1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com)
11 //
12
13 #include <assert.h>
14 #include <math.h>
15
16 #include "src/enc/backward_references_enc.h"
17 #include "src/enc/histogram_enc.h"
18 #include "src/dsp/lossless.h"
19 #include "src/dsp/lossless_common.h"
20 #include "src/dsp/dsp.h"
21 #include "src/utils/color_cache_utils.h"
22 #include "src/utils/utils.h"
23
24 #define MIN_BLOCK_SIZE 256 // minimum block size for backward references
25
26 #define MAX_ENTROPY (1e30f)
27
28 // 1M window (4M bytes) minus 120 special codes for short distances.
29 #define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120)
30
31 // Minimum number of pixels for which it is cheaper to encode a
32 // distance + length instead of each pixel as a literal.
33 #define MIN_LENGTH 4
34
35 // -----------------------------------------------------------------------------
36
37 static const uint8_t plane_to_code_lut[128] = {
38 96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255,
39 101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79,
40 102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87,
41 105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91,
42 110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100,
43 115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109,
44 118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114,
45 119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117
46 };
47
48 extern int VP8LDistanceToPlaneCode(int xsize, int dist);
VP8LDistanceToPlaneCode(int xsize,int dist)49 int VP8LDistanceToPlaneCode(int xsize, int dist) {
50 const int yoffset = dist / xsize;
51 const int xoffset = dist - yoffset * xsize;
52 if (xoffset <= 8 && yoffset < 8) {
53 return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1;
54 } else if (xoffset > xsize - 8 && yoffset < 7) {
55 return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1;
56 }
57 return dist + 120;
58 }
59
60 // Returns the exact index where array1 and array2 are different. For an index
61 // inferior or equal to best_len_match, the return value just has to be strictly
62 // inferior to best_len_match. The current behavior is to return 0 if this index
63 // is best_len_match, and the index itself otherwise.
64 // If no two elements are the same, it returns max_limit.
FindMatchLength(const uint32_t * const array1,const uint32_t * const array2,int best_len_match,int max_limit)65 static WEBP_INLINE int FindMatchLength(const uint32_t* const array1,
66 const uint32_t* const array2,
67 int best_len_match, int max_limit) {
68 // Before 'expensive' linear match, check if the two arrays match at the
69 // current best length index.
70 if (array1[best_len_match] != array2[best_len_match]) return 0;
71
72 return VP8LVectorMismatch(array1, array2, max_limit);
73 }
74
75 // -----------------------------------------------------------------------------
76 // VP8LBackwardRefs
77
78 struct PixOrCopyBlock {
79 PixOrCopyBlock* next_; // next block (or NULL)
80 PixOrCopy* start_; // data start
81 int size_; // currently used size
82 };
83
84 extern void VP8LClearBackwardRefs(VP8LBackwardRefs* const refs);
VP8LClearBackwardRefs(VP8LBackwardRefs * const refs)85 void VP8LClearBackwardRefs(VP8LBackwardRefs* const refs) {
86 assert(refs != NULL);
87 if (refs->tail_ != NULL) {
88 *refs->tail_ = refs->free_blocks_; // recycle all blocks at once
89 }
90 refs->free_blocks_ = refs->refs_;
91 refs->tail_ = &refs->refs_;
92 refs->last_block_ = NULL;
93 refs->refs_ = NULL;
94 }
95
VP8LBackwardRefsClear(VP8LBackwardRefs * const refs)96 void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) {
97 assert(refs != NULL);
98 VP8LClearBackwardRefs(refs);
99 while (refs->free_blocks_ != NULL) {
100 PixOrCopyBlock* const next = refs->free_blocks_->next_;
101 WebPSafeFree(refs->free_blocks_);
102 refs->free_blocks_ = next;
103 }
104 }
105
VP8LBackwardRefsInit(VP8LBackwardRefs * const refs,int block_size)106 void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) {
107 assert(refs != NULL);
108 memset(refs, 0, sizeof(*refs));
109 refs->tail_ = &refs->refs_;
110 refs->block_size_ =
111 (block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size;
112 }
113
VP8LRefsCursorInit(const VP8LBackwardRefs * const refs)114 VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) {
115 VP8LRefsCursor c;
116 c.cur_block_ = refs->refs_;
117 if (refs->refs_ != NULL) {
118 c.cur_pos = c.cur_block_->start_;
119 c.last_pos_ = c.cur_pos + c.cur_block_->size_;
120 } else {
121 c.cur_pos = NULL;
122 c.last_pos_ = NULL;
123 }
124 return c;
125 }
126
VP8LRefsCursorNextBlock(VP8LRefsCursor * const c)127 void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) {
128 PixOrCopyBlock* const b = c->cur_block_->next_;
129 c->cur_pos = (b == NULL) ? NULL : b->start_;
130 c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_;
131 c->cur_block_ = b;
132 }
133
134 // Create a new block, either from the free list or allocated
BackwardRefsNewBlock(VP8LBackwardRefs * const refs)135 static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) {
136 PixOrCopyBlock* b = refs->free_blocks_;
137 if (b == NULL) { // allocate new memory chunk
138 const size_t total_size =
139 sizeof(*b) + refs->block_size_ * sizeof(*b->start_);
140 b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size);
141 if (b == NULL) {
142 refs->error_ |= 1;
143 return NULL;
144 }
145 b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b)); // not always aligned
146 } else { // recycle from free-list
147 refs->free_blocks_ = b->next_;
148 }
149 *refs->tail_ = b;
150 refs->tail_ = &b->next_;
151 refs->last_block_ = b;
152 b->next_ = NULL;
153 b->size_ = 0;
154 return b;
155 }
156
157 extern void VP8LBackwardRefsCursorAdd(VP8LBackwardRefs* const refs,
158 const PixOrCopy v);
VP8LBackwardRefsCursorAdd(VP8LBackwardRefs * const refs,const PixOrCopy v)159 void VP8LBackwardRefsCursorAdd(VP8LBackwardRefs* const refs,
160 const PixOrCopy v) {
161 PixOrCopyBlock* b = refs->last_block_;
162 if (b == NULL || b->size_ == refs->block_size_) {
163 b = BackwardRefsNewBlock(refs);
164 if (b == NULL) return; // refs->error_ is set
165 }
166 b->start_[b->size_++] = v;
167 }
168
169 // -----------------------------------------------------------------------------
170 // Hash chains
171
VP8LHashChainInit(VP8LHashChain * const p,int size)172 int VP8LHashChainInit(VP8LHashChain* const p, int size) {
173 assert(p->size_ == 0);
174 assert(p->offset_length_ == NULL);
175 assert(size > 0);
176 p->offset_length_ =
177 (uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_));
178 if (p->offset_length_ == NULL) return 0;
179 p->size_ = size;
180
181 return 1;
182 }
183
VP8LHashChainClear(VP8LHashChain * const p)184 void VP8LHashChainClear(VP8LHashChain* const p) {
185 assert(p != NULL);
186 WebPSafeFree(p->offset_length_);
187
188 p->size_ = 0;
189 p->offset_length_ = NULL;
190 }
191
192 // -----------------------------------------------------------------------------
193
194 #define HASH_MULTIPLIER_HI (0xc6a4a793ULL)
195 #define HASH_MULTIPLIER_LO (0x5bd1e996ULL)
196
GetPixPairHash64(const uint32_t * const argb)197 static WEBP_INLINE uint32_t GetPixPairHash64(const uint32_t* const argb) {
198 uint32_t key;
199 key = (argb[1] * HASH_MULTIPLIER_HI) & 0xffffffffu;
200 key += (argb[0] * HASH_MULTIPLIER_LO) & 0xffffffffu;
201 key = key >> (32 - HASH_BITS);
202 return key;
203 }
204
205 // Returns the maximum number of hash chain lookups to do for a
206 // given compression quality. Return value in range [8, 86].
GetMaxItersForQuality(int quality)207 static int GetMaxItersForQuality(int quality) {
208 return 8 + (quality * quality) / 128;
209 }
210
GetWindowSizeForHashChain(int quality,int xsize)211 static int GetWindowSizeForHashChain(int quality, int xsize) {
212 const int max_window_size = (quality > 75) ? WINDOW_SIZE
213 : (quality > 50) ? (xsize << 8)
214 : (quality > 25) ? (xsize << 6)
215 : (xsize << 4);
216 assert(xsize > 0);
217 return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size;
218 }
219
MaxFindCopyLength(int len)220 static WEBP_INLINE int MaxFindCopyLength(int len) {
221 return (len < MAX_LENGTH) ? len : MAX_LENGTH;
222 }
223
VP8LHashChainFill(VP8LHashChain * const p,int quality,const uint32_t * const argb,int xsize,int ysize,int low_effort)224 int VP8LHashChainFill(VP8LHashChain* const p, int quality,
225 const uint32_t* const argb, int xsize, int ysize,
226 int low_effort) {
227 const int size = xsize * ysize;
228 const int iter_max = GetMaxItersForQuality(quality);
229 const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize);
230 int pos;
231 int argb_comp;
232 uint32_t base_position;
233 int32_t* hash_to_first_index;
234 // Temporarily use the p->offset_length_ as a hash chain.
235 int32_t* chain = (int32_t*)p->offset_length_;
236 assert(size > 0);
237 assert(p->size_ != 0);
238 assert(p->offset_length_ != NULL);
239
240 if (size <= 2) {
241 p->offset_length_[0] = p->offset_length_[size - 1] = 0;
242 return 1;
243 }
244
245 hash_to_first_index =
246 (int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index));
247 if (hash_to_first_index == NULL) return 0;
248
249 // Set the int32_t array to -1.
250 memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index));
251 // Fill the chain linking pixels with the same hash.
252 argb_comp = (argb[0] == argb[1]);
253 for (pos = 0; pos < size - 2;) {
254 uint32_t hash_code;
255 const int argb_comp_next = (argb[pos + 1] == argb[pos + 2]);
256 if (argb_comp && argb_comp_next) {
257 // Consecutive pixels with the same color will share the same hash.
258 // We therefore use a different hash: the color and its repetition
259 // length.
260 uint32_t tmp[2];
261 uint32_t len = 1;
262 tmp[0] = argb[pos];
263 // Figure out how far the pixels are the same.
264 // The last pixel has a different 64 bit hash, as its next pixel does
265 // not have the same color, so we just need to get to the last pixel equal
266 // to its follower.
267 while (pos + (int)len + 2 < size && argb[pos + len + 2] == argb[pos]) {
268 ++len;
269 }
270 if (len > MAX_LENGTH) {
271 // Skip the pixels that match for distance=1 and length>MAX_LENGTH
272 // because they are linked to their predecessor and we automatically
273 // check that in the main for loop below. Skipping means setting no
274 // predecessor in the chain, hence -1.
275 memset(chain + pos, 0xff, (len - MAX_LENGTH) * sizeof(*chain));
276 pos += len - MAX_LENGTH;
277 len = MAX_LENGTH;
278 }
279 // Process the rest of the hash chain.
280 while (len) {
281 tmp[1] = len--;
282 hash_code = GetPixPairHash64(tmp);
283 chain[pos] = hash_to_first_index[hash_code];
284 hash_to_first_index[hash_code] = pos++;
285 }
286 argb_comp = 0;
287 } else {
288 // Just move one pixel forward.
289 hash_code = GetPixPairHash64(argb + pos);
290 chain[pos] = hash_to_first_index[hash_code];
291 hash_to_first_index[hash_code] = pos++;
292 argb_comp = argb_comp_next;
293 }
294 }
295 // Process the penultimate pixel.
296 chain[pos] = hash_to_first_index[GetPixPairHash64(argb + pos)];
297
298 WebPSafeFree(hash_to_first_index);
299
300 // Find the best match interval at each pixel, defined by an offset to the
301 // pixel and a length. The right-most pixel cannot match anything to the right
302 // (hence a best length of 0) and the left-most pixel nothing to the left
303 // (hence an offset of 0).
304 assert(size > 2);
305 p->offset_length_[0] = p->offset_length_[size - 1] = 0;
306 for (base_position = size - 2; base_position > 0;) {
307 const int max_len = MaxFindCopyLength(size - 1 - base_position);
308 const uint32_t* const argb_start = argb + base_position;
309 int iter = iter_max;
310 int best_length = 0;
311 uint32_t best_distance = 0;
312 uint32_t best_argb;
313 const int min_pos =
314 (base_position > window_size) ? base_position - window_size : 0;
315 const int length_max = (max_len < 256) ? max_len : 256;
316 uint32_t max_base_position;
317
318 pos = chain[base_position];
319 if (!low_effort) {
320 int curr_length;
321 // Heuristic: use the comparison with the above line as an initialization.
322 if (base_position >= (uint32_t)xsize) {
323 curr_length = FindMatchLength(argb_start - xsize, argb_start,
324 best_length, max_len);
325 if (curr_length > best_length) {
326 best_length = curr_length;
327 best_distance = xsize;
328 }
329 --iter;
330 }
331 // Heuristic: compare to the previous pixel.
332 curr_length =
333 FindMatchLength(argb_start - 1, argb_start, best_length, max_len);
334 if (curr_length > best_length) {
335 best_length = curr_length;
336 best_distance = 1;
337 }
338 --iter;
339 // Skip the for loop if we already have the maximum.
340 if (best_length == MAX_LENGTH) pos = min_pos - 1;
341 }
342 best_argb = argb_start[best_length];
343
344 for (; pos >= min_pos && --iter; pos = chain[pos]) {
345 int curr_length;
346 assert(base_position > (uint32_t)pos);
347
348 if (argb[pos + best_length] != best_argb) continue;
349
350 curr_length = VP8LVectorMismatch(argb + pos, argb_start, max_len);
351 if (best_length < curr_length) {
352 best_length = curr_length;
353 best_distance = base_position - pos;
354 best_argb = argb_start[best_length];
355 // Stop if we have reached a good enough length.
356 if (best_length >= length_max) break;
357 }
358 }
359 // We have the best match but in case the two intervals continue matching
360 // to the left, we have the best matches for the left-extended pixels.
361 max_base_position = base_position;
362 while (1) {
363 assert(best_length <= MAX_LENGTH);
364 assert(best_distance <= WINDOW_SIZE);
365 p->offset_length_[base_position] =
366 (best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length;
367 --base_position;
368 // Stop if we don't have a match or if we are out of bounds.
369 if (best_distance == 0 || base_position == 0) break;
370 // Stop if we cannot extend the matching intervals to the left.
371 if (base_position < best_distance ||
372 argb[base_position - best_distance] != argb[base_position]) {
373 break;
374 }
375 // Stop if we are matching at its limit because there could be a closer
376 // matching interval with the same maximum length. Then again, if the
377 // matching interval is as close as possible (best_distance == 1), we will
378 // never find anything better so let's continue.
379 if (best_length == MAX_LENGTH && best_distance != 1 &&
380 base_position + MAX_LENGTH < max_base_position) {
381 break;
382 }
383 if (best_length < MAX_LENGTH) {
384 ++best_length;
385 max_base_position = base_position;
386 }
387 }
388 }
389 return 1;
390 }
391
AddSingleLiteral(uint32_t pixel,int use_color_cache,VP8LColorCache * const hashers,VP8LBackwardRefs * const refs)392 static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache,
393 VP8LColorCache* const hashers,
394 VP8LBackwardRefs* const refs) {
395 PixOrCopy v;
396 if (use_color_cache) {
397 const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel);
398 if (VP8LColorCacheLookup(hashers, key) == pixel) {
399 v = PixOrCopyCreateCacheIdx(key);
400 } else {
401 v = PixOrCopyCreateLiteral(pixel);
402 VP8LColorCacheSet(hashers, key, pixel);
403 }
404 } else {
405 v = PixOrCopyCreateLiteral(pixel);
406 }
407 VP8LBackwardRefsCursorAdd(refs, v);
408 }
409
BackwardReferencesRle(int xsize,int ysize,const uint32_t * const argb,int cache_bits,VP8LBackwardRefs * const refs)410 static int BackwardReferencesRle(int xsize, int ysize,
411 const uint32_t* const argb,
412 int cache_bits, VP8LBackwardRefs* const refs) {
413 const int pix_count = xsize * ysize;
414 int i, k;
415 const int use_color_cache = (cache_bits > 0);
416 VP8LColorCache hashers;
417
418 if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) {
419 return 0;
420 }
421 VP8LClearBackwardRefs(refs);
422 // Add first pixel as literal.
423 AddSingleLiteral(argb[0], use_color_cache, &hashers, refs);
424 i = 1;
425 while (i < pix_count) {
426 const int max_len = MaxFindCopyLength(pix_count - i);
427 const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len);
428 const int prev_row_len = (i < xsize) ? 0 :
429 FindMatchLength(argb + i, argb + i - xsize, 0, max_len);
430 if (rle_len >= prev_row_len && rle_len >= MIN_LENGTH) {
431 VP8LBackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len));
432 // We don't need to update the color cache here since it is always the
433 // same pixel being copied, and that does not change the color cache
434 // state.
435 i += rle_len;
436 } else if (prev_row_len >= MIN_LENGTH) {
437 VP8LBackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len));
438 if (use_color_cache) {
439 for (k = 0; k < prev_row_len; ++k) {
440 VP8LColorCacheInsert(&hashers, argb[i + k]);
441 }
442 }
443 i += prev_row_len;
444 } else {
445 AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
446 i++;
447 }
448 }
449 if (use_color_cache) VP8LColorCacheClear(&hashers);
450 return !refs->error_;
451 }
452
BackwardReferencesLz77(int xsize,int ysize,const uint32_t * const argb,int cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs)453 static int BackwardReferencesLz77(int xsize, int ysize,
454 const uint32_t* const argb, int cache_bits,
455 const VP8LHashChain* const hash_chain,
456 VP8LBackwardRefs* const refs) {
457 int i;
458 int i_last_check = -1;
459 int ok = 0;
460 int cc_init = 0;
461 const int use_color_cache = (cache_bits > 0);
462 const int pix_count = xsize * ysize;
463 VP8LColorCache hashers;
464
465 if (use_color_cache) {
466 cc_init = VP8LColorCacheInit(&hashers, cache_bits);
467 if (!cc_init) goto Error;
468 }
469 VP8LClearBackwardRefs(refs);
470 for (i = 0; i < pix_count;) {
471 // Alternative#1: Code the pixels starting at 'i' using backward reference.
472 int offset = 0;
473 int len = 0;
474 int j;
475 VP8LHashChainFindCopy(hash_chain, i, &offset, &len);
476 if (len >= MIN_LENGTH) {
477 const int len_ini = len;
478 int max_reach = 0;
479 const int j_max =
480 (i + len_ini >= pix_count) ? pix_count - 1 : i + len_ini;
481 // Only start from what we have not checked already.
482 i_last_check = (i > i_last_check) ? i : i_last_check;
483 // We know the best match for the current pixel but we try to find the
484 // best matches for the current pixel AND the next one combined.
485 // The naive method would use the intervals:
486 // [i,i+len) + [i+len, length of best match at i+len)
487 // while we check if we can use:
488 // [i,j) (where j<=i+len) + [j, length of best match at j)
489 for (j = i_last_check + 1; j <= j_max; ++j) {
490 const int len_j = VP8LHashChainFindLength(hash_chain, j);
491 const int reach =
492 j + (len_j >= MIN_LENGTH ? len_j : 1); // 1 for single literal.
493 if (reach > max_reach) {
494 len = j - i;
495 max_reach = reach;
496 if (max_reach >= pix_count) break;
497 }
498 }
499 } else {
500 len = 1;
501 }
502 // Go with literal or backward reference.
503 assert(len > 0);
504 if (len == 1) {
505 AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
506 } else {
507 VP8LBackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
508 if (use_color_cache) {
509 for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]);
510 }
511 }
512 i += len;
513 }
514
515 ok = !refs->error_;
516 Error:
517 if (cc_init) VP8LColorCacheClear(&hashers);
518 return ok;
519 }
520
521 // Compute an LZ77 by forcing matches to happen within a given distance cost.
522 // We therefore limit the algorithm to the lowest 32 values in the PlaneCode
523 // definition.
524 #define WINDOW_OFFSETS_SIZE_MAX 32
BackwardReferencesLz77Box(int xsize,int ysize,const uint32_t * const argb,int cache_bits,const VP8LHashChain * const hash_chain_best,VP8LHashChain * hash_chain,VP8LBackwardRefs * const refs)525 static int BackwardReferencesLz77Box(int xsize, int ysize,
526 const uint32_t* const argb, int cache_bits,
527 const VP8LHashChain* const hash_chain_best,
528 VP8LHashChain* hash_chain,
529 VP8LBackwardRefs* const refs) {
530 int i;
531 const int pix_count = xsize * ysize;
532 uint16_t* counts;
533 int window_offsets[WINDOW_OFFSETS_SIZE_MAX] = {0};
534 int window_offsets_new[WINDOW_OFFSETS_SIZE_MAX] = {0};
535 int window_offsets_size = 0;
536 int window_offsets_new_size = 0;
537 uint16_t* const counts_ini =
538 (uint16_t*)WebPSafeMalloc(xsize * ysize, sizeof(*counts_ini));
539 int best_offset_prev = -1, best_length_prev = -1;
540 if (counts_ini == NULL) return 0;
541
542 // counts[i] counts how many times a pixel is repeated starting at position i.
543 i = pix_count - 2;
544 counts = counts_ini + i;
545 counts[1] = 1;
546 for (; i >= 0; --i, --counts) {
547 if (argb[i] == argb[i + 1]) {
548 // Max out the counts to MAX_LENGTH.
549 counts[0] = counts[1] + (counts[1] != MAX_LENGTH);
550 } else {
551 counts[0] = 1;
552 }
553 }
554
555 // Figure out the window offsets around a pixel. They are stored in a
556 // spiraling order around the pixel as defined by VP8LDistanceToPlaneCode.
557 {
558 int x, y;
559 for (y = 0; y <= 6; ++y) {
560 for (x = -6; x <= 6; ++x) {
561 const int offset = y * xsize + x;
562 int plane_code;
563 // Ignore offsets that bring us after the pixel.
564 if (offset <= 0) continue;
565 plane_code = VP8LDistanceToPlaneCode(xsize, offset) - 1;
566 if (plane_code >= WINDOW_OFFSETS_SIZE_MAX) continue;
567 window_offsets[plane_code] = offset;
568 }
569 }
570 // For narrow images, not all plane codes are reached, so remove those.
571 for (i = 0; i < WINDOW_OFFSETS_SIZE_MAX; ++i) {
572 if (window_offsets[i] == 0) continue;
573 window_offsets[window_offsets_size++] = window_offsets[i];
574 }
575 // Given a pixel P, find the offsets that reach pixels unreachable from P-1
576 // with any of the offsets in window_offsets[].
577 for (i = 0; i < window_offsets_size; ++i) {
578 int j;
579 int is_reachable = 0;
580 for (j = 0; j < window_offsets_size && !is_reachable; ++j) {
581 is_reachable |= (window_offsets[i] == window_offsets[j] + 1);
582 }
583 if (!is_reachable) {
584 window_offsets_new[window_offsets_new_size] = window_offsets[i];
585 ++window_offsets_new_size;
586 }
587 }
588 }
589
590 hash_chain->offset_length_[0] = 0;
591 for (i = 1; i < pix_count; ++i) {
592 int ind;
593 int best_length = VP8LHashChainFindLength(hash_chain_best, i);
594 int best_offset;
595 int do_compute = 1;
596
597 if (best_length >= MAX_LENGTH) {
598 // Do not recompute the best match if we already have a maximal one in the
599 // window.
600 best_offset = VP8LHashChainFindOffset(hash_chain_best, i);
601 for (ind = 0; ind < window_offsets_size; ++ind) {
602 if (best_offset == window_offsets[ind]) {
603 do_compute = 0;
604 break;
605 }
606 }
607 }
608 if (do_compute) {
609 // Figure out if we should use the offset/length from the previous pixel
610 // as an initial guess and therefore only inspect the offsets in
611 // window_offsets_new[].
612 const int use_prev =
613 (best_length_prev > 1) && (best_length_prev < MAX_LENGTH);
614 const int num_ind =
615 use_prev ? window_offsets_new_size : window_offsets_size;
616 best_length = use_prev ? best_length_prev - 1 : 0;
617 best_offset = use_prev ? best_offset_prev : 0;
618 // Find the longest match in a window around the pixel.
619 for (ind = 0; ind < num_ind; ++ind) {
620 int curr_length = 0;
621 int j = i;
622 int j_offset =
623 use_prev ? i - window_offsets_new[ind] : i - window_offsets[ind];
624 if (j_offset < 0 || argb[j_offset] != argb[i]) continue;
625 // The longest match is the sum of how many times each pixel is
626 // repeated.
627 do {
628 const int counts_j_offset = counts_ini[j_offset];
629 const int counts_j = counts_ini[j];
630 if (counts_j_offset != counts_j) {
631 curr_length +=
632 (counts_j_offset < counts_j) ? counts_j_offset : counts_j;
633 break;
634 }
635 // The same color is repeated counts_pos times at j_offset and j.
636 curr_length += counts_j_offset;
637 j_offset += counts_j_offset;
638 j += counts_j_offset;
639 } while (curr_length <= MAX_LENGTH && j < pix_count &&
640 argb[j_offset] == argb[j]);
641 if (best_length < curr_length) {
642 best_offset =
643 use_prev ? window_offsets_new[ind] : window_offsets[ind];
644 if (curr_length >= MAX_LENGTH) {
645 best_length = MAX_LENGTH;
646 break;
647 } else {
648 best_length = curr_length;
649 }
650 }
651 }
652 }
653
654 assert(i + best_length <= pix_count);
655 assert(best_length <= MAX_LENGTH);
656 if (best_length <= MIN_LENGTH) {
657 hash_chain->offset_length_[i] = 0;
658 best_offset_prev = 0;
659 best_length_prev = 0;
660 } else {
661 hash_chain->offset_length_[i] =
662 (best_offset << MAX_LENGTH_BITS) | (uint32_t)best_length;
663 best_offset_prev = best_offset;
664 best_length_prev = best_length;
665 }
666 }
667 hash_chain->offset_length_[0] = 0;
668 WebPSafeFree(counts_ini);
669
670 return BackwardReferencesLz77(xsize, ysize, argb, cache_bits, hash_chain,
671 refs);
672 }
673
674 // -----------------------------------------------------------------------------
675
BackwardReferences2DLocality(int xsize,const VP8LBackwardRefs * const refs)676 static void BackwardReferences2DLocality(int xsize,
677 const VP8LBackwardRefs* const refs) {
678 VP8LRefsCursor c = VP8LRefsCursorInit(refs);
679 while (VP8LRefsCursorOk(&c)) {
680 if (PixOrCopyIsCopy(c.cur_pos)) {
681 const int dist = c.cur_pos->argb_or_distance;
682 const int transformed_dist = VP8LDistanceToPlaneCode(xsize, dist);
683 c.cur_pos->argb_or_distance = transformed_dist;
684 }
685 VP8LRefsCursorNext(&c);
686 }
687 }
688
689 // Evaluate optimal cache bits for the local color cache.
690 // The input *best_cache_bits sets the maximum cache bits to use (passing 0
691 // implies disabling the local color cache). The local color cache is also
692 // disabled for the lower (<= 25) quality.
693 // Returns 0 in case of memory error.
CalculateBestCacheSize(const uint32_t * argb,int quality,const VP8LBackwardRefs * const refs,int * const best_cache_bits)694 static int CalculateBestCacheSize(const uint32_t* argb, int quality,
695 const VP8LBackwardRefs* const refs,
696 int* const best_cache_bits) {
697 int i;
698 const int cache_bits_max = (quality <= 25) ? 0 : *best_cache_bits;
699 double entropy_min = MAX_ENTROPY;
700 int cc_init[MAX_COLOR_CACHE_BITS + 1] = { 0 };
701 VP8LColorCache hashers[MAX_COLOR_CACHE_BITS + 1];
702 VP8LRefsCursor c = VP8LRefsCursorInit(refs);
703 VP8LHistogram* histos[MAX_COLOR_CACHE_BITS + 1] = { NULL };
704 int ok = 0;
705
706 assert(cache_bits_max >= 0 && cache_bits_max <= MAX_COLOR_CACHE_BITS);
707
708 if (cache_bits_max == 0) {
709 *best_cache_bits = 0;
710 // Local color cache is disabled.
711 return 1;
712 }
713
714 // Allocate data.
715 for (i = 0; i <= cache_bits_max; ++i) {
716 histos[i] = VP8LAllocateHistogram(i);
717 if (histos[i] == NULL) goto Error;
718 if (i == 0) continue;
719 cc_init[i] = VP8LColorCacheInit(&hashers[i], i);
720 if (!cc_init[i]) goto Error;
721 }
722
723 // Find the cache_bits giving the lowest entropy. The search is done in a
724 // brute-force way as the function (entropy w.r.t cache_bits) can be
725 // anything in practice.
726 while (VP8LRefsCursorOk(&c)) {
727 const PixOrCopy* const v = c.cur_pos;
728 if (PixOrCopyIsLiteral(v)) {
729 const uint32_t pix = *argb++;
730 const uint32_t a = (pix >> 24) & 0xff;
731 const uint32_t r = (pix >> 16) & 0xff;
732 const uint32_t g = (pix >> 8) & 0xff;
733 const uint32_t b = (pix >> 0) & 0xff;
734 // The keys of the caches can be derived from the longest one.
735 int key = VP8LHashPix(pix, 32 - cache_bits_max);
736 // Do not use the color cache for cache_bits = 0.
737 ++histos[0]->blue_[b];
738 ++histos[0]->literal_[g];
739 ++histos[0]->red_[r];
740 ++histos[0]->alpha_[a];
741 // Deal with cache_bits > 0.
742 for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
743 if (VP8LColorCacheLookup(&hashers[i], key) == pix) {
744 ++histos[i]->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key];
745 } else {
746 VP8LColorCacheSet(&hashers[i], key, pix);
747 ++histos[i]->blue_[b];
748 ++histos[i]->literal_[g];
749 ++histos[i]->red_[r];
750 ++histos[i]->alpha_[a];
751 }
752 }
753 } else {
754 // We should compute the contribution of the (distance,length)
755 // histograms but those are the same independently from the cache size.
756 // As those constant contributions are in the end added to the other
757 // histogram contributions, we can safely ignore them.
758 int len = PixOrCopyLength(v);
759 uint32_t argb_prev = *argb ^ 0xffffffffu;
760 // Update the color caches.
761 do {
762 if (*argb != argb_prev) {
763 // Efficiency: insert only if the color changes.
764 int key = VP8LHashPix(*argb, 32 - cache_bits_max);
765 for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
766 hashers[i].colors_[key] = *argb;
767 }
768 argb_prev = *argb;
769 }
770 argb++;
771 } while (--len != 0);
772 }
773 VP8LRefsCursorNext(&c);
774 }
775
776 for (i = 0; i <= cache_bits_max; ++i) {
777 const double entropy = VP8LHistogramEstimateBits(histos[i]);
778 if (i == 0 || entropy < entropy_min) {
779 entropy_min = entropy;
780 *best_cache_bits = i;
781 }
782 }
783 ok = 1;
784 Error:
785 for (i = 0; i <= cache_bits_max; ++i) {
786 if (cc_init[i]) VP8LColorCacheClear(&hashers[i]);
787 VP8LFreeHistogram(histos[i]);
788 }
789 return ok;
790 }
791
792 // Update (in-place) backward references for specified cache_bits.
BackwardRefsWithLocalCache(const uint32_t * const argb,int cache_bits,VP8LBackwardRefs * const refs)793 static int BackwardRefsWithLocalCache(const uint32_t* const argb,
794 int cache_bits,
795 VP8LBackwardRefs* const refs) {
796 int pixel_index = 0;
797 VP8LColorCache hashers;
798 VP8LRefsCursor c = VP8LRefsCursorInit(refs);
799 if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0;
800
801 while (VP8LRefsCursorOk(&c)) {
802 PixOrCopy* const v = c.cur_pos;
803 if (PixOrCopyIsLiteral(v)) {
804 const uint32_t argb_literal = v->argb_or_distance;
805 const int ix = VP8LColorCacheContains(&hashers, argb_literal);
806 if (ix >= 0) {
807 // hashers contains argb_literal
808 *v = PixOrCopyCreateCacheIdx(ix);
809 } else {
810 VP8LColorCacheInsert(&hashers, argb_literal);
811 }
812 ++pixel_index;
813 } else {
814 // refs was created without local cache, so it can not have cache indexes.
815 int k;
816 assert(PixOrCopyIsCopy(v));
817 for (k = 0; k < v->len; ++k) {
818 VP8LColorCacheInsert(&hashers, argb[pixel_index++]);
819 }
820 }
821 VP8LRefsCursorNext(&c);
822 }
823 VP8LColorCacheClear(&hashers);
824 return 1;
825 }
826
GetBackwardReferencesLowEffort(int width,int height,const uint32_t * const argb,int * const cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs_lz77)827 static VP8LBackwardRefs* GetBackwardReferencesLowEffort(
828 int width, int height, const uint32_t* const argb,
829 int* const cache_bits, const VP8LHashChain* const hash_chain,
830 VP8LBackwardRefs* const refs_lz77) {
831 *cache_bits = 0;
832 if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) {
833 return NULL;
834 }
835 BackwardReferences2DLocality(width, refs_lz77);
836 return refs_lz77;
837 }
838
839 extern int VP8LBackwardReferencesTraceBackwards(
840 int xsize, int ysize, const uint32_t* const argb, int cache_bits,
841 const VP8LHashChain* const hash_chain,
842 const VP8LBackwardRefs* const refs_src, VP8LBackwardRefs* const refs_dst);
GetBackwardReferences(int width,int height,const uint32_t * const argb,int quality,int lz77_types_to_try,int * const cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * best,VP8LBackwardRefs * worst)843 static VP8LBackwardRefs* GetBackwardReferences(
844 int width, int height, const uint32_t* const argb, int quality,
845 int lz77_types_to_try, int* const cache_bits,
846 const VP8LHashChain* const hash_chain, VP8LBackwardRefs* best,
847 VP8LBackwardRefs* worst) {
848 const int cache_bits_initial = *cache_bits;
849 double bit_cost_best = -1;
850 VP8LHistogram* histo = NULL;
851 int lz77_type, lz77_type_best = 0;
852 VP8LHashChain hash_chain_box;
853 memset(&hash_chain_box, 0, sizeof(hash_chain_box));
854
855 histo = VP8LAllocateHistogram(MAX_COLOR_CACHE_BITS);
856 if (histo == NULL) goto Error;
857
858 for (lz77_type = 1; lz77_types_to_try;
859 lz77_types_to_try &= ~lz77_type, lz77_type <<= 1) {
860 int res = 0;
861 double bit_cost;
862 int cache_bits_tmp = cache_bits_initial;
863 if ((lz77_types_to_try & lz77_type) == 0) continue;
864 switch (lz77_type) {
865 case kLZ77RLE:
866 res = BackwardReferencesRle(width, height, argb, 0, worst);
867 break;
868 case kLZ77Standard:
869 // Compute LZ77 with no cache (0 bits), as the ideal LZ77 with a color
870 // cache is not that different in practice.
871 res = BackwardReferencesLz77(width, height, argb, 0, hash_chain, worst);
872 break;
873 case kLZ77Box:
874 if (!VP8LHashChainInit(&hash_chain_box, width * height)) goto Error;
875 res = BackwardReferencesLz77Box(width, height, argb, 0, hash_chain,
876 &hash_chain_box, worst);
877 break;
878 default:
879 assert(0);
880 }
881 if (!res) goto Error;
882
883 // Next, try with a color cache and update the references.
884 if (!CalculateBestCacheSize(argb, quality, worst, &cache_bits_tmp)) {
885 goto Error;
886 }
887 if (cache_bits_tmp > 0) {
888 if (!BackwardRefsWithLocalCache(argb, cache_bits_tmp, worst)) {
889 goto Error;
890 }
891 }
892
893 // Keep the best backward references.
894 VP8LHistogramCreate(histo, worst, cache_bits_tmp);
895 bit_cost = VP8LHistogramEstimateBits(histo);
896 if (lz77_type_best == 0 || bit_cost < bit_cost_best) {
897 VP8LBackwardRefs* const tmp = worst;
898 worst = best;
899 best = tmp;
900 bit_cost_best = bit_cost;
901 *cache_bits = cache_bits_tmp;
902 lz77_type_best = lz77_type;
903 }
904 }
905 assert(lz77_type_best > 0);
906
907 // Improve on simple LZ77 but only for high quality (TraceBackwards is
908 // costly).
909 if ((lz77_type_best == kLZ77Standard || lz77_type_best == kLZ77Box) &&
910 quality >= 25) {
911 const VP8LHashChain* const hash_chain_tmp =
912 (lz77_type_best == kLZ77Standard) ? hash_chain : &hash_chain_box;
913 if (VP8LBackwardReferencesTraceBackwards(width, height, argb, *cache_bits,
914 hash_chain_tmp, best, worst)) {
915 double bit_cost_trace;
916 VP8LHistogramCreate(histo, worst, *cache_bits);
917 bit_cost_trace = VP8LHistogramEstimateBits(histo);
918 if (bit_cost_trace < bit_cost_best) best = worst;
919 }
920 }
921
922 BackwardReferences2DLocality(width, best);
923
924 Error:
925 VP8LHashChainClear(&hash_chain_box);
926 VP8LFreeHistogram(histo);
927 return best;
928 }
929
VP8LGetBackwardReferences(int width,int height,const uint32_t * const argb,int quality,int low_effort,int lz77_types_to_try,int * const cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs_tmp1,VP8LBackwardRefs * const refs_tmp2)930 VP8LBackwardRefs* VP8LGetBackwardReferences(
931 int width, int height, const uint32_t* const argb, int quality,
932 int low_effort, int lz77_types_to_try, int* const cache_bits,
933 const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs_tmp1,
934 VP8LBackwardRefs* const refs_tmp2) {
935 if (low_effort) {
936 return GetBackwardReferencesLowEffort(width, height, argb, cache_bits,
937 hash_chain, refs_tmp1);
938 } else {
939 return GetBackwardReferences(width, height, argb, quality,
940 lz77_types_to_try, cache_bits, hash_chain,
941 refs_tmp1, refs_tmp2);
942 }
943 }
944