• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the decoder
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 //          Jyrki Alakuijala (jyrki@google.com)
14 
15 #include <stdlib.h>
16 
17 #include "src/dec/alphai_dec.h"
18 #include "src/dec/vp8li_dec.h"
19 #include "src/dsp/dsp.h"
20 #include "src/dsp/lossless.h"
21 #include "src/dsp/lossless_common.h"
22 #include "src/dsp/yuv.h"
23 #include "src/utils/endian_inl_utils.h"
24 #include "src/utils/huffman_utils.h"
25 #include "src/utils/utils.h"
26 
27 #define NUM_ARGB_CACHE_ROWS          16
28 
29 static const int kCodeLengthLiterals = 16;
30 static const int kCodeLengthRepeatCode = 16;
31 static const uint8_t kCodeLengthExtraBits[3] = { 2, 3, 7 };
32 static const uint8_t kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
33 
34 // -----------------------------------------------------------------------------
35 //  Five Huffman codes are used at each meta code:
36 //  1. green + length prefix codes + color cache codes,
37 //  2. alpha,
38 //  3. red,
39 //  4. blue, and,
40 //  5. distance prefix codes.
41 typedef enum {
42   GREEN = 0,
43   RED   = 1,
44   BLUE  = 2,
45   ALPHA = 3,
46   DIST  = 4
47 } HuffIndex;
48 
49 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
50   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
51   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
52   NUM_DISTANCE_CODES
53 };
54 
55 static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = {
56   0, 1, 1, 1, 0
57 };
58 
59 #define NUM_CODE_LENGTH_CODES       19
60 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
61   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
62 };
63 
64 #define CODE_TO_PLANE_CODES        120
65 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
66   0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
67   0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
68   0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
69   0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
70   0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
71   0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
72   0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
73   0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
74   0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
75   0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
76   0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
77   0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
78 };
79 
80 // Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
81 // and distance alphabets are constant (256 for red, blue and alpha, 40 for
82 // distance) and lookup table sizes for them in worst case are 630 and 410
83 // respectively. Size of green alphabet depends on color cache size and is equal
84 // to 256 (green component values) + 24 (length prefix values)
85 // + color_cache_size (between 0 and 2048).
86 // All values computed for 8-bit first level lookup with Mark Adler's tool:
87 // http://www.hdfgroup.org/ftp/lib-external/zlib/zlib-1.2.5/examples/enough.c
88 #define FIXED_TABLE_SIZE (630 * 3 + 410)
89 static const uint16_t kTableSize[12] = {
90   FIXED_TABLE_SIZE + 654,
91   FIXED_TABLE_SIZE + 656,
92   FIXED_TABLE_SIZE + 658,
93   FIXED_TABLE_SIZE + 662,
94   FIXED_TABLE_SIZE + 670,
95   FIXED_TABLE_SIZE + 686,
96   FIXED_TABLE_SIZE + 718,
97   FIXED_TABLE_SIZE + 782,
98   FIXED_TABLE_SIZE + 912,
99   FIXED_TABLE_SIZE + 1168,
100   FIXED_TABLE_SIZE + 1680,
101   FIXED_TABLE_SIZE + 2704
102 };
103 
104 static int DecodeImageStream(int xsize, int ysize,
105                              int is_level0,
106                              VP8LDecoder* const dec,
107                              uint32_t** const decoded_data);
108 
109 //------------------------------------------------------------------------------
110 
VP8LCheckSignature(const uint8_t * const data,size_t size)111 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
112   return (size >= VP8L_FRAME_HEADER_SIZE &&
113           data[0] == VP8L_MAGIC_BYTE &&
114           (data[4] >> 5) == 0);  // version
115 }
116 
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)117 static int ReadImageInfo(VP8LBitReader* const br,
118                          int* const width, int* const height,
119                          int* const has_alpha) {
120   if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
121   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
122   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
123   *has_alpha = VP8LReadBits(br, 1);
124   if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
125   return !br->eos_;
126 }
127 
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)128 int VP8LGetInfo(const uint8_t* data, size_t data_size,
129                 int* const width, int* const height, int* const has_alpha) {
130   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
131     return 0;         // not enough data
132   } else if (!VP8LCheckSignature(data, data_size)) {
133     return 0;         // bad signature
134   } else {
135     int w, h, a;
136     VP8LBitReader br;
137     VP8LInitBitReader(&br, data, data_size);
138     if (!ReadImageInfo(&br, &w, &h, &a)) {
139       return 0;
140     }
141     if (width != NULL) *width = w;
142     if (height != NULL) *height = h;
143     if (has_alpha != NULL) *has_alpha = a;
144     return 1;
145   }
146 }
147 
148 //------------------------------------------------------------------------------
149 
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)150 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
151                                        VP8LBitReader* const br) {
152   int extra_bits, offset;
153   if (distance_symbol < 4) {
154     return distance_symbol + 1;
155   }
156   extra_bits = (distance_symbol - 2) >> 1;
157   offset = (2 + (distance_symbol & 1)) << extra_bits;
158   return offset + VP8LReadBits(br, extra_bits) + 1;
159 }
160 
GetCopyLength(int length_symbol,VP8LBitReader * const br)161 static WEBP_INLINE int GetCopyLength(int length_symbol,
162                                      VP8LBitReader* const br) {
163   // Length and distance prefixes are encoded the same way.
164   return GetCopyDistance(length_symbol, br);
165 }
166 
PlaneCodeToDistance(int xsize,int plane_code)167 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
168   if (plane_code > CODE_TO_PLANE_CODES) {
169     return plane_code - CODE_TO_PLANE_CODES;
170   } else {
171     const int dist_code = kCodeToPlane[plane_code - 1];
172     const int yoffset = dist_code >> 4;
173     const int xoffset = 8 - (dist_code & 0xf);
174     const int dist = yoffset * xsize + xoffset;
175     return (dist >= 1) ? dist : 1;  // dist<1 can happen if xsize is very small
176   }
177 }
178 
179 //------------------------------------------------------------------------------
180 // Decodes the next Huffman code from bit-stream.
181 // FillBitWindow(br) needs to be called at minimum every second call
182 // to ReadSymbol, in order to pre-fetch enough bits.
ReadSymbol(const HuffmanCode * table,VP8LBitReader * const br)183 static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
184                                   VP8LBitReader* const br) {
185   int nbits;
186   uint32_t val = VP8LPrefetchBits(br);
187   table += val & HUFFMAN_TABLE_MASK;
188   nbits = table->bits - HUFFMAN_TABLE_BITS;
189   if (nbits > 0) {
190     VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
191     val = VP8LPrefetchBits(br);
192     table += table->value;
193     table += val & ((1 << nbits) - 1);
194   }
195   VP8LSetBitPos(br, br->bit_pos_ + table->bits);
196   return table->value;
197 }
198 
199 // Reads packed symbol depending on GREEN channel
200 #define BITS_SPECIAL_MARKER 0x100  // something large enough (and a bit-mask)
201 #define PACKED_NON_LITERAL_CODE 0  // must be < NUM_LITERAL_CODES
ReadPackedSymbols(const HTreeGroup * group,VP8LBitReader * const br,uint32_t * const dst)202 static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group,
203                                          VP8LBitReader* const br,
204                                          uint32_t* const dst) {
205   const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1);
206   const HuffmanCode32 code = group->packed_table[val];
207   assert(group->use_packed_table);
208   if (code.bits < BITS_SPECIAL_MARKER) {
209     VP8LSetBitPos(br, br->bit_pos_ + code.bits);
210     *dst = code.value;
211     return PACKED_NON_LITERAL_CODE;
212   } else {
213     VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER);
214     assert(code.value >= NUM_LITERAL_CODES);
215     return code.value;
216   }
217 }
218 
AccumulateHCode(HuffmanCode hcode,int shift,HuffmanCode32 * const huff)219 static int AccumulateHCode(HuffmanCode hcode, int shift,
220                            HuffmanCode32* const huff) {
221   huff->bits += hcode.bits;
222   huff->value |= (uint32_t)hcode.value << shift;
223   assert(huff->bits <= HUFFMAN_TABLE_BITS);
224   return hcode.bits;
225 }
226 
BuildPackedTable(HTreeGroup * const htree_group)227 static void BuildPackedTable(HTreeGroup* const htree_group) {
228   uint32_t code;
229   for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) {
230     uint32_t bits = code;
231     HuffmanCode32* const huff = &htree_group->packed_table[bits];
232     HuffmanCode hcode = htree_group->htrees[GREEN][bits];
233     if (hcode.value >= NUM_LITERAL_CODES) {
234       huff->bits = hcode.bits + BITS_SPECIAL_MARKER;
235       huff->value = hcode.value;
236     } else {
237       huff->bits = 0;
238       huff->value = 0;
239       bits >>= AccumulateHCode(hcode, 8, huff);
240       bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff);
241       bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff);
242       bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff);
243       (void)bits;
244     }
245   }
246 }
247 
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)248 static int ReadHuffmanCodeLengths(
249     VP8LDecoder* const dec, const int* const code_length_code_lengths,
250     int num_symbols, int* const code_lengths) {
251   int ok = 0;
252   VP8LBitReader* const br = &dec->br_;
253   int symbol;
254   int max_symbol;
255   int prev_code_len = DEFAULT_CODE_LENGTH;
256   HuffmanCode table[1 << LENGTHS_TABLE_BITS];
257 
258   if (!VP8LBuildHuffmanTable(table, LENGTHS_TABLE_BITS,
259                              code_length_code_lengths,
260                              NUM_CODE_LENGTH_CODES)) {
261     goto End;
262   }
263 
264   if (VP8LReadBits(br, 1)) {    // use length
265     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
266     max_symbol = 2 + VP8LReadBits(br, length_nbits);
267     if (max_symbol > num_symbols) {
268       goto End;
269     }
270   } else {
271     max_symbol = num_symbols;
272   }
273 
274   symbol = 0;
275   while (symbol < num_symbols) {
276     const HuffmanCode* p;
277     int code_len;
278     if (max_symbol-- == 0) break;
279     VP8LFillBitWindow(br);
280     p = &table[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK];
281     VP8LSetBitPos(br, br->bit_pos_ + p->bits);
282     code_len = p->value;
283     if (code_len < kCodeLengthLiterals) {
284       code_lengths[symbol++] = code_len;
285       if (code_len != 0) prev_code_len = code_len;
286     } else {
287       const int use_prev = (code_len == kCodeLengthRepeatCode);
288       const int slot = code_len - kCodeLengthLiterals;
289       const int extra_bits = kCodeLengthExtraBits[slot];
290       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
291       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
292       if (symbol + repeat > num_symbols) {
293         goto End;
294       } else {
295         const int length = use_prev ? prev_code_len : 0;
296         while (repeat-- > 0) code_lengths[symbol++] = length;
297       }
298     }
299   }
300   ok = 1;
301 
302  End:
303   if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
304   return ok;
305 }
306 
307 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
308 // tree.
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,int * const code_lengths,HuffmanCode * const table)309 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
310                            int* const code_lengths, HuffmanCode* const table) {
311   int ok = 0;
312   int size = 0;
313   VP8LBitReader* const br = &dec->br_;
314   const int simple_code = VP8LReadBits(br, 1);
315 
316   memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
317 
318   if (simple_code) {  // Read symbols, codes & code lengths directly.
319     const int num_symbols = VP8LReadBits(br, 1) + 1;
320     const int first_symbol_len_code = VP8LReadBits(br, 1);
321     // The first code is either 1 bit or 8 bit code.
322     int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
323     code_lengths[symbol] = 1;
324     // The second code (if present), is always 8 bit long.
325     if (num_symbols == 2) {
326       symbol = VP8LReadBits(br, 8);
327       code_lengths[symbol] = 1;
328     }
329     ok = 1;
330   } else {  // Decode Huffman-coded code lengths.
331     int i;
332     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
333     const int num_codes = VP8LReadBits(br, 4) + 4;
334     if (num_codes > NUM_CODE_LENGTH_CODES) {
335       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
336       return 0;
337     }
338 
339     for (i = 0; i < num_codes; ++i) {
340       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
341     }
342     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
343                                 code_lengths);
344   }
345 
346   ok = ok && !br->eos_;
347   if (ok) {
348     size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
349                                  code_lengths, alphabet_size);
350   }
351   if (!ok || size == 0) {
352     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
353     return 0;
354   }
355   return size;
356 }
357 
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)358 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
359                             int color_cache_bits, int allow_recursion) {
360   int i, j;
361   VP8LBitReader* const br = &dec->br_;
362   VP8LMetadata* const hdr = &dec->hdr_;
363   uint32_t* huffman_image = NULL;
364   HTreeGroup* htree_groups = NULL;
365   HuffmanCode* huffman_tables = NULL;
366   HuffmanCode* next = NULL;
367   int num_htree_groups = 1;
368   int max_alphabet_size = 0;
369   int* code_lengths = NULL;
370   const int table_size = kTableSize[color_cache_bits];
371 
372   if (allow_recursion && VP8LReadBits(br, 1)) {
373     // use meta Huffman codes.
374     const int huffman_precision = VP8LReadBits(br, 3) + 2;
375     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
376     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
377     const int huffman_pixs = huffman_xsize * huffman_ysize;
378     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
379                            &huffman_image)) {
380       goto Error;
381     }
382     hdr->huffman_subsample_bits_ = huffman_precision;
383     for (i = 0; i < huffman_pixs; ++i) {
384       // The huffman data is stored in red and green bytes.
385       const int group = (huffman_image[i] >> 8) & 0xffff;
386       huffman_image[i] = group;
387       if (group >= num_htree_groups) {
388         num_htree_groups = group + 1;
389       }
390     }
391   }
392 
393   if (br->eos_) goto Error;
394 
395   // Find maximum alphabet size for the htree group.
396   for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
397     int alphabet_size = kAlphabetSize[j];
398     if (j == 0 && color_cache_bits > 0) {
399       alphabet_size += 1 << color_cache_bits;
400     }
401     if (max_alphabet_size < alphabet_size) {
402       max_alphabet_size = alphabet_size;
403     }
404   }
405 
406   huffman_tables = (HuffmanCode*)WebPSafeMalloc(num_htree_groups * table_size,
407                                                 sizeof(*huffman_tables));
408   htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
409   code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size,
410                                       sizeof(*code_lengths));
411 
412   if (htree_groups == NULL || code_lengths == NULL || huffman_tables == NULL) {
413     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
414     goto Error;
415   }
416 
417   next = huffman_tables;
418   for (i = 0; i < num_htree_groups; ++i) {
419     HTreeGroup* const htree_group = &htree_groups[i];
420     HuffmanCode** const htrees = htree_group->htrees;
421     int size;
422     int total_size = 0;
423     int is_trivial_literal = 1;
424     int max_bits = 0;
425     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
426       int alphabet_size = kAlphabetSize[j];
427       htrees[j] = next;
428       if (j == 0 && color_cache_bits > 0) {
429         alphabet_size += 1 << color_cache_bits;
430       }
431       size = ReadHuffmanCode(alphabet_size, dec, code_lengths, next);
432       if (size == 0) {
433         goto Error;
434       }
435       if (is_trivial_literal && kLiteralMap[j] == 1) {
436         is_trivial_literal = (next->bits == 0);
437       }
438       total_size += next->bits;
439       next += size;
440       if (j <= ALPHA) {
441         int local_max_bits = code_lengths[0];
442         int k;
443         for (k = 1; k < alphabet_size; ++k) {
444           if (code_lengths[k] > local_max_bits) {
445             local_max_bits = code_lengths[k];
446           }
447         }
448         max_bits += local_max_bits;
449       }
450     }
451     htree_group->is_trivial_literal = is_trivial_literal;
452     htree_group->is_trivial_code = 0;
453     if (is_trivial_literal) {
454       const int red = htrees[RED][0].value;
455       const int blue = htrees[BLUE][0].value;
456       const int alpha = htrees[ALPHA][0].value;
457       htree_group->literal_arb =
458           ((uint32_t)alpha << 24) | (red << 16) | blue;
459       if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) {
460         htree_group->is_trivial_code = 1;
461         htree_group->literal_arb |= htrees[GREEN][0].value << 8;
462       }
463     }
464     htree_group->use_packed_table = !htree_group->is_trivial_code &&
465                                     (max_bits < HUFFMAN_PACKED_BITS);
466     if (htree_group->use_packed_table) BuildPackedTable(htree_group);
467   }
468   WebPSafeFree(code_lengths);
469 
470   // All OK. Finalize pointers and return.
471   hdr->huffman_image_ = huffman_image;
472   hdr->num_htree_groups_ = num_htree_groups;
473   hdr->htree_groups_ = htree_groups;
474   hdr->huffman_tables_ = huffman_tables;
475   return 1;
476 
477  Error:
478   WebPSafeFree(code_lengths);
479   WebPSafeFree(huffman_image);
480   WebPSafeFree(huffman_tables);
481   VP8LHtreeGroupsFree(htree_groups);
482   return 0;
483 }
484 
485 //------------------------------------------------------------------------------
486 // Scaling.
487 
488 #if !defined(WEBP_REDUCE_SIZE)
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)489 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
490   const int num_channels = 4;
491   const int in_width = io->mb_w;
492   const int out_width = io->scaled_width;
493   const int in_height = io->mb_h;
494   const int out_height = io->scaled_height;
495   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
496   rescaler_t* work;        // Rescaler work area.
497   const uint64_t scaled_data_size = (uint64_t)out_width;
498   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
499   const uint64_t memory_size = sizeof(*dec->rescaler) +
500                                work_size * sizeof(*work) +
501                                scaled_data_size * sizeof(*scaled_data);
502   uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory));
503   if (memory == NULL) {
504     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
505     return 0;
506   }
507   assert(dec->rescaler_memory == NULL);
508   dec->rescaler_memory = memory;
509 
510   dec->rescaler = (WebPRescaler*)memory;
511   memory += sizeof(*dec->rescaler);
512   work = (rescaler_t*)memory;
513   memory += work_size * sizeof(*work);
514   scaled_data = (uint32_t*)memory;
515 
516   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
517                    out_width, out_height, 0, num_channels, work);
518   return 1;
519 }
520 #endif   // WEBP_REDUCE_SIZE
521 
522 //------------------------------------------------------------------------------
523 // Export to ARGB
524 
525 #if !defined(WEBP_REDUCE_SIZE)
526 
527 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)528 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
529                   int rgba_stride, uint8_t* const rgba) {
530   uint32_t* const src = (uint32_t*)rescaler->dst;
531   const int dst_width = rescaler->dst_width;
532   int num_lines_out = 0;
533   while (WebPRescalerHasPendingOutput(rescaler)) {
534     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
535     WebPRescalerExportRow(rescaler);
536     WebPMultARGBRow(src, dst_width, 1);
537     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
538     ++num_lines_out;
539   }
540   return num_lines_out;
541 }
542 
543 // Emit scaled rows.
EmitRescaledRowsRGBA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h,uint8_t * const out,int out_stride)544 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
545                                 uint8_t* in, int in_stride, int mb_h,
546                                 uint8_t* const out, int out_stride) {
547   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
548   int num_lines_in = 0;
549   int num_lines_out = 0;
550   while (num_lines_in < mb_h) {
551     uint8_t* const row_in = in + num_lines_in * in_stride;
552     uint8_t* const row_out = out + num_lines_out * out_stride;
553     const int lines_left = mb_h - num_lines_in;
554     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
555     int lines_imported;
556     assert(needed_lines > 0 && needed_lines <= lines_left);
557     WebPMultARGBRows(row_in, in_stride,
558                      dec->rescaler->src_width, needed_lines, 0);
559     lines_imported =
560         WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
561     assert(lines_imported == needed_lines);
562     num_lines_in += lines_imported;
563     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
564   }
565   return num_lines_out;
566 }
567 
568 #endif   // WEBP_REDUCE_SIZE
569 
570 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint8_t * row_in,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)571 static int EmitRows(WEBP_CSP_MODE colorspace,
572                     const uint8_t* row_in, int in_stride,
573                     int mb_w, int mb_h,
574                     uint8_t* const out, int out_stride) {
575   int lines = mb_h;
576   uint8_t* row_out = out;
577   while (lines-- > 0) {
578     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
579     row_in += in_stride;
580     row_out += out_stride;
581   }
582   return mb_h;  // Num rows out == num rows in.
583 }
584 
585 //------------------------------------------------------------------------------
586 // Export to YUVA
587 
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)588 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
589                           const WebPDecBuffer* const output) {
590   const WebPYUVABuffer* const buf = &output->u.YUVA;
591 
592   // first, the luma plane
593   WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width);
594 
595   // then U/V planes
596   {
597     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
598     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
599     // even lines: store values
600     // odd lines: average with previous values
601     WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1));
602   }
603   // Lastly, store alpha if needed.
604   if (buf->a != NULL) {
605     uint8_t* const a = buf->a + y_pos * buf->a_stride;
606 #if defined(WORDS_BIGENDIAN)
607     WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0);
608 #else
609     WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0);
610 #endif
611   }
612 }
613 
ExportYUVA(const VP8LDecoder * const dec,int y_pos)614 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
615   WebPRescaler* const rescaler = dec->rescaler;
616   uint32_t* const src = (uint32_t*)rescaler->dst;
617   const int dst_width = rescaler->dst_width;
618   int num_lines_out = 0;
619   while (WebPRescalerHasPendingOutput(rescaler)) {
620     WebPRescalerExportRow(rescaler);
621     WebPMultARGBRow(src, dst_width, 1);
622     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
623     ++y_pos;
624     ++num_lines_out;
625   }
626   return num_lines_out;
627 }
628 
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h)629 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
630                                 uint8_t* in, int in_stride, int mb_h) {
631   int num_lines_in = 0;
632   int y_pos = dec->last_out_row_;
633   while (num_lines_in < mb_h) {
634     const int lines_left = mb_h - num_lines_in;
635     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
636     int lines_imported;
637     WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
638     lines_imported =
639         WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
640     assert(lines_imported == needed_lines);
641     num_lines_in += lines_imported;
642     in += needed_lines * in_stride;
643     y_pos += ExportYUVA(dec, y_pos);
644   }
645   return y_pos;
646 }
647 
EmitRowsYUVA(const VP8LDecoder * const dec,const uint8_t * in,int in_stride,int mb_w,int num_rows)648 static int EmitRowsYUVA(const VP8LDecoder* const dec,
649                         const uint8_t* in, int in_stride,
650                         int mb_w, int num_rows) {
651   int y_pos = dec->last_out_row_;
652   while (num_rows-- > 0) {
653     ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
654     in += in_stride;
655     ++y_pos;
656   }
657   return y_pos;
658 }
659 
660 //------------------------------------------------------------------------------
661 // Cropping.
662 
663 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
664 // crop options. Also updates the input data pointer, so that it points to the
665 // start of the cropped window. Note that pixels are in ARGB format even if
666 // 'in_data' is uint8_t*.
667 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,uint8_t ** const in_data,int pixel_stride)668 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
669                          uint8_t** const in_data, int pixel_stride) {
670   assert(y_start < y_end);
671   assert(io->crop_left < io->crop_right);
672   if (y_end > io->crop_bottom) {
673     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
674   }
675   if (y_start < io->crop_top) {
676     const int delta = io->crop_top - y_start;
677     y_start = io->crop_top;
678     *in_data += delta * pixel_stride;
679   }
680   if (y_start >= y_end) return 0;  // Crop window is empty.
681 
682   *in_data += io->crop_left * sizeof(uint32_t);
683 
684   io->mb_y = y_start - io->crop_top;
685   io->mb_w = io->crop_right - io->crop_left;
686   io->mb_h = y_end - y_start;
687   return 1;  // Non-empty crop window.
688 }
689 
690 //------------------------------------------------------------------------------
691 
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)692 static WEBP_INLINE int GetMetaIndex(
693     const uint32_t* const image, int xsize, int bits, int x, int y) {
694   if (bits == 0) return 0;
695   return image[xsize * (y >> bits) + (x >> bits)];
696 }
697 
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)698 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
699                                                    int x, int y) {
700   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
701                                       hdr->huffman_subsample_bits_, x, y);
702   assert(meta_index < hdr->num_htree_groups_);
703   return hdr->htree_groups_ + meta_index;
704 }
705 
706 //------------------------------------------------------------------------------
707 // Main loop, with custom row-processing function
708 
709 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
710 
ApplyInverseTransforms(VP8LDecoder * const dec,int num_rows,const uint32_t * const rows)711 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
712                                    const uint32_t* const rows) {
713   int n = dec->next_transform_;
714   const int cache_pixs = dec->width_ * num_rows;
715   const int start_row = dec->last_row_;
716   const int end_row = start_row + num_rows;
717   const uint32_t* rows_in = rows;
718   uint32_t* const rows_out = dec->argb_cache_;
719 
720   // Inverse transforms.
721   while (n-- > 0) {
722     VP8LTransform* const transform = &dec->transforms_[n];
723     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
724     rows_in = rows_out;
725   }
726   if (rows_in != rows_out) {
727     // No transform called, hence just copy.
728     memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
729   }
730 }
731 
732 // Processes (transforms, scales & color-converts) the rows decoded after the
733 // last call.
ProcessRows(VP8LDecoder * const dec,int row)734 static void ProcessRows(VP8LDecoder* const dec, int row) {
735   const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
736   const int num_rows = row - dec->last_row_;
737 
738   assert(row <= dec->io_->crop_bottom);
739   // We can't process more than NUM_ARGB_CACHE_ROWS at a time (that's the size
740   // of argb_cache_), but we currently don't need more than that.
741   assert(num_rows <= NUM_ARGB_CACHE_ROWS);
742   if (num_rows > 0) {    // Emit output.
743     VP8Io* const io = dec->io_;
744     uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
745     const int in_stride = io->width * sizeof(uint32_t);  // in unit of RGBA
746 
747     ApplyInverseTransforms(dec, num_rows, rows);
748     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
749       // Nothing to output (this time).
750     } else {
751       const WebPDecBuffer* const output = dec->output_;
752       if (WebPIsRGBMode(output->colorspace)) {  // convert to RGBA
753         const WebPRGBABuffer* const buf = &output->u.RGBA;
754         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
755         const int num_rows_out =
756 #if !defined(WEBP_REDUCE_SIZE)
757          io->use_scaling ?
758             EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
759                                  rgba, buf->stride) :
760 #endif  // WEBP_REDUCE_SIZE
761             EmitRows(output->colorspace, rows_data, in_stride,
762                      io->mb_w, io->mb_h, rgba, buf->stride);
763         // Update 'last_out_row_'.
764         dec->last_out_row_ += num_rows_out;
765       } else {                              // convert to YUVA
766         dec->last_out_row_ = io->use_scaling ?
767             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
768             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
769       }
770       assert(dec->last_out_row_ <= output->height);
771     }
772   }
773 
774   // Update 'last_row_'.
775   dec->last_row_ = row;
776   assert(dec->last_row_ <= dec->height_);
777 }
778 
779 // Row-processing for the special case when alpha data contains only one
780 // transform (color indexing), and trivial non-green literals.
Is8bOptimizable(const VP8LMetadata * const hdr)781 static int Is8bOptimizable(const VP8LMetadata* const hdr) {
782   int i;
783   if (hdr->color_cache_size_ > 0) return 0;
784   // When the Huffman tree contains only one symbol, we can skip the
785   // call to ReadSymbol() for red/blue/alpha channels.
786   for (i = 0; i < hdr->num_htree_groups_; ++i) {
787     HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
788     if (htrees[RED][0].bits > 0) return 0;
789     if (htrees[BLUE][0].bits > 0) return 0;
790     if (htrees[ALPHA][0].bits > 0) return 0;
791   }
792   return 1;
793 }
794 
AlphaApplyFilter(ALPHDecoder * const alph_dec,int first_row,int last_row,uint8_t * out,int stride)795 static void AlphaApplyFilter(ALPHDecoder* const alph_dec,
796                              int first_row, int last_row,
797                              uint8_t* out, int stride) {
798   if (alph_dec->filter_ != WEBP_FILTER_NONE) {
799     int y;
800     const uint8_t* prev_line = alph_dec->prev_line_;
801     assert(WebPUnfilters[alph_dec->filter_] != NULL);
802     for (y = first_row; y < last_row; ++y) {
803       WebPUnfilters[alph_dec->filter_](prev_line, out, out, stride);
804       prev_line = out;
805       out += stride;
806     }
807     alph_dec->prev_line_ = prev_line;
808   }
809 }
810 
ExtractPalettedAlphaRows(VP8LDecoder * const dec,int last_row)811 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int last_row) {
812   // For vertical and gradient filtering, we need to decode the part above the
813   // crop_top row, in order to have the correct spatial predictors.
814   ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
815   const int top_row =
816       (alph_dec->filter_ == WEBP_FILTER_NONE ||
817        alph_dec->filter_ == WEBP_FILTER_HORIZONTAL) ? dec->io_->crop_top
818                                                     : dec->last_row_;
819   const int first_row = (dec->last_row_ < top_row) ? top_row : dec->last_row_;
820   assert(last_row <= dec->io_->crop_bottom);
821   if (last_row > first_row) {
822     // Special method for paletted alpha data. We only process the cropped area.
823     const int width = dec->io_->width;
824     uint8_t* out = alph_dec->output_ + width * first_row;
825     const uint8_t* const in =
826       (uint8_t*)dec->pixels_ + dec->width_ * first_row;
827     VP8LTransform* const transform = &dec->transforms_[0];
828     assert(dec->next_transform_ == 1);
829     assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
830     VP8LColorIndexInverseTransformAlpha(transform, first_row, last_row,
831                                         in, out);
832     AlphaApplyFilter(alph_dec, first_row, last_row, out, width);
833   }
834   dec->last_row_ = dec->last_out_row_ = last_row;
835 }
836 
837 //------------------------------------------------------------------------------
838 // Helper functions for fast pattern copy (8b and 32b)
839 
840 // cyclic rotation of pattern word
Rotate8b(uint32_t V)841 static WEBP_INLINE uint32_t Rotate8b(uint32_t V) {
842 #if defined(WORDS_BIGENDIAN)
843   return ((V & 0xff000000u) >> 24) | (V << 8);
844 #else
845   return ((V & 0xffu) << 24) | (V >> 8);
846 #endif
847 }
848 
849 // copy 1, 2 or 4-bytes pattern
CopySmallPattern8b(const uint8_t * src,uint8_t * dst,int length,uint32_t pattern)850 static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst,
851                                            int length, uint32_t pattern) {
852   int i;
853   // align 'dst' to 4-bytes boundary. Adjust the pattern along the way.
854   while ((uintptr_t)dst & 3) {
855     *dst++ = *src++;
856     pattern = Rotate8b(pattern);
857     --length;
858   }
859   // Copy the pattern 4 bytes at a time.
860   for (i = 0; i < (length >> 2); ++i) {
861     ((uint32_t*)dst)[i] = pattern;
862   }
863   // Finish with left-overs. 'pattern' is still correctly positioned,
864   // so no Rotate8b() call is needed.
865   for (i <<= 2; i < length; ++i) {
866     dst[i] = src[i];
867   }
868 }
869 
CopyBlock8b(uint8_t * const dst,int dist,int length)870 static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) {
871   const uint8_t* src = dst - dist;
872   if (length >= 8) {
873     uint32_t pattern = 0;
874     switch (dist) {
875       case 1:
876         pattern = src[0];
877 #if defined(__arm__) || defined(_M_ARM)   // arm doesn't like multiply that much
878         pattern |= pattern << 8;
879         pattern |= pattern << 16;
880 #elif defined(WEBP_USE_MIPS_DSP_R2)
881         __asm__ volatile ("replv.qb %0, %0" : "+r"(pattern));
882 #else
883         pattern = 0x01010101u * pattern;
884 #endif
885         break;
886       case 2:
887         memcpy(&pattern, src, sizeof(uint16_t));
888 #if defined(__arm__) || defined(_M_ARM)
889         pattern |= pattern << 16;
890 #elif defined(WEBP_USE_MIPS_DSP_R2)
891         __asm__ volatile ("replv.ph %0, %0" : "+r"(pattern));
892 #else
893         pattern = 0x00010001u * pattern;
894 #endif
895         break;
896       case 4:
897         memcpy(&pattern, src, sizeof(uint32_t));
898         break;
899       default:
900         goto Copy;
901         break;
902     }
903     CopySmallPattern8b(src, dst, length, pattern);
904     return;
905   }
906  Copy:
907   if (dist >= length) {  // no overlap -> use memcpy()
908     memcpy(dst, src, length * sizeof(*dst));
909   } else {
910     int i;
911     for (i = 0; i < length; ++i) dst[i] = src[i];
912   }
913 }
914 
915 // copy pattern of 1 or 2 uint32_t's
CopySmallPattern32b(const uint32_t * src,uint32_t * dst,int length,uint64_t pattern)916 static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src,
917                                             uint32_t* dst,
918                                             int length, uint64_t pattern) {
919   int i;
920   if ((uintptr_t)dst & 4) {           // Align 'dst' to 8-bytes boundary.
921     *dst++ = *src++;
922     pattern = (pattern >> 32) | (pattern << 32);
923     --length;
924   }
925   assert(0 == ((uintptr_t)dst & 7));
926   for (i = 0; i < (length >> 1); ++i) {
927     ((uint64_t*)dst)[i] = pattern;    // Copy the pattern 8 bytes at a time.
928   }
929   if (length & 1) {                   // Finish with left-over.
930     dst[i << 1] = src[i << 1];
931   }
932 }
933 
CopyBlock32b(uint32_t * const dst,int dist,int length)934 static WEBP_INLINE void CopyBlock32b(uint32_t* const dst,
935                                      int dist, int length) {
936   const uint32_t* const src = dst - dist;
937   if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) {
938     uint64_t pattern;
939     if (dist == 1) {
940       pattern = (uint64_t)src[0];
941       pattern |= pattern << 32;
942     } else {
943       memcpy(&pattern, src, sizeof(pattern));
944     }
945     CopySmallPattern32b(src, dst, length, pattern);
946   } else if (dist >= length) {  // no overlap
947     memcpy(dst, src, length * sizeof(*dst));
948   } else {
949     int i;
950     for (i = 0; i < length; ++i) dst[i] = src[i];
951   }
952 }
953 
954 //------------------------------------------------------------------------------
955 
DecodeAlphaData(VP8LDecoder * const dec,uint8_t * const data,int width,int height,int last_row)956 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
957                            int width, int height, int last_row) {
958   int ok = 1;
959   int row = dec->last_pixel_ / width;
960   int col = dec->last_pixel_ % width;
961   VP8LBitReader* const br = &dec->br_;
962   VP8LMetadata* const hdr = &dec->hdr_;
963   int pos = dec->last_pixel_;         // current position
964   const int end = width * height;     // End of data
965   const int last = width * last_row;  // Last pixel to decode
966   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
967   const int mask = hdr->huffman_mask_;
968   const HTreeGroup* htree_group =
969       (pos < last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
970   assert(pos <= end);
971   assert(last_row <= height);
972   assert(Is8bOptimizable(hdr));
973 
974   while (!br->eos_ && pos < last) {
975     int code;
976     // Only update when changing tile.
977     if ((col & mask) == 0) {
978       htree_group = GetHtreeGroupForPos(hdr, col, row);
979     }
980     assert(htree_group != NULL);
981     VP8LFillBitWindow(br);
982     code = ReadSymbol(htree_group->htrees[GREEN], br);
983     if (code < NUM_LITERAL_CODES) {  // Literal
984       data[pos] = code;
985       ++pos;
986       ++col;
987       if (col >= width) {
988         col = 0;
989         ++row;
990         if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
991           ExtractPalettedAlphaRows(dec, row);
992         }
993       }
994     } else if (code < len_code_limit) {  // Backward reference
995       int dist_code, dist;
996       const int length_sym = code - NUM_LITERAL_CODES;
997       const int length = GetCopyLength(length_sym, br);
998       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
999       VP8LFillBitWindow(br);
1000       dist_code = GetCopyDistance(dist_symbol, br);
1001       dist = PlaneCodeToDistance(width, dist_code);
1002       if (pos >= dist && end - pos >= length) {
1003         CopyBlock8b(data + pos, dist, length);
1004       } else {
1005         ok = 0;
1006         goto End;
1007       }
1008       pos += length;
1009       col += length;
1010       while (col >= width) {
1011         col -= width;
1012         ++row;
1013         if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1014           ExtractPalettedAlphaRows(dec, row);
1015         }
1016       }
1017       if (pos < last && (col & mask)) {
1018         htree_group = GetHtreeGroupForPos(hdr, col, row);
1019       }
1020     } else {  // Not reached
1021       ok = 0;
1022       goto End;
1023     }
1024     br->eos_ = VP8LIsEndOfStream(br);
1025   }
1026   // Process the remaining rows corresponding to last row-block.
1027   ExtractPalettedAlphaRows(dec, row > last_row ? last_row : row);
1028 
1029  End:
1030   br->eos_ = VP8LIsEndOfStream(br);
1031   if (!ok || (br->eos_ && pos < end)) {
1032     ok = 0;
1033     dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
1034                             : VP8_STATUS_BITSTREAM_ERROR;
1035   } else {
1036     dec->last_pixel_ = pos;
1037   }
1038   return ok;
1039 }
1040 
SaveState(VP8LDecoder * const dec,int last_pixel)1041 static void SaveState(VP8LDecoder* const dec, int last_pixel) {
1042   assert(dec->incremental_);
1043   dec->saved_br_ = dec->br_;
1044   dec->saved_last_pixel_ = last_pixel;
1045   if (dec->hdr_.color_cache_size_ > 0) {
1046     VP8LColorCacheCopy(&dec->hdr_.color_cache_, &dec->hdr_.saved_color_cache_);
1047   }
1048 }
1049 
RestoreState(VP8LDecoder * const dec)1050 static void RestoreState(VP8LDecoder* const dec) {
1051   assert(dec->br_.eos_);
1052   dec->status_ = VP8_STATUS_SUSPENDED;
1053   dec->br_ = dec->saved_br_;
1054   dec->last_pixel_ = dec->saved_last_pixel_;
1055   if (dec->hdr_.color_cache_size_ > 0) {
1056     VP8LColorCacheCopy(&dec->hdr_.saved_color_cache_, &dec->hdr_.color_cache_);
1057   }
1058 }
1059 
1060 #define SYNC_EVERY_N_ROWS 8  // minimum number of rows between check-points
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,int last_row,ProcessRowsFunc process_func)1061 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
1062                            int width, int height, int last_row,
1063                            ProcessRowsFunc process_func) {
1064   int row = dec->last_pixel_ / width;
1065   int col = dec->last_pixel_ % width;
1066   VP8LBitReader* const br = &dec->br_;
1067   VP8LMetadata* const hdr = &dec->hdr_;
1068   uint32_t* src = data + dec->last_pixel_;
1069   uint32_t* last_cached = src;
1070   uint32_t* const src_end = data + width * height;     // End of data
1071   uint32_t* const src_last = data + width * last_row;  // Last pixel to decode
1072   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
1073   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
1074   int next_sync_row = dec->incremental_ ? row : 1 << 24;
1075   VP8LColorCache* const color_cache =
1076       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
1077   const int mask = hdr->huffman_mask_;
1078   const HTreeGroup* htree_group =
1079       (src < src_last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
1080   assert(dec->last_row_ < last_row);
1081   assert(src_last <= src_end);
1082 
1083   while (src < src_last) {
1084     int code;
1085     if (row >= next_sync_row) {
1086       SaveState(dec, (int)(src - data));
1087       next_sync_row = row + SYNC_EVERY_N_ROWS;
1088     }
1089     // Only update when changing tile. Note we could use this test:
1090     // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
1091     // but that's actually slower and needs storing the previous col/row.
1092     if ((col & mask) == 0) {
1093       htree_group = GetHtreeGroupForPos(hdr, col, row);
1094     }
1095     assert(htree_group != NULL);
1096     if (htree_group->is_trivial_code) {
1097       *src = htree_group->literal_arb;
1098       goto AdvanceByOne;
1099     }
1100     VP8LFillBitWindow(br);
1101     if (htree_group->use_packed_table) {
1102       code = ReadPackedSymbols(htree_group, br, src);
1103       if (VP8LIsEndOfStream(br)) break;
1104       if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne;
1105     } else {
1106       code = ReadSymbol(htree_group->htrees[GREEN], br);
1107     }
1108     if (VP8LIsEndOfStream(br)) break;
1109     if (code < NUM_LITERAL_CODES) {  // Literal
1110       if (htree_group->is_trivial_literal) {
1111         *src = htree_group->literal_arb | (code << 8);
1112       } else {
1113         int red, blue, alpha;
1114         red = ReadSymbol(htree_group->htrees[RED], br);
1115         VP8LFillBitWindow(br);
1116         blue = ReadSymbol(htree_group->htrees[BLUE], br);
1117         alpha = ReadSymbol(htree_group->htrees[ALPHA], br);
1118         if (VP8LIsEndOfStream(br)) break;
1119         *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue;
1120       }
1121     AdvanceByOne:
1122       ++src;
1123       ++col;
1124       if (col >= width) {
1125         col = 0;
1126         ++row;
1127         if (process_func != NULL) {
1128           if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1129             process_func(dec, row);
1130           }
1131         }
1132         if (color_cache != NULL) {
1133           while (last_cached < src) {
1134             VP8LColorCacheInsert(color_cache, *last_cached++);
1135           }
1136         }
1137       }
1138     } else if (code < len_code_limit) {  // Backward reference
1139       int dist_code, dist;
1140       const int length_sym = code - NUM_LITERAL_CODES;
1141       const int length = GetCopyLength(length_sym, br);
1142       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
1143       VP8LFillBitWindow(br);
1144       dist_code = GetCopyDistance(dist_symbol, br);
1145       dist = PlaneCodeToDistance(width, dist_code);
1146       if (VP8LIsEndOfStream(br)) break;
1147       if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) {
1148         goto Error;
1149       } else {
1150         CopyBlock32b(src, dist, length);
1151       }
1152       src += length;
1153       col += length;
1154       while (col >= width) {
1155         col -= width;
1156         ++row;
1157         if (process_func != NULL) {
1158           if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1159             process_func(dec, row);
1160           }
1161         }
1162       }
1163       // Because of the check done above (before 'src' was incremented by
1164       // 'length'), the following holds true.
1165       assert(src <= src_end);
1166       if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row);
1167       if (color_cache != NULL) {
1168         while (last_cached < src) {
1169           VP8LColorCacheInsert(color_cache, *last_cached++);
1170         }
1171       }
1172     } else if (code < color_cache_limit) {  // Color cache
1173       const int key = code - len_code_limit;
1174       assert(color_cache != NULL);
1175       while (last_cached < src) {
1176         VP8LColorCacheInsert(color_cache, *last_cached++);
1177       }
1178       *src = VP8LColorCacheLookup(color_cache, key);
1179       goto AdvanceByOne;
1180     } else {  // Not reached
1181       goto Error;
1182     }
1183   }
1184 
1185   br->eos_ = VP8LIsEndOfStream(br);
1186   if (dec->incremental_ && br->eos_ && src < src_end) {
1187     RestoreState(dec);
1188   } else if (!br->eos_) {
1189     // Process the remaining rows corresponding to last row-block.
1190     if (process_func != NULL) {
1191       process_func(dec, row > last_row ? last_row : row);
1192     }
1193     dec->status_ = VP8_STATUS_OK;
1194     dec->last_pixel_ = (int)(src - data);  // end-of-scan marker
1195   } else {
1196     // if not incremental, and we are past the end of buffer (eos_=1), then this
1197     // is a real bitstream error.
1198     goto Error;
1199   }
1200   return 1;
1201 
1202  Error:
1203   dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1204   return 0;
1205 }
1206 
1207 // -----------------------------------------------------------------------------
1208 // VP8LTransform
1209 
ClearTransform(VP8LTransform * const transform)1210 static void ClearTransform(VP8LTransform* const transform) {
1211   WebPSafeFree(transform->data_);
1212   transform->data_ = NULL;
1213 }
1214 
1215 // For security reason, we need to remap the color map to span
1216 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)1217 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
1218   int i;
1219   const int final_num_colors = 1 << (8 >> transform->bits_);
1220   uint32_t* const new_color_map =
1221       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
1222                                 sizeof(*new_color_map));
1223   if (new_color_map == NULL) {
1224     return 0;
1225   } else {
1226     uint8_t* const data = (uint8_t*)transform->data_;
1227     uint8_t* const new_data = (uint8_t*)new_color_map;
1228     new_color_map[0] = transform->data_[0];
1229     for (i = 4; i < 4 * num_colors; ++i) {
1230       // Equivalent to AddPixelEq(), on a byte-basis.
1231       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
1232     }
1233     for (; i < 4 * final_num_colors; ++i) {
1234       new_data[i] = 0;  // black tail.
1235     }
1236     WebPSafeFree(transform->data_);
1237     transform->data_ = new_color_map;
1238   }
1239   return 1;
1240 }
1241 
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)1242 static int ReadTransform(int* const xsize, int const* ysize,
1243                          VP8LDecoder* const dec) {
1244   int ok = 1;
1245   VP8LBitReader* const br = &dec->br_;
1246   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
1247   const VP8LImageTransformType type =
1248       (VP8LImageTransformType)VP8LReadBits(br, 2);
1249 
1250   // Each transform type can only be present once in the stream.
1251   if (dec->transforms_seen_ & (1U << type)) {
1252     return 0;  // Already there, let's not accept the second same transform.
1253   }
1254   dec->transforms_seen_ |= (1U << type);
1255 
1256   transform->type_ = type;
1257   transform->xsize_ = *xsize;
1258   transform->ysize_ = *ysize;
1259   transform->data_ = NULL;
1260   ++dec->next_transform_;
1261   assert(dec->next_transform_ <= NUM_TRANSFORMS);
1262 
1263   switch (type) {
1264     case PREDICTOR_TRANSFORM:
1265     case CROSS_COLOR_TRANSFORM:
1266       transform->bits_ = VP8LReadBits(br, 3) + 2;
1267       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
1268                                                transform->bits_),
1269                              VP8LSubSampleSize(transform->ysize_,
1270                                                transform->bits_),
1271                              0, dec, &transform->data_);
1272       break;
1273     case COLOR_INDEXING_TRANSFORM: {
1274        const int num_colors = VP8LReadBits(br, 8) + 1;
1275        const int bits = (num_colors > 16) ? 0
1276                       : (num_colors > 4) ? 1
1277                       : (num_colors > 2) ? 2
1278                       : 3;
1279        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
1280        transform->bits_ = bits;
1281        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
1282        ok = ok && ExpandColorMap(num_colors, transform);
1283       break;
1284     }
1285     case SUBTRACT_GREEN:
1286       break;
1287     default:
1288       assert(0);    // can't happen
1289       break;
1290   }
1291 
1292   return ok;
1293 }
1294 
1295 // -----------------------------------------------------------------------------
1296 // VP8LMetadata
1297 
InitMetadata(VP8LMetadata * const hdr)1298 static void InitMetadata(VP8LMetadata* const hdr) {
1299   assert(hdr != NULL);
1300   memset(hdr, 0, sizeof(*hdr));
1301 }
1302 
ClearMetadata(VP8LMetadata * const hdr)1303 static void ClearMetadata(VP8LMetadata* const hdr) {
1304   assert(hdr != NULL);
1305 
1306   WebPSafeFree(hdr->huffman_image_);
1307   WebPSafeFree(hdr->huffman_tables_);
1308   VP8LHtreeGroupsFree(hdr->htree_groups_);
1309   VP8LColorCacheClear(&hdr->color_cache_);
1310   VP8LColorCacheClear(&hdr->saved_color_cache_);
1311   InitMetadata(hdr);
1312 }
1313 
1314 // -----------------------------------------------------------------------------
1315 // VP8LDecoder
1316 
VP8LNew(void)1317 VP8LDecoder* VP8LNew(void) {
1318   VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec));
1319   if (dec == NULL) return NULL;
1320   dec->status_ = VP8_STATUS_OK;
1321   dec->state_ = READ_DIM;
1322 
1323   VP8LDspInit();  // Init critical function pointers.
1324 
1325   return dec;
1326 }
1327 
VP8LClear(VP8LDecoder * const dec)1328 void VP8LClear(VP8LDecoder* const dec) {
1329   int i;
1330   if (dec == NULL) return;
1331   ClearMetadata(&dec->hdr_);
1332 
1333   WebPSafeFree(dec->pixels_);
1334   dec->pixels_ = NULL;
1335   for (i = 0; i < dec->next_transform_; ++i) {
1336     ClearTransform(&dec->transforms_[i]);
1337   }
1338   dec->next_transform_ = 0;
1339   dec->transforms_seen_ = 0;
1340 
1341   WebPSafeFree(dec->rescaler_memory);
1342   dec->rescaler_memory = NULL;
1343 
1344   dec->output_ = NULL;   // leave no trace behind
1345 }
1346 
VP8LDelete(VP8LDecoder * const dec)1347 void VP8LDelete(VP8LDecoder* const dec) {
1348   if (dec != NULL) {
1349     VP8LClear(dec);
1350     WebPSafeFree(dec);
1351   }
1352 }
1353 
UpdateDecoder(VP8LDecoder * const dec,int width,int height)1354 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
1355   VP8LMetadata* const hdr = &dec->hdr_;
1356   const int num_bits = hdr->huffman_subsample_bits_;
1357   dec->width_ = width;
1358   dec->height_ = height;
1359 
1360   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
1361   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
1362 }
1363 
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)1364 static int DecodeImageStream(int xsize, int ysize,
1365                              int is_level0,
1366                              VP8LDecoder* const dec,
1367                              uint32_t** const decoded_data) {
1368   int ok = 1;
1369   int transform_xsize = xsize;
1370   int transform_ysize = ysize;
1371   VP8LBitReader* const br = &dec->br_;
1372   VP8LMetadata* const hdr = &dec->hdr_;
1373   uint32_t* data = NULL;
1374   int color_cache_bits = 0;
1375 
1376   // Read the transforms (may recurse).
1377   if (is_level0) {
1378     while (ok && VP8LReadBits(br, 1)) {
1379       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
1380     }
1381   }
1382 
1383   // Color cache
1384   if (ok && VP8LReadBits(br, 1)) {
1385     color_cache_bits = VP8LReadBits(br, 4);
1386     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
1387     if (!ok) {
1388       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1389       goto End;
1390     }
1391   }
1392 
1393   // Read the Huffman codes (may recurse).
1394   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
1395                               color_cache_bits, is_level0);
1396   if (!ok) {
1397     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1398     goto End;
1399   }
1400 
1401   // Finish setting up the color-cache
1402   if (color_cache_bits > 0) {
1403     hdr->color_cache_size_ = 1 << color_cache_bits;
1404     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
1405       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1406       ok = 0;
1407       goto End;
1408     }
1409   } else {
1410     hdr->color_cache_size_ = 0;
1411   }
1412   UpdateDecoder(dec, transform_xsize, transform_ysize);
1413 
1414   if (is_level0) {   // level 0 complete
1415     dec->state_ = READ_HDR;
1416     goto End;
1417   }
1418 
1419   {
1420     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
1421     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
1422     if (data == NULL) {
1423       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1424       ok = 0;
1425       goto End;
1426     }
1427   }
1428 
1429   // Use the Huffman trees to decode the LZ77 encoded data.
1430   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize,
1431                        transform_ysize, NULL);
1432   ok = ok && !br->eos_;
1433 
1434  End:
1435   if (!ok) {
1436     WebPSafeFree(data);
1437     ClearMetadata(hdr);
1438   } else {
1439     if (decoded_data != NULL) {
1440       *decoded_data = data;
1441     } else {
1442       // We allocate image data in this function only for transforms. At level 0
1443       // (that is: not the transforms), we shouldn't have allocated anything.
1444       assert(data == NULL);
1445       assert(is_level0);
1446     }
1447     dec->last_pixel_ = 0;  // Reset for future DECODE_DATA_FUNC() calls.
1448     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
1449   }
1450   return ok;
1451 }
1452 
1453 //------------------------------------------------------------------------------
1454 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
AllocateInternalBuffers32b(VP8LDecoder * const dec,int final_width)1455 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) {
1456   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1457   // Scratch buffer corresponding to top-prediction row for transforming the
1458   // first row in the row-blocks. Not needed for paletted alpha.
1459   const uint64_t cache_top_pixels = (uint16_t)final_width;
1460   // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
1461   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1462   const uint64_t total_num_pixels =
1463       num_pixels + cache_top_pixels + cache_pixels;
1464 
1465   assert(dec->width_ <= final_width);
1466   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t));
1467   if (dec->pixels_ == NULL) {
1468     dec->argb_cache_ = NULL;    // for sanity check
1469     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1470     return 0;
1471   }
1472   dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels;
1473   return 1;
1474 }
1475 
AllocateInternalBuffers8b(VP8LDecoder * const dec)1476 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) {
1477   const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_;
1478   dec->argb_cache_ = NULL;    // for sanity check
1479   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t));
1480   if (dec->pixels_ == NULL) {
1481     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1482     return 0;
1483   }
1484   return 1;
1485 }
1486 
1487 //------------------------------------------------------------------------------
1488 
1489 // Special row-processing that only stores the alpha data.
ExtractAlphaRows(VP8LDecoder * const dec,int last_row)1490 static void ExtractAlphaRows(VP8LDecoder* const dec, int last_row) {
1491   int cur_row = dec->last_row_;
1492   int num_rows = last_row - cur_row;
1493   const uint32_t* in = dec->pixels_ + dec->width_ * cur_row;
1494 
1495   assert(last_row <= dec->io_->crop_bottom);
1496   while (num_rows > 0) {
1497     const int num_rows_to_process =
1498         (num_rows > NUM_ARGB_CACHE_ROWS) ? NUM_ARGB_CACHE_ROWS : num_rows;
1499     // Extract alpha (which is stored in the green plane).
1500     ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
1501     uint8_t* const output = alph_dec->output_;
1502     const int width = dec->io_->width;      // the final width (!= dec->width_)
1503     const int cache_pixs = width * num_rows_to_process;
1504     uint8_t* const dst = output + width * cur_row;
1505     const uint32_t* const src = dec->argb_cache_;
1506     ApplyInverseTransforms(dec, num_rows_to_process, in);
1507     WebPExtractGreen(src, dst, cache_pixs);
1508     AlphaApplyFilter(alph_dec,
1509                      cur_row, cur_row + num_rows_to_process, dst, width);
1510     num_rows -= num_rows_to_process;
1511     in += num_rows_to_process * dec->width_;
1512     cur_row += num_rows_to_process;
1513   }
1514   assert(cur_row == last_row);
1515   dec->last_row_ = dec->last_out_row_ = last_row;
1516 }
1517 
VP8LDecodeAlphaHeader(ALPHDecoder * const alph_dec,const uint8_t * const data,size_t data_size)1518 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec,
1519                           const uint8_t* const data, size_t data_size) {
1520   int ok = 0;
1521   VP8LDecoder* dec = VP8LNew();
1522 
1523   if (dec == NULL) return 0;
1524 
1525   assert(alph_dec != NULL);
1526   alph_dec->vp8l_dec_ = dec;
1527 
1528   dec->width_ = alph_dec->width_;
1529   dec->height_ = alph_dec->height_;
1530   dec->io_ = &alph_dec->io_;
1531   dec->io_->opaque = alph_dec;
1532   dec->io_->width = alph_dec->width_;
1533   dec->io_->height = alph_dec->height_;
1534 
1535   dec->status_ = VP8_STATUS_OK;
1536   VP8LInitBitReader(&dec->br_, data, data_size);
1537 
1538   if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) {
1539     goto Err;
1540   }
1541 
1542   // Special case: if alpha data uses only the color indexing transform and
1543   // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
1544   // method that only needs allocation of 1 byte per pixel (alpha channel).
1545   if (dec->next_transform_ == 1 &&
1546       dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
1547       Is8bOptimizable(&dec->hdr_)) {
1548     alph_dec->use_8b_decode_ = 1;
1549     ok = AllocateInternalBuffers8b(dec);
1550   } else {
1551     // Allocate internal buffers (note that dec->width_ may have changed here).
1552     alph_dec->use_8b_decode_ = 0;
1553     ok = AllocateInternalBuffers32b(dec, alph_dec->width_);
1554   }
1555 
1556   if (!ok) goto Err;
1557 
1558   return 1;
1559 
1560  Err:
1561   VP8LDelete(alph_dec->vp8l_dec_);
1562   alph_dec->vp8l_dec_ = NULL;
1563   return 0;
1564 }
1565 
VP8LDecodeAlphaImageStream(ALPHDecoder * const alph_dec,int last_row)1566 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) {
1567   VP8LDecoder* const dec = alph_dec->vp8l_dec_;
1568   assert(dec != NULL);
1569   assert(last_row <= dec->height_);
1570 
1571   if (dec->last_row_ >= last_row) {
1572     return 1;  // done
1573   }
1574 
1575   if (!alph_dec->use_8b_decode_) WebPInitAlphaProcessing();
1576 
1577   // Decode (with special row processing).
1578   return alph_dec->use_8b_decode_ ?
1579       DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
1580                       last_row) :
1581       DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1582                       last_row, ExtractAlphaRows);
1583 }
1584 
1585 //------------------------------------------------------------------------------
1586 
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1587 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1588   int width, height, has_alpha;
1589 
1590   if (dec == NULL) return 0;
1591   if (io == NULL) {
1592     dec->status_ = VP8_STATUS_INVALID_PARAM;
1593     return 0;
1594   }
1595 
1596   dec->io_ = io;
1597   dec->status_ = VP8_STATUS_OK;
1598   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1599   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1600     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1601     goto Error;
1602   }
1603   dec->state_ = READ_DIM;
1604   io->width = width;
1605   io->height = height;
1606 
1607   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1608   return 1;
1609 
1610  Error:
1611   VP8LClear(dec);
1612   assert(dec->status_ != VP8_STATUS_OK);
1613   return 0;
1614 }
1615 
VP8LDecodeImage(VP8LDecoder * const dec)1616 int VP8LDecodeImage(VP8LDecoder* const dec) {
1617   VP8Io* io = NULL;
1618   WebPDecParams* params = NULL;
1619 
1620   // Sanity checks.
1621   if (dec == NULL) return 0;
1622 
1623   assert(dec->hdr_.huffman_tables_ != NULL);
1624   assert(dec->hdr_.htree_groups_ != NULL);
1625   assert(dec->hdr_.num_htree_groups_ > 0);
1626 
1627   io = dec->io_;
1628   assert(io != NULL);
1629   params = (WebPDecParams*)io->opaque;
1630   assert(params != NULL);
1631 
1632   // Initialization.
1633   if (dec->state_ != READ_DATA) {
1634     dec->output_ = params->output;
1635     assert(dec->output_ != NULL);
1636 
1637     if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1638       dec->status_ = VP8_STATUS_INVALID_PARAM;
1639       goto Err;
1640     }
1641 
1642     if (!AllocateInternalBuffers32b(dec, io->width)) goto Err;
1643 
1644 #if !defined(WEBP_REDUCE_SIZE)
1645     if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1646 
1647     if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
1648       // need the alpha-multiply functions for premultiplied output or rescaling
1649       WebPInitAlphaProcessing();
1650     }
1651 #else
1652     if (io->use_scaling) {
1653       dec->status_ = VP8_STATUS_INVALID_PARAM;
1654       goto Err;
1655     }
1656 #endif
1657     if (!WebPIsRGBMode(dec->output_->colorspace)) {
1658       WebPInitConvertARGBToYUV();
1659       if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing();
1660     }
1661     if (dec->incremental_) {
1662       if (dec->hdr_.color_cache_size_ > 0 &&
1663           dec->hdr_.saved_color_cache_.colors_ == NULL) {
1664         if (!VP8LColorCacheInit(&dec->hdr_.saved_color_cache_,
1665                                 dec->hdr_.color_cache_.hash_bits_)) {
1666           dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1667           goto Err;
1668         }
1669       }
1670     }
1671     dec->state_ = READ_DATA;
1672   }
1673 
1674   // Decode.
1675   if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1676                        io->crop_bottom, ProcessRows)) {
1677     goto Err;
1678   }
1679 
1680   params->last_y = dec->last_out_row_;
1681   return 1;
1682 
1683  Err:
1684   VP8LClear(dec);
1685   assert(dec->status_ != VP8_STATUS_OK);
1686   return 0;
1687 }
1688 
1689 //------------------------------------------------------------------------------
1690