_size; ++i) {
781     if (i != clusters[i]) {  // swap the two histograms
782       HistogramSwap(&histograms[i], &histograms[clusters[i]]);
783     }
784   }
785 
786   image_histo->size = image_histo_size;
787   ok = 1;
788 
789  End:
790   WebPSafeFree(clusters);
791   HistoQueueClear(&histo_queue);
792   return ok;
793 }
794 
795 // Perform histogram aggregation using a stochastic approach.
796 // 'do_greedy' is set to 1 if a greedy approach needs to be performed
797 // afterwards, 0 otherwise.
HistogramCombineStochastic(VP8LHistogramSet * const image_histo,int min_cluster_size,int * const do_greedy)798 static int HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
799                                       int min_cluster_size,
800                                       int* const do_greedy) {
801   int iter;
802   uint32_t seed = 1;
803   int tries_with_no_success = 0;
804   int image_histo_size = image_histo->size;
805   const int outer_iters = image_histo_size;
806   const int num_tries_no_success = outer_iters / 2;
807   VP8LHistogram** const histograms = image_histo->histograms;
808   // Priority queue of histogram pairs. Its size of "kCostHeapSizeSqrt"^2
809   // impacts the quality of the compression and the speed: the smaller the
810   // faster but the worse for the compression.
811   HistoQueue histo_queue;
812   const int kHistoQueueSizeSqrt = 3;
813   int ok = 0;
814 
815   if (!HistoQueueInit(&histo_queue, kHistoQueueSizeSqrt)) {
816     goto End;
817   }
818   // Collapse similar histograms in 'image_histo'.
819   ++min_cluster_size;
820   for (iter = 0; iter < outer_iters && image_histo_size >= min_cluster_size &&
821                  ++tries_with_no_success < num_tries_no_success;
822        ++iter) {
823     double best_cost =
824         (histo_queue.size == 0) ? 0. : histo_queue.queue[0].cost_diff;
825     int best_idx1 = -1, best_idx2 = 1;
826     int j;
827     const uint32_t rand_range = (image_histo_size - 1) * image_histo_size;
828     // image_histo_size / 2 was chosen empirically. Less means faster but worse
829     // compression.
830     const int num_tries = image_histo_size / 2;
831 
832     for (j = 0; j < num_tries; ++j) {
833       double curr_cost;
834       // Choose two different histograms at random and try to combine them.
835       const uint32_t tmp = MyRand(&seed) % rand_range;
836       const uint32_t idx1 = tmp / (image_histo_size - 1);
837       uint32_t idx2 = tmp % (image_histo_size - 1);
838       if (idx2 >= idx1) ++idx2;
839 
840       // Calculate cost reduction on combination.
841       curr_cost =
842           HistoQueuePush(&histo_queue, histograms, idx1, idx2, best_cost);
843       if (curr_cost < 0) {  // found a better pair?
844         best_cost = curr_cost;
845         // Empty the queue if we reached full capacity.
846         if (histo_queue.size == histo_queue.max_size) break;
847       }
848     }
849     if (histo_queue.size == 0) continue;
850 
851     // Merge the two best histograms.
852     best_idx1 = histo_queue.queue[0].idx1;
853     best_idx2 = histo_queue.queue[0].idx2;
854     assert(best_idx1 < best_idx2);
855     HistogramAddEval(histograms[best_idx1], histograms[best_idx2],
856                      histograms[best_idx1], 0);
857     // Swap the best_idx2 histogram with the last one (which is now unused).
858     --image_histo_size;
859     if (best_idx2 != image_histo_size) {
860       HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
861     }
862     histograms[image_histo_size] = NULL;
863     // Parse the queue and update each pair that deals with best_idx1,
864     // best_idx2 or image_histo_size.
865     for (j = 0; j < histo_queue.size;) {
866       HistogramPair* const p = histo_queue.queue + j;
867       const int is_idx1_best = p->idx1 == best_idx1 || p->idx1 == best_idx2;
868       const int is_idx2_best = p->idx2 == best_idx1 || p->idx2 == best_idx2;
869       int do_eval = 0;
870       // The front pair could have been duplicated by a random pick so
871       // check for it all the time nevertheless.
872       if (is_idx1_best && is_idx2_best) {
873         HistoQueuePopPair(&histo_queue, p);
874         continue;
875       }
876       // Any pair containing one of the two best indices should only refer to
877       // best_idx1. Its cost should also be updated.
878       if (is_idx1_best) {
879         p->idx1 = best_idx1;
880         do_eval = 1;
881       } else if (is_idx2_best) {
882         p->idx2 = best_idx1;
883         do_eval = 1;
884       }
885       if (p->idx2 == image_histo_size) {
886         // No need to re-evaluate here as it does not involve a pair
887         // containing best_idx1 or best_idx2.
888         p->idx2 = best_idx2;
889       }
890       assert(p->idx2 < image_histo_size);
891       // Make sure the index order is respected.
892       if (p->idx1 > p->idx2) {
893         const int tmp = p->idx2;
894         p->idx2 = p->idx1;
895         p->idx1 = tmp;
896       }
897       if (do_eval) {
898         // Re-evaluate the cost of an updated pair.
899         GetCombinedHistogramEntropy(histograms[p->idx1], histograms[p->idx2], 0,
900                                     &p->cost_diff);
901         if (p->cost_diff >= 0.) {
902           HistoQueuePopPair(&histo_queue, p);
903           continue;
904         }
905       }
906       HistoQueueUpdateHead(&histo_queue, p);
907       ++j;
908     }
909 
910     tries_with_no_success = 0;
911   }
912   image_histo->size = image_histo_size;
913   *do_greedy = (image_histo->size <= min_cluster_size);
914   ok = 1;
915 
916 End:
917   HistoQueueClear(&histo_queue);
918   return ok;
919 }
920 
921 // -----------------------------------------------------------------------------
922 // Histogram refinement
923 
924 // Find the best 'out' histogram for each of the 'in' histograms.
925 // Note: we assume that out[]->bit_cost_ is already up-to-date.
HistogramRemap(const VP8LHistogramSet * const in,const VP8LHistogramSet * const out,uint16_t * const symbols)926 static void HistogramRemap(const VP8LHistogramSet* const in,
927                            const VP8LHistogramSet* const out,
928                            uint16_t* const symbols) {
929   int i;
930   VP8LHistogram** const in_histo = in->histograms;
931   VP8LHistogram** const out_histo = out->histograms;
932   const int in_size = in->size;
933   const int out_size = out->size;
934   if (out_size > 1) {
935     for (i = 0; i < in_size; ++i) {
936       int best_out = 0;
937       double best_bits = MAX_COST;
938       int k;
939       for (k = 0; k < out_size; ++k) {
940         const double cur_bits =
941             HistogramAddThresh(out_histo[k], in_histo[i], best_bits);
942         if (k == 0 || cur_bits < best_bits) {
943           best_bits = cur_bits;
944           best_out = k;
945         }
946       }
947       symbols[i] = best_out;
948     }
949   } else {
950     assert(out_size == 1);
951     for (i = 0; i < in_size; ++i) {
952       symbols[i] = 0;
953     }
954   }
955 
956   // Recompute each out based on raw and symbols.
957   for (i = 0; i < out_size; ++i) {
958     HistogramClear(out_histo[i]);
959   }
960 
961   for (i = 0; i < in_size; ++i) {
962     const int idx = symbols[i];
963     HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]);
964   }
965 }
966 
GetCombineCostFactor(int histo_size,int quality)967 static double GetCombineCostFactor(int histo_size, int quality) {
968   double combine_cost_factor = 0.16;
969   if (quality < 90) {
970     if (histo_size > 256) combine_cost_factor /= 2.;
971     if (histo_size > 512) combine_cost_factor /= 2.;
972     if (histo_size > 1024) combine_cost_factor /= 2.;
973     if (quality <= 50) combine_cost_factor /= 2.;
974   }
975   return combine_cost_factor;
976 }
977 
VP8LGetHistoImageSymbols(int xsize,int ysize,const VP8LBackwardRefs * const refs,int quality,int low_effort,int histo_bits,int cache_bits,VP8LHistogramSet * const image_histo,VP8LHistogram * const tmp_histo,uint16_t * const histogram_symbols)978 int VP8LGetHistoImageSymbols(int xsize, int ysize,
979                              const VP8LBackwardRefs* const refs,
980                              int quality, int low_effort,
981                              int histo_bits, int cache_bits,
982                              VP8LHistogramSet* const image_histo,
983                              VP8LHistogram* const tmp_histo,
984                              uint16_t* const histogram_symbols) {
985   int ok = 0;
986   const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
987   const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
988   const int image_histo_raw_size = histo_xsize * histo_ysize;
989   VP8LHistogramSet* const orig_histo =
990       VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
991   // Don't attempt linear bin-partition heuristic for
992   // histograms of small sizes (as bin_map will be very sparse) and
993   // maximum quality q==100 (to preserve the compression gains at that level).
994   const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
995   const int entropy_combine =
996       (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100);
997 
998   if (orig_histo == NULL) goto Error;
999 
1000   // Construct the histograms from backward references.
1001   HistogramBuild(xsize, histo_bits, refs, orig_histo);
1002   // Copies the histograms and computes its bit_cost.
1003   HistogramCopyAndAnalyze(orig_histo, image_histo);
1004 
1005   if (entropy_combine) {
1006     const int bin_map_size = orig_histo->size;
1007     // Reuse histogram_symbols storage. By definition, it's guaranteed to be ok.
1008     uint16_t* const bin_map = histogram_symbols;
1009     const double combine_cost_factor =
1010         GetCombineCostFactor(image_histo_raw_size, quality);
1011 
1012     HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort);
1013     // Collapse histograms with similar entropy.
1014     HistogramCombineEntropyBin(image_histo, tmp_histo, bin_map, bin_map_size,
1015                                entropy_combine_num_bins, combine_cost_factor,
1016                                low_effort);
1017   }
1018 
1019   // Don't combine the histograms using stochastic and greedy heuristics for
1020   // low-effort compression mode.
1021   if (!low_effort || !entropy_combine) {
1022     const float x = quality / 100.f;
1023     // cubic ramp between 1 and MAX_HISTO_GREEDY:
1024     const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
1025     int do_greedy;
1026     if (!HistogramCombineStochastic(image_histo, threshold_size, &do_greedy)) {
1027       goto Error;
1028     }
1029     if (do_greedy && !HistogramCombineGreedy(image_histo)) {
1030       goto Error;
1031     }
1032   }
1033 
1034   // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also.
1035   // Find the optimal map from original histograms to the final ones.
1036   HistogramRemap(orig_histo, image_histo, histogram_symbols);
1037 
1038   ok = 1;
1039 
1040  Error:
1041   VP8LFreeHistogramSet(orig_histo);
1042   return ok;
1043 }
1044