1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com)
11 //
12 #ifdef HAVE_CONFIG_H
13 #include "src/webp/config.h"
14 #endif
15
16 #include <math.h>
17
18 #include "src/enc/backward_references_enc.h"
19 #include "src/enc/histogram_enc.h"
20 #include "src/dsp/lossless.h"
21 #include "src/dsp/lossless_common.h"
22 #include "src/utils/utils.h"
23
24 #define MAX_COST 1.e38
25
26 // Number of partitions for the three dominant (literal, red and blue) symbol
27 // costs.
28 #define NUM_PARTITIONS 4
29 // The size of the bin-hash corresponding to the three dominant costs.
30 #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
31 // Maximum number of histograms allowed in greedy combining algorithm.
32 #define MAX_HISTO_GREEDY 100
33
HistogramClear(VP8LHistogram * const p)34 static void HistogramClear(VP8LHistogram* const p) {
35 uint32_t* const literal = p->literal_;
36 const int cache_bits = p->palette_code_bits_;
37 const int histo_size = VP8LGetHistogramSize(cache_bits);
38 memset(p, 0, histo_size);
39 p->palette_code_bits_ = cache_bits;
40 p->literal_ = literal;
41 }
42
43 // Swap two histogram pointers.
HistogramSwap(VP8LHistogram ** const A,VP8LHistogram ** const B)44 static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
45 VP8LHistogram* const tmp = *A;
46 *A = *B;
47 *B = tmp;
48 }
49
HistogramCopy(const VP8LHistogram * const src,VP8LHistogram * const dst)50 static void HistogramCopy(const VP8LHistogram* const src,
51 VP8LHistogram* const dst) {
52 uint32_t* const dst_literal = dst->literal_;
53 const int dst_cache_bits = dst->palette_code_bits_;
54 const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
55 assert(src->palette_code_bits_ == dst_cache_bits);
56 memcpy(dst, src, histo_size);
57 dst->literal_ = dst_literal;
58 }
59
VP8LGetHistogramSize(int cache_bits)60 int VP8LGetHistogramSize(int cache_bits) {
61 const int literal_size = VP8LHistogramNumCodes(cache_bits);
62 const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
63 assert(total_size <= (size_t)0x7fffffff);
64 return (int)total_size;
65 }
66
VP8LFreeHistogram(VP8LHistogram * const histo)67 void VP8LFreeHistogram(VP8LHistogram* const histo) {
68 WebPSafeFree(histo);
69 }
70
VP8LFreeHistogramSet(VP8LHistogramSet * const histo)71 void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
72 WebPSafeFree(histo);
73 }
74
VP8LHistogramStoreRefs(const VP8LBackwardRefs * const refs,VP8LHistogram * const histo)75 void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
76 VP8LHistogram* const histo) {
77 VP8LRefsCursor c = VP8LRefsCursorInit(refs);
78 while (VP8LRefsCursorOk(&c)) {
79 VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos, NULL, 0);
80 VP8LRefsCursorNext(&c);
81 }
82 }
83
VP8LHistogramCreate(VP8LHistogram * const p,const VP8LBackwardRefs * const refs,int palette_code_bits)84 void VP8LHistogramCreate(VP8LHistogram* const p,
85 const VP8LBackwardRefs* const refs,
86 int palette_code_bits) {
87 if (palette_code_bits >= 0) {
88 p->palette_code_bits_ = palette_code_bits;
89 }
90 HistogramClear(p);
91 VP8LHistogramStoreRefs(refs, p);
92 }
93
VP8LHistogramInit(VP8LHistogram * const p,int palette_code_bits)94 void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
95 p->palette_code_bits_ = palette_code_bits;
96 HistogramClear(p);
97 }
98
VP8LAllocateHistogram(int cache_bits)99 VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
100 VP8LHistogram* histo = NULL;
101 const int total_size = VP8LGetHistogramSize(cache_bits);
102 uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
103 if (memory == NULL) return NULL;
104 histo = (VP8LHistogram*)memory;
105 // literal_ won't necessary be aligned.
106 histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
107 VP8LHistogramInit(histo, cache_bits);
108 return histo;
109 }
110
VP8LAllocateHistogramSet(int size,int cache_bits)111 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
112 int i;
113 VP8LHistogramSet* set;
114 const int histo_size = VP8LGetHistogramSize(cache_bits);
115 const size_t total_size =
116 sizeof(*set) + size * (sizeof(*set->histograms) +
117 histo_size + WEBP_ALIGN_CST);
118 uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
119 if (memory == NULL) return NULL;
120
121 set = (VP8LHistogramSet*)memory;
122 memory += sizeof(*set);
123 set->histograms = (VP8LHistogram**)memory;
124 memory += size * sizeof(*set->histograms);
125 set->max_size = size;
126 set->size = size;
127 for (i = 0; i < size; ++i) {
128 memory = (uint8_t*)WEBP_ALIGN(memory);
129 set->histograms[i] = (VP8LHistogram*)memory;
130 // literal_ won't necessary be aligned.
131 set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
132 VP8LHistogramInit(set->histograms[i], cache_bits);
133 memory += histo_size;
134 }
135 return set;
136 }
137
138 // -----------------------------------------------------------------------------
139
VP8LHistogramAddSinglePixOrCopy(VP8LHistogram * const histo,const PixOrCopy * const v,int (* const distance_modifier)(int,int),int distance_modifier_arg0)140 void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
141 const PixOrCopy* const v,
142 int (*const distance_modifier)(int, int),
143 int distance_modifier_arg0) {
144 if (PixOrCopyIsLiteral(v)) {
145 ++histo->alpha_[PixOrCopyLiteral(v, 3)];
146 ++histo->red_[PixOrCopyLiteral(v, 2)];
147 ++histo->literal_[PixOrCopyLiteral(v, 1)];
148 ++histo->blue_[PixOrCopyLiteral(v, 0)];
149 } else if (PixOrCopyIsCacheIdx(v)) {
150 const int literal_ix =
151 NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
152 ++histo->literal_[literal_ix];
153 } else {
154 int code, extra_bits;
155 VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
156 ++histo->literal_[NUM_LITERAL_CODES + code];
157 if (distance_modifier == NULL) {
158 VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
159 } else {
160 VP8LPrefixEncodeBits(
161 distance_modifier(distance_modifier_arg0, PixOrCopyDistance(v)),
162 &code, &extra_bits);
163 }
164 ++histo->distance_[code];
165 }
166 }
167
168 // -----------------------------------------------------------------------------
169 // Entropy-related functions.
170
BitsEntropyRefine(const VP8LBitEntropy * entropy)171 static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) {
172 double mix;
173 if (entropy->nonzeros < 5) {
174 if (entropy->nonzeros <= 1) {
175 return 0;
176 }
177 // Two symbols, they will be 0 and 1 in a Huffman code.
178 // Let's mix in a bit of entropy to favor good clustering when
179 // distributions of these are combined.
180 if (entropy->nonzeros == 2) {
181 return 0.99 * entropy->sum + 0.01 * entropy->entropy;
182 }
183 // No matter what the entropy says, we cannot be better than min_limit
184 // with Huffman coding. I am mixing a bit of entropy into the
185 // min_limit since it produces much better (~0.5 %) compression results
186 // perhaps because of better entropy clustering.
187 if (entropy->nonzeros == 3) {
188 mix = 0.95;
189 } else {
190 mix = 0.7; // nonzeros == 4.
191 }
192 } else {
193 mix = 0.627;
194 }
195
196 {
197 double min_limit = 2 * entropy->sum - entropy->max_val;
198 min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy;
199 return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
200 }
201 }
202
VP8LBitsEntropy(const uint32_t * const array,int n,uint32_t * const trivial_symbol)203 double VP8LBitsEntropy(const uint32_t* const array, int n,
204 uint32_t* const trivial_symbol) {
205 VP8LBitEntropy entropy;
206 VP8LBitsEntropyUnrefined(array, n, &entropy);
207 if (trivial_symbol != NULL) {
208 *trivial_symbol =
209 (entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM;
210 }
211
212 return BitsEntropyRefine(&entropy);
213 }
214
InitialHuffmanCost(void)215 static double InitialHuffmanCost(void) {
216 // Small bias because Huffman code length is typically not stored in
217 // full length.
218 static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
219 static const double kSmallBias = 9.1;
220 return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
221 }
222
223 // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
FinalHuffmanCost(const VP8LStreaks * const stats)224 static double FinalHuffmanCost(const VP8LStreaks* const stats) {
225 // The constants in this function are experimental and got rounded from
226 // their original values in 1/8 when switched to 1/1024.
227 double retval = InitialHuffmanCost();
228 // Second coefficient: Many zeros in the histogram are covered efficiently
229 // by a run-length encode. Originally 2/8.
230 retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
231 // Second coefficient: Constant values are encoded less efficiently, but still
232 // RLE'ed. Originally 6/8.
233 retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
234 // 0s are usually encoded more efficiently than non-0s.
235 // Originally 15/8.
236 retval += 1.796875 * stats->streaks[0][0];
237 // Originally 26/8.
238 retval += 3.28125 * stats->streaks[1][0];
239 return retval;
240 }
241
242 // Get the symbol entropy for the distribution 'population'.
243 // Set 'trivial_sym', if there's only one symbol present in the distribution.
PopulationCost(const uint32_t * const population,int length,uint32_t * const trivial_sym)244 static double PopulationCost(const uint32_t* const population, int length,
245 uint32_t* const trivial_sym) {
246 VP8LBitEntropy bit_entropy;
247 VP8LStreaks stats;
248 VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats);
249 if (trivial_sym != NULL) {
250 *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code
251 : VP8L_NON_TRIVIAL_SYM;
252 }
253
254 return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
255 }
256
257 // trivial_at_end is 1 if the two histograms only have one element that is
258 // non-zero: both the zero-th one, or both the last one.
GetCombinedEntropy(const uint32_t * const X,const uint32_t * const Y,int length,int trivial_at_end)259 static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X,
260 const uint32_t* const Y,
261 int length, int trivial_at_end) {
262 VP8LStreaks stats;
263 if (trivial_at_end) {
264 // This configuration is due to palettization that transforms an indexed
265 // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap.
266 // BitsEntropyRefine is 0 for histograms with only one non-zero value.
267 // Only FinalHuffmanCost needs to be evaluated.
268 memset(&stats, 0, sizeof(stats));
269 // Deal with the non-zero value at index 0 or length-1.
270 stats.streaks[1][0] += 1;
271 // Deal with the following/previous zero streak.
272 stats.counts[0] += 1;
273 stats.streaks[0][1] += length - 1;
274 return FinalHuffmanCost(&stats);
275 } else {
276 VP8LBitEntropy bit_entropy;
277 VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
278
279 return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
280 }
281 }
282
283 // Estimates the Entropy + Huffman + other block overhead size cost.
VP8LHistogramEstimateBits(const VP8LHistogram * const p)284 double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
285 return
286 PopulationCost(
287 p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL)
288 + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL)
289 + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL)
290 + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL)
291 + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL)
292 + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
293 + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
294 }
295
296 // -----------------------------------------------------------------------------
297 // Various histogram combine/cost-eval functions
298
GetCombinedHistogramEntropy(const VP8LHistogram * const a,const VP8LHistogram * const b,double cost_threshold,double * cost)299 static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
300 const VP8LHistogram* const b,
301 double cost_threshold,
302 double* cost) {
303 const int palette_code_bits = a->palette_code_bits_;
304 int trivial_at_end = 0;
305 assert(a->palette_code_bits_ == b->palette_code_bits_);
306 *cost += GetCombinedEntropy(a->literal_, b->literal_,
307 VP8LHistogramNumCodes(palette_code_bits), 0);
308 *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
309 b->literal_ + NUM_LITERAL_CODES,
310 NUM_LENGTH_CODES);
311 if (*cost > cost_threshold) return 0;
312
313 if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM &&
314 a->trivial_symbol_ == b->trivial_symbol_) {
315 // A, R and B are all 0 or 0xff.
316 const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff;
317 const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff;
318 const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff;
319 if ((color_a == 0 || color_a == 0xff) &&
320 (color_r == 0 || color_r == 0xff) &&
321 (color_b == 0 || color_b == 0xff)) {
322 trivial_at_end = 1;
323 }
324 }
325
326 *cost +=
327 GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, trivial_at_end);
328 if (*cost > cost_threshold) return 0;
329
330 *cost +=
331 GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, trivial_at_end);
332 if (*cost > cost_threshold) return 0;
333
334 *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES,
335 trivial_at_end);
336 if (*cost > cost_threshold) return 0;
337
338 *cost +=
339 GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, 0);
340 *cost +=
341 VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
342 if (*cost > cost_threshold) return 0;
343
344 return 1;
345 }
346
HistogramAdd(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out)347 static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a,
348 const VP8LHistogram* const b,
349 VP8LHistogram* const out) {
350 VP8LHistogramAdd(a, b, out);
351 out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_)
352 ? a->trivial_symbol_
353 : VP8L_NON_TRIVIAL_SYM;
354 }
355
356 // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
357 // to the threshold value 'cost_threshold'. The score returned is
358 // Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
359 // Since the previous score passed is 'cost_threshold', we only need to compare
360 // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
361 // early.
HistogramAddEval(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out,double cost_threshold)362 static double HistogramAddEval(const VP8LHistogram* const a,
363 const VP8LHistogram* const b,
364 VP8LHistogram* const out,
365 double cost_threshold) {
366 double cost = 0;
367 const double sum_cost = a->bit_cost_ + b->bit_cost_;
368 cost_threshold += sum_cost;
369
370 if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
371 HistogramAdd(a, b, out);
372 out->bit_cost_ = cost;
373 out->palette_code_bits_ = a->palette_code_bits_;
374 }
375
376 return cost - sum_cost;
377 }
378
379 // Same as HistogramAddEval(), except that the resulting histogram
380 // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
381 // the term C(b) which is constant over all the evaluations.
HistogramAddThresh(const VP8LHistogram * const a,const VP8LHistogram * const b,double cost_threshold)382 static double HistogramAddThresh(const VP8LHistogram* const a,
383 const VP8LHistogram* const b,
384 double cost_threshold) {
385 double cost = -a->bit_cost_;
386 GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
387 return cost;
388 }
389
390 // -----------------------------------------------------------------------------
391
392 // The structure to keep track of cost range for the three dominant entropy
393 // symbols.
394 // TODO(skal): Evaluate if float can be used here instead of double for
395 // representing the entropy costs.
396 typedef struct {
397 double literal_max_;
398 double literal_min_;
399 double red_max_;
400 double red_min_;
401 double blue_max_;
402 double blue_min_;
403 } DominantCostRange;
404
DominantCostRangeInit(DominantCostRange * const c)405 static void DominantCostRangeInit(DominantCostRange* const c) {
406 c->literal_max_ = 0.;
407 c->literal_min_ = MAX_COST;
408 c->red_max_ = 0.;
409 c->red_min_ = MAX_COST;
410 c->blue_max_ = 0.;
411 c->blue_min_ = MAX_COST;
412 }
413
UpdateDominantCostRange(const VP8LHistogram * const h,DominantCostRange * const c)414 static void UpdateDominantCostRange(
415 const VP8LHistogram* const h, DominantCostRange* const c) {
416 if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
417 if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
418 if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
419 if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
420 if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
421 if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
422 }
423
UpdateHistogramCost(VP8LHistogram * const h)424 static void UpdateHistogramCost(VP8LHistogram* const h) {
425 uint32_t alpha_sym, red_sym, blue_sym;
426 const double alpha_cost =
427 PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym);
428 const double distance_cost =
429 PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) +
430 VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
431 const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
432 h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) +
433 VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
434 NUM_LENGTH_CODES);
435 h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym);
436 h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym);
437 h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
438 alpha_cost + distance_cost;
439 if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
440 h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
441 } else {
442 h->trivial_symbol_ =
443 ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
444 }
445 }
446
GetBinIdForEntropy(double min,double max,double val)447 static int GetBinIdForEntropy(double min, double max, double val) {
448 const double range = max - min;
449 if (range > 0.) {
450 const double delta = val - min;
451 return (int)((NUM_PARTITIONS - 1e-6) * delta / range);
452 } else {
453 return 0;
454 }
455 }
456
GetHistoBinIndex(const VP8LHistogram * const h,const DominantCostRange * const c,int low_effort)457 static int GetHistoBinIndex(const VP8LHistogram* const h,
458 const DominantCostRange* const c, int low_effort) {
459 int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
460 h->literal_cost_);
461 assert(bin_id < NUM_PARTITIONS);
462 if (!low_effort) {
463 bin_id = bin_id * NUM_PARTITIONS
464 + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_);
465 bin_id = bin_id * NUM_PARTITIONS
466 + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_);
467 assert(bin_id < BIN_SIZE);
468 }
469 return bin_id;
470 }
471
472 // Construct the histograms from backward references.
HistogramBuild(int xsize,int histo_bits,const VP8LBackwardRefs * const backward_refs,VP8LHistogramSet * const image_histo)473 static void HistogramBuild(
474 int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
475 VP8LHistogramSet* const image_histo) {
476 int x = 0, y = 0;
477 const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
478 VP8LHistogram** const histograms = image_histo->histograms;
479 VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
480 assert(histo_bits > 0);
481 while (VP8LRefsCursorOk(&c)) {
482 const PixOrCopy* const v = c.cur_pos;
483 const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
484 VP8LHistogramAddSinglePixOrCopy(histograms[ix], v, NULL, 0);
485 x += PixOrCopyLength(v);
486 while (x >= xsize) {
487 x -= xsize;
488 ++y;
489 }
490 VP8LRefsCursorNext(&c);
491 }
492 }
493
494 // Copies the histograms and computes its bit_cost.
HistogramCopyAndAnalyze(VP8LHistogramSet * const orig_histo,VP8LHistogramSet * const image_histo)495 static void HistogramCopyAndAnalyze(
496 VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) {
497 int i;
498 const int histo_size = orig_histo->size;
499 VP8LHistogram** const orig_histograms = orig_histo->histograms;
500 VP8LHistogram** const histograms = image_histo->histograms;
501 for (i = 0; i < histo_size; ++i) {
502 VP8LHistogram* const histo = orig_histograms[i];
503 UpdateHistogramCost(histo);
504 // Copy histograms from orig_histo[] to image_histo[].
505 HistogramCopy(histo, histograms[i]);
506 }
507 }
508
509 // Partition histograms to different entropy bins for three dominant (literal,
510 // red and blue) symbol costs and compute the histogram aggregate bit_cost.
HistogramAnalyzeEntropyBin(VP8LHistogramSet * const image_histo,uint16_t * const bin_map,int low_effort)511 static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
512 uint16_t* const bin_map,
513 int low_effort) {
514 int i;
515 VP8LHistogram** const histograms = image_histo->histograms;
516 const int histo_size = image_histo->size;
517 DominantCostRange cost_range;
518 DominantCostRangeInit(&cost_range);
519
520 // Analyze the dominant (literal, red and blue) entropy costs.
521 for (i = 0; i < histo_size; ++i) {
522 UpdateDominantCostRange(histograms[i], &cost_range);
523 }
524
525 // bin-hash histograms on three of the dominant (literal, red and blue)
526 // symbol costs and store the resulting bin_id for each histogram.
527 for (i = 0; i < histo_size; ++i) {
528 bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort);
529 }
530 }
531
532 // Compact image_histo[] by merging some histograms with same bin_id together if
533 // it's advantageous.
HistogramCombineEntropyBin(VP8LHistogramSet * const image_histo,VP8LHistogram * cur_combo,const uint16_t * const bin_map,int bin_map_size,int num_bins,double combine_cost_factor,int low_effort)534 static void HistogramCombineEntropyBin(VP8LHistogramSet* const image_histo,
535 VP8LHistogram* cur_combo,
536 const uint16_t* const bin_map,
537 int bin_map_size, int num_bins,
538 double combine_cost_factor,
539 int low_effort) {
540 VP8LHistogram** const histograms = image_histo->histograms;
541 int idx;
542 // Work in-place: processed histograms are put at the beginning of
543 // image_histo[]. At the end, we just have to truncate the array.
544 int size = 0;
545 struct {
546 int16_t first; // position of the histogram that accumulates all
547 // histograms with the same bin_id
548 uint16_t num_combine_failures; // number of combine failures per bin_id
549 } bin_info[BIN_SIZE];
550
551 assert(num_bins <= BIN_SIZE);
552 for (idx = 0; idx < num_bins; ++idx) {
553 bin_info[idx].first = -1;
554 bin_info[idx].num_combine_failures = 0;
555 }
556
557 for (idx = 0; idx < bin_map_size; ++idx) {
558 const int bin_id = bin_map[idx];
559 const int first = bin_info[bin_id].first;
560 assert(size <= idx);
561 if (first == -1) {
562 // just move histogram #idx to its final position
563 histograms[size] = histograms[idx];
564 bin_info[bin_id].first = size++;
565 } else if (low_effort) {
566 HistogramAdd(histograms[idx], histograms[first], histograms[first]);
567 } else {
568 // try to merge #idx into #first (both share the same bin_id)
569 const double bit_cost = histograms[idx]->bit_cost_;
570 const double bit_cost_thresh = -bit_cost * combine_cost_factor;
571 const double curr_cost_diff =
572 HistogramAddEval(histograms[first], histograms[idx],
573 cur_combo, bit_cost_thresh);
574 if (curr_cost_diff < bit_cost_thresh) {
575 // Try to merge two histograms only if the combo is a trivial one or
576 // the two candidate histograms are already non-trivial.
577 // For some images, 'try_combine' turns out to be false for a lot of
578 // histogram pairs. In that case, we fallback to combining
579 // histograms as usual to avoid increasing the header size.
580 const int try_combine =
581 (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
582 ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
583 (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
584 const int max_combine_failures = 32;
585 if (try_combine ||
586 bin_info[bin_id].num_combine_failures >= max_combine_failures) {
587 // move the (better) merged histogram to its final slot
588 HistogramSwap(&cur_combo, &histograms[first]);
589 } else {
590 histograms[size++] = histograms[idx];
591 ++bin_info[bin_id].num_combine_failures;
592 }
593 } else {
594 histograms[size++] = histograms[idx];
595 }
596 }
597 }
598 image_histo->size = size;
599 if (low_effort) {
600 // for low_effort case, update the final cost when everything is merged
601 for (idx = 0; idx < size; ++idx) {
602 UpdateHistogramCost(histograms[idx]);
603 }
604 }
605 }
606
607 // Implement a Lehmer random number generator with a multiplicative constant of
608 // 48271 and a modulo constant of 2^31 − 1.
MyRand(uint32_t * const seed)609 static uint32_t MyRand(uint32_t* const seed) {
610 *seed = (uint32_t)(((uint64_t)(*seed) * 48271u) % 2147483647u);
611 assert(*seed > 0);
612 return *seed;
613 }
614
615 // -----------------------------------------------------------------------------
616 // Histogram pairs priority queue
617
618 // Pair of histograms. Negative idx1 value means that pair is out-of-date.
619 typedef struct {
620 int idx1;
621 int idx2;
622 double cost_diff;
623 double cost_combo;
624 } HistogramPair;
625
626 typedef struct {
627 HistogramPair* queue;
628 int size;
629 int max_size;
630 } HistoQueue;
631
HistoQueueInit(HistoQueue * const histo_queue,const int max_index)632 static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) {
633 histo_queue->size = 0;
634 // max_index^2 for the queue size is safe. If you look at
635 // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes
636 // data to the queue, you insert at most:
637 // - max_index*(max_index-1)/2 (the first two for loops)
638 // - max_index - 1 in the last for loop at the first iteration of the while
639 // loop, max_index - 2 at the second iteration ... therefore
640 // max_index*(max_index-1)/2 overall too
641 histo_queue->max_size = max_index * max_index;
642 // We allocate max_size + 1 because the last element at index "size" is
643 // used as temporary data (and it could be up to max_size).
644 histo_queue->queue = (HistogramPair*)WebPSafeMalloc(
645 histo_queue->max_size + 1, sizeof(*histo_queue->queue));
646 return histo_queue->queue != NULL;
647 }
648
HistoQueueClear(HistoQueue * const histo_queue)649 static void HistoQueueClear(HistoQueue* const histo_queue) {
650 assert(histo_queue != NULL);
651 WebPSafeFree(histo_queue->queue);
652 histo_queue->size = 0;
653 histo_queue->max_size = 0;
654 }
655
656 // Pop a specific pair in the queue by replacing it with the last one
657 // and shrinking the queue.
HistoQueuePopPair(HistoQueue * const histo_queue,HistogramPair * const pair)658 static void HistoQueuePopPair(HistoQueue* const histo_queue,
659 HistogramPair* const pair) {
660 assert(pair >= histo_queue->queue &&
661 pair < (histo_queue->queue + histo_queue->size));
662 assert(histo_queue->size > 0);
663 *pair = histo_queue->queue[histo_queue->size - 1];
664 --histo_queue->size;
665 }
666
667 // Check whether a pair in the queue should be updated as head or not.
HistoQueueUpdateHead(HistoQueue * const histo_queue,HistogramPair * const pair)668 static void HistoQueueUpdateHead(HistoQueue* const histo_queue,
669 HistogramPair* const pair) {
670 assert(pair->cost_diff < 0.);
671 assert(pair >= histo_queue->queue &&
672 pair < (histo_queue->queue + histo_queue->size));
673 assert(histo_queue->size > 0);
674 if (pair->cost_diff < histo_queue->queue[0].cost_diff) {
675 // Replace the best pair.
676 const HistogramPair tmp = histo_queue->queue[0];
677 histo_queue->queue[0] = *pair;
678 *pair = tmp;
679 }
680 }
681
682 // Create a pair from indices "idx1" and "idx2" provided its cost
683 // is inferior to "threshold", a negative entropy.
684 // It returns the cost of the pair, or 0. if it superior to threshold.
HistoQueuePush(HistoQueue * const histo_queue,VP8LHistogram ** const histograms,int idx1,int idx2,double threshold)685 static double HistoQueuePush(HistoQueue* const histo_queue,
686 VP8LHistogram** const histograms, int idx1,
687 int idx2, double threshold) {
688 const VP8LHistogram* h1;
689 const VP8LHistogram* h2;
690 HistogramPair pair;
691 double sum_cost;
692
693 assert(threshold <= 0.);
694 if (idx1 > idx2) {
695 const int tmp = idx2;
696 idx2 = idx1;
697 idx1 = tmp;
698 }
699 pair.idx1 = idx1;
700 pair.idx2 = idx2;
701 h1 = histograms[idx1];
702 h2 = histograms[idx2];
703 sum_cost = h1->bit_cost_ + h2->bit_cost_;
704 pair.cost_combo = 0.;
705 GetCombinedHistogramEntropy(h1, h2, sum_cost + threshold, &pair.cost_combo);
706 pair.cost_diff = pair.cost_combo - sum_cost;
707
708 // Do not even consider the pair if it does not improve the entropy.
709 if (pair.cost_diff >= threshold) return 0.;
710
711 // We cannot add more elements than the capacity.
712 assert(histo_queue->size < histo_queue->max_size);
713 histo_queue->queue[histo_queue->size++] = pair;
714 HistoQueueUpdateHead(histo_queue, &histo_queue->queue[histo_queue->size - 1]);
715
716 return pair.cost_diff;
717 }
718
719 // -----------------------------------------------------------------------------
720
721 // Combines histograms by continuously choosing the one with the highest cost
722 // reduction.
HistogramCombineGreedy(VP8LHistogramSet * const image_histo)723 static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) {
724 int ok = 0;
725 int image_histo_size = image_histo->size;
726 int i, j;
727 VP8LHistogram** const histograms = image_histo->histograms;
728 // Indexes of remaining histograms.
729 int* const clusters =
730 (int*)WebPSafeMalloc(image_histo_size, sizeof(*clusters));
731 // Priority queue of histogram pairs.
732 HistoQueue histo_queue;
733
734 if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) {
735 goto End;
736 }
737
738 for (i = 0; i < image_histo_size; ++i) {
739 // Initialize clusters indexes.
740 clusters[i] = i;
741 for (j = i + 1; j < image_histo_size; ++j) {
742 // Initialize positions array.
743 HistoQueuePush(&histo_queue, histograms, i, j, 0.);
744 }
745 }
746
747 while (image_histo_size > 1 && histo_queue.size > 0) {
748 const int idx1 = histo_queue.queue[0].idx1;
749 const int idx2 = histo_queue.queue[0].idx2;
750 HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
751 histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
752 // Remove merged histogram.
753 for (i = 0; i + 1 < image_histo_size; ++i) {
754 if (clusters[i] >= idx2) {
755 clusters[i] = clusters[i + 1];
756 }
757 }
758 --image_histo_size;
759
760 // Remove pairs intersecting the just combined best pair.
761 for (i = 0; i < histo_queue.size;) {
762 HistogramPair* const p = histo_queue.queue + i;
763 if (p->idx1 == idx1 || p->idx2 == idx1 ||
764 p->idx1 == idx2 || p->idx2 == idx2) {
765 HistoQueuePopPair(&histo_queue, p);
766 } else {
767 HistoQueueUpdateHead(&histo_queue, p);
768 ++i;
769 }
770 }
771
772 // Push new pairs formed with combined histogram to the queue.
773 for (i = 0; i < image_histo_size; ++i) {
774 if (clusters[i] != idx1) {
775 HistoQueuePush(&histo_queue, histograms, idx1, clusters[i], 0.);
776 }
777 }
778 }
779 // Move remaining histograms to the beginning of the array.
780 for (i = 0; i < image_histo_size; ++i) {
781 if (i != clusters[i]) { // swap the two histograms
782 HistogramSwap(&histograms[i], &histograms[clusters[i]]);
783 }
784 }
785
786 image_histo->size = image_histo_size;
787 ok = 1;
788
789 End:
790 WebPSafeFree(clusters);
791 HistoQueueClear(&histo_queue);
792 return ok;
793 }
794
795 // Perform histogram aggregation using a stochastic approach.
796 // 'do_greedy' is set to 1 if a greedy approach needs to be performed
797 // afterwards, 0 otherwise.
HistogramCombineStochastic(VP8LHistogramSet * const image_histo,int min_cluster_size,int * const do_greedy)798 static int HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
799 int min_cluster_size,
800 int* const do_greedy) {
801 int iter;
802 uint32_t seed = 1;
803 int tries_with_no_success = 0;
804 int image_histo_size = image_histo->size;
805 const int outer_iters = image_histo_size;
806 const int num_tries_no_success = outer_iters / 2;
807 VP8LHistogram** const histograms = image_histo->histograms;
808 // Priority queue of histogram pairs. Its size of "kCostHeapSizeSqrt"^2
809 // impacts the quality of the compression and the speed: the smaller the
810 // faster but the worse for the compression.
811 HistoQueue histo_queue;
812 const int kHistoQueueSizeSqrt = 3;
813 int ok = 0;
814
815 if (!HistoQueueInit(&histo_queue, kHistoQueueSizeSqrt)) {
816 goto End;
817 }
818 // Collapse similar histograms in 'image_histo'.
819 ++min_cluster_size;
820 for (iter = 0; iter < outer_iters && image_histo_size >= min_cluster_size &&
821 ++tries_with_no_success < num_tries_no_success;
822 ++iter) {
823 double best_cost =
824 (histo_queue.size == 0) ? 0. : histo_queue.queue[0].cost_diff;
825 int best_idx1 = -1, best_idx2 = 1;
826 int j;
827 const uint32_t rand_range = (image_histo_size - 1) * image_histo_size;
828 // image_histo_size / 2 was chosen empirically. Less means faster but worse
829 // compression.
830 const int num_tries = image_histo_size / 2;
831
832 for (j = 0; j < num_tries; ++j) {
833 double curr_cost;
834 // Choose two different histograms at random and try to combine them.
835 const uint32_t tmp = MyRand(&seed) % rand_range;
836 const uint32_t idx1 = tmp / (image_histo_size - 1);
837 uint32_t idx2 = tmp % (image_histo_size - 1);
838 if (idx2 >= idx1) ++idx2;
839
840 // Calculate cost reduction on combination.
841 curr_cost =
842 HistoQueuePush(&histo_queue, histograms, idx1, idx2, best_cost);
843 if (curr_cost < 0) { // found a better pair?
844 best_cost = curr_cost;
845 // Empty the queue if we reached full capacity.
846 if (histo_queue.size == histo_queue.max_size) break;
847 }
848 }
849 if (histo_queue.size == 0) continue;
850
851 // Merge the two best histograms.
852 best_idx1 = histo_queue.queue[0].idx1;
853 best_idx2 = histo_queue.queue[0].idx2;
854 assert(best_idx1 < best_idx2);
855 HistogramAddEval(histograms[best_idx1], histograms[best_idx2],
856 histograms[best_idx1], 0);
857 // Swap the best_idx2 histogram with the last one (which is now unused).
858 --image_histo_size;
859 if (best_idx2 != image_histo_size) {
860 HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
861 }
862 histograms[image_histo_size] = NULL;
863 // Parse the queue and update each pair that deals with best_idx1,
864 // best_idx2 or image_histo_size.
865 for (j = 0; j < histo_queue.size;) {
866 HistogramPair* const p = histo_queue.queue + j;
867 const int is_idx1_best = p->idx1 == best_idx1 || p->idx1 == best_idx2;
868 const int is_idx2_best = p->idx2 == best_idx1 || p->idx2 == best_idx2;
869 int do_eval = 0;
870 // The front pair could have been duplicated by a random pick so
871 // check for it all the time nevertheless.
872 if (is_idx1_best && is_idx2_best) {
873 HistoQueuePopPair(&histo_queue, p);
874 continue;
875 }
876 // Any pair containing one of the two best indices should only refer to
877 // best_idx1. Its cost should also be updated.
878 if (is_idx1_best) {
879 p->idx1 = best_idx1;
880 do_eval = 1;
881 } else if (is_idx2_best) {
882 p->idx2 = best_idx1;
883 do_eval = 1;
884 }
885 if (p->idx2 == image_histo_size) {
886 // No need to re-evaluate here as it does not involve a pair
887 // containing best_idx1 or best_idx2.
888 p->idx2 = best_idx2;
889 }
890 assert(p->idx2 < image_histo_size);
891 // Make sure the index order is respected.
892 if (p->idx1 > p->idx2) {
893 const int tmp = p->idx2;
894 p->idx2 = p->idx1;
895 p->idx1 = tmp;
896 }
897 if (do_eval) {
898 // Re-evaluate the cost of an updated pair.
899 GetCombinedHistogramEntropy(histograms[p->idx1], histograms[p->idx2], 0,
900 &p->cost_diff);
901 if (p->cost_diff >= 0.) {
902 HistoQueuePopPair(&histo_queue, p);
903 continue;
904 }
905 }
906 HistoQueueUpdateHead(&histo_queue, p);
907 ++j;
908 }
909
910 tries_with_no_success = 0;
911 }
912 image_histo->size = image_histo_size;
913 *do_greedy = (image_histo->size <= min_cluster_size);
914 ok = 1;
915
916 End:
917 HistoQueueClear(&histo_queue);
918 return ok;
919 }
920
921 // -----------------------------------------------------------------------------
922 // Histogram refinement
923
924 // Find the best 'out' histogram for each of the 'in' histograms.
925 // Note: we assume that out[]->bit_cost_ is already up-to-date.
HistogramRemap(const VP8LHistogramSet * const in,const VP8LHistogramSet * const out,uint16_t * const symbols)926 static void HistogramRemap(const VP8LHistogramSet* const in,
927 const VP8LHistogramSet* const out,
928 uint16_t* const symbols) {
929 int i;
930 VP8LHistogram** const in_histo = in->histograms;
931 VP8LHistogram** const out_histo = out->histograms;
932 const int in_size = in->size;
933 const int out_size = out->size;
934 if (out_size > 1) {
935 for (i = 0; i < in_size; ++i) {
936 int best_out = 0;
937 double best_bits = MAX_COST;
938 int k;
939 for (k = 0; k < out_size; ++k) {
940 const double cur_bits =
941 HistogramAddThresh(out_histo[k], in_histo[i], best_bits);
942 if (k == 0 || cur_bits < best_bits) {
943 best_bits = cur_bits;
944 best_out = k;
945 }
946 }
947 symbols[i] = best_out;
948 }
949 } else {
950 assert(out_size == 1);
951 for (i = 0; i < in_size; ++i) {
952 symbols[i] = 0;
953 }
954 }
955
956 // Recompute each out based on raw and symbols.
957 for (i = 0; i < out_size; ++i) {
958 HistogramClear(out_histo[i]);
959 }
960
961 for (i = 0; i < in_size; ++i) {
962 const int idx = symbols[i];
963 HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]);
964 }
965 }
966
GetCombineCostFactor(int histo_size,int quality)967 static double GetCombineCostFactor(int histo_size, int quality) {
968 double combine_cost_factor = 0.16;
969 if (quality < 90) {
970 if (histo_size > 256) combine_cost_factor /= 2.;
971 if (histo_size > 512) combine_cost_factor /= 2.;
972 if (histo_size > 1024) combine_cost_factor /= 2.;
973 if (quality <= 50) combine_cost_factor /= 2.;
974 }
975 return combine_cost_factor;
976 }
977
VP8LGetHistoImageSymbols(int xsize,int ysize,const VP8LBackwardRefs * const refs,int quality,int low_effort,int histo_bits,int cache_bits,VP8LHistogramSet * const image_histo,VP8LHistogram * const tmp_histo,uint16_t * const histogram_symbols)978 int VP8LGetHistoImageSymbols(int xsize, int ysize,
979 const VP8LBackwardRefs* const refs,
980 int quality, int low_effort,
981 int histo_bits, int cache_bits,
982 VP8LHistogramSet* const image_histo,
983 VP8LHistogram* const tmp_histo,
984 uint16_t* const histogram_symbols) {
985 int ok = 0;
986 const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
987 const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
988 const int image_histo_raw_size = histo_xsize * histo_ysize;
989 VP8LHistogramSet* const orig_histo =
990 VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
991 // Don't attempt linear bin-partition heuristic for
992 // histograms of small sizes (as bin_map will be very sparse) and
993 // maximum quality q==100 (to preserve the compression gains at that level).
994 const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
995 const int entropy_combine =
996 (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100);
997
998 if (orig_histo == NULL) goto Error;
999
1000 // Construct the histograms from backward references.
1001 HistogramBuild(xsize, histo_bits, refs, orig_histo);
1002 // Copies the histograms and computes its bit_cost.
1003 HistogramCopyAndAnalyze(orig_histo, image_histo);
1004
1005 if (entropy_combine) {
1006 const int bin_map_size = orig_histo->size;
1007 // Reuse histogram_symbols storage. By definition, it's guaranteed to be ok.
1008 uint16_t* const bin_map = histogram_symbols;
1009 const double combine_cost_factor =
1010 GetCombineCostFactor(image_histo_raw_size, quality);
1011
1012 HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort);
1013 // Collapse histograms with similar entropy.
1014 HistogramCombineEntropyBin(image_histo, tmp_histo, bin_map, bin_map_size,
1015 entropy_combine_num_bins, combine_cost_factor,
1016 low_effort);
1017 }
1018
1019 // Don't combine the histograms using stochastic and greedy heuristics for
1020 // low-effort compression mode.
1021 if (!low_effort || !entropy_combine) {
1022 const float x = quality / 100.f;
1023 // cubic ramp between 1 and MAX_HISTO_GREEDY:
1024 const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
1025 int do_greedy;
1026 if (!HistogramCombineStochastic(image_histo, threshold_size, &do_greedy)) {
1027 goto Error;
1028 }
1029 if (do_greedy && !HistogramCombineGreedy(image_histo)) {
1030 goto Error;
1031 }
1032 }
1033
1034 // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also.
1035 // Find the optimal map from original histograms to the final ones.
1036 HistogramRemap(orig_histo, image_histo, histogram_symbols);
1037
1038 ok = 1;
1039
1040 Error:
1041 VP8LFreeHistogramSet(orig_histo);
1042 return ok;
1043 }
1044