1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define TRACE_TAG SYSDEPS
18
19 #include "sysdeps.h"
20
21 #include <winsock2.h> /* winsock.h *must* be included before windows.h. */
22 #include <windows.h>
23
24 #include <errno.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27
28 #include <algorithm>
29 #include <memory>
30 #include <mutex>
31 #include <string>
32 #include <unordered_map>
33 #include <vector>
34
35 #include <cutils/sockets.h>
36
37 #include <android-base/errors.h>
38 #include <android-base/logging.h>
39 #include <android-base/stringprintf.h>
40 #include <android-base/strings.h>
41 #include <android-base/utf8.h>
42
43 #include "adb.h"
44 #include "adb_utils.h"
45
46 extern void fatal(const char *fmt, ...);
47
48 /* forward declarations */
49
50 typedef const struct FHClassRec_* FHClass;
51 typedef struct FHRec_* FH;
52 typedef struct EventHookRec_* EventHook;
53
54 typedef struct FHClassRec_ {
55 void (*_fh_init)(FH);
56 int (*_fh_close)(FH);
57 int (*_fh_lseek)(FH, int, int);
58 int (*_fh_read)(FH, void*, int);
59 int (*_fh_write)(FH, const void*, int);
60 } FHClassRec;
61
62 static void _fh_file_init(FH);
63 static int _fh_file_close(FH);
64 static int _fh_file_lseek(FH, int, int);
65 static int _fh_file_read(FH, void*, int);
66 static int _fh_file_write(FH, const void*, int);
67
68 static const FHClassRec _fh_file_class = {
69 _fh_file_init,
70 _fh_file_close,
71 _fh_file_lseek,
72 _fh_file_read,
73 _fh_file_write,
74 };
75
76 static void _fh_socket_init(FH);
77 static int _fh_socket_close(FH);
78 static int _fh_socket_lseek(FH, int, int);
79 static int _fh_socket_read(FH, void*, int);
80 static int _fh_socket_write(FH, const void*, int);
81
82 static const FHClassRec _fh_socket_class = {
83 _fh_socket_init,
84 _fh_socket_close,
85 _fh_socket_lseek,
86 _fh_socket_read,
87 _fh_socket_write,
88 };
89
90 #define assert(cond) \
91 do { \
92 if (!(cond)) fatal("assertion failed '%s' on %s:%d\n", #cond, __FILE__, __LINE__); \
93 } while (0)
94
operator ()(HANDLE h)95 void handle_deleter::operator()(HANDLE h) {
96 // CreateFile() is documented to return INVALID_HANDLE_FILE on error,
97 // implying that NULL is a valid handle, but this is probably impossible.
98 // Other APIs like CreateEvent() are documented to return NULL on error,
99 // implying that INVALID_HANDLE_VALUE is a valid handle, but this is also
100 // probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE
101 // as invalid handles. std::unique_ptr won't call a deleter with NULL, so we
102 // only need to check for INVALID_HANDLE_VALUE.
103 if (h != INVALID_HANDLE_VALUE) {
104 if (!CloseHandle(h)) {
105 D("CloseHandle(%p) failed: %s", h,
106 android::base::SystemErrorCodeToString(GetLastError()).c_str());
107 }
108 }
109 }
110
111 /**************************************************************************/
112 /**************************************************************************/
113 /***** *****/
114 /***** common file descriptor handling *****/
115 /***** *****/
116 /**************************************************************************/
117 /**************************************************************************/
118
119 typedef struct FHRec_
120 {
121 FHClass clazz;
122 int used;
123 int eof;
124 union {
125 HANDLE handle;
126 SOCKET socket;
127 } u;
128
129 char name[32];
130 } FHRec;
131
132 #define fh_handle u.handle
133 #define fh_socket u.socket
134
135 #define WIN32_FH_BASE 2048
136 #define WIN32_MAX_FHS 2048
137
138 static std::mutex& _win32_lock = *new std::mutex();
139 static FHRec _win32_fhs[ WIN32_MAX_FHS ];
140 static int _win32_fh_next; // where to start search for free FHRec
141
142 static FH
_fh_from_int(int fd,const char * func)143 _fh_from_int( int fd, const char* func )
144 {
145 FH f;
146
147 fd -= WIN32_FH_BASE;
148
149 if (fd < 0 || fd >= WIN32_MAX_FHS) {
150 D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
151 func );
152 errno = EBADF;
153 return NULL;
154 }
155
156 f = &_win32_fhs[fd];
157
158 if (f->used == 0) {
159 D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
160 func );
161 errno = EBADF;
162 return NULL;
163 }
164
165 return f;
166 }
167
168
169 static int
_fh_to_int(FH f)170 _fh_to_int( FH f )
171 {
172 if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
173 return (int)(f - _win32_fhs) + WIN32_FH_BASE;
174
175 return -1;
176 }
177
178 static FH
_fh_alloc(FHClass clazz)179 _fh_alloc( FHClass clazz )
180 {
181 FH f = NULL;
182
183 std::lock_guard<std::mutex> lock(_win32_lock);
184
185 for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) {
186 if (_win32_fhs[i].clazz == NULL) {
187 f = &_win32_fhs[i];
188 _win32_fh_next = i + 1;
189 f->clazz = clazz;
190 f->used = 1;
191 f->eof = 0;
192 f->name[0] = '\0';
193 clazz->_fh_init(f);
194 return f;
195 }
196 }
197
198 D("_fh_alloc: no more free file descriptors");
199 errno = EMFILE; // Too many open files
200 return nullptr;
201 }
202
203
204 static int
_fh_close(FH f)205 _fh_close( FH f )
206 {
207 // Use lock so that closing only happens once and so that _fh_alloc can't
208 // allocate a FH that we're in the middle of closing.
209 std::lock_guard<std::mutex> lock(_win32_lock);
210
211 int offset = f - _win32_fhs;
212 if (_win32_fh_next > offset) {
213 _win32_fh_next = offset;
214 }
215
216 if (f->used) {
217 f->clazz->_fh_close( f );
218 f->name[0] = '\0';
219 f->eof = 0;
220 f->used = 0;
221 f->clazz = NULL;
222 }
223 return 0;
224 }
225
226 // Deleter for unique_fh.
227 class fh_deleter {
228 public:
operator ()(struct FHRec_ * fh)229 void operator()(struct FHRec_* fh) {
230 // We're called from a destructor and destructors should not overwrite
231 // errno because callers may do:
232 // errno = EBLAH;
233 // return -1; // calls destructor, which should not overwrite errno
234 const int saved_errno = errno;
235 _fh_close(fh);
236 errno = saved_errno;
237 }
238 };
239
240 // Like std::unique_ptr, but calls _fh_close() instead of operator delete().
241 typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh;
242
243 /**************************************************************************/
244 /**************************************************************************/
245 /***** *****/
246 /***** file-based descriptor handling *****/
247 /***** *****/
248 /**************************************************************************/
249 /**************************************************************************/
250
_fh_file_init(FH f)251 static void _fh_file_init( FH f ) {
252 f->fh_handle = INVALID_HANDLE_VALUE;
253 }
254
_fh_file_close(FH f)255 static int _fh_file_close( FH f ) {
256 CloseHandle( f->fh_handle );
257 f->fh_handle = INVALID_HANDLE_VALUE;
258 return 0;
259 }
260
_fh_file_read(FH f,void * buf,int len)261 static int _fh_file_read( FH f, void* buf, int len ) {
262 DWORD read_bytes;
263
264 if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) {
265 D( "adb_read: could not read %d bytes from %s", len, f->name );
266 errno = EIO;
267 return -1;
268 } else if (read_bytes < (DWORD)len) {
269 f->eof = 1;
270 }
271 return (int)read_bytes;
272 }
273
_fh_file_write(FH f,const void * buf,int len)274 static int _fh_file_write( FH f, const void* buf, int len ) {
275 DWORD wrote_bytes;
276
277 if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) {
278 D( "adb_file_write: could not write %d bytes from %s", len, f->name );
279 errno = EIO;
280 return -1;
281 } else if (wrote_bytes < (DWORD)len) {
282 f->eof = 1;
283 }
284 return (int)wrote_bytes;
285 }
286
_fh_file_lseek(FH f,int pos,int origin)287 static int _fh_file_lseek( FH f, int pos, int origin ) {
288 DWORD method;
289 DWORD result;
290
291 switch (origin)
292 {
293 case SEEK_SET: method = FILE_BEGIN; break;
294 case SEEK_CUR: method = FILE_CURRENT; break;
295 case SEEK_END: method = FILE_END; break;
296 default:
297 errno = EINVAL;
298 return -1;
299 }
300
301 result = SetFilePointer( f->fh_handle, pos, NULL, method );
302 if (result == INVALID_SET_FILE_POINTER) {
303 errno = EIO;
304 return -1;
305 } else {
306 f->eof = 0;
307 }
308 return (int)result;
309 }
310
311
312 /**************************************************************************/
313 /**************************************************************************/
314 /***** *****/
315 /***** file-based descriptor handling *****/
316 /***** *****/
317 /**************************************************************************/
318 /**************************************************************************/
319
adb_open(const char * path,int options)320 int adb_open(const char* path, int options)
321 {
322 FH f;
323
324 DWORD desiredAccess = 0;
325 DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
326
327 switch (options) {
328 case O_RDONLY:
329 desiredAccess = GENERIC_READ;
330 break;
331 case O_WRONLY:
332 desiredAccess = GENERIC_WRITE;
333 break;
334 case O_RDWR:
335 desiredAccess = GENERIC_READ | GENERIC_WRITE;
336 break;
337 default:
338 D("adb_open: invalid options (0x%0x)", options);
339 errno = EINVAL;
340 return -1;
341 }
342
343 f = _fh_alloc( &_fh_file_class );
344 if ( !f ) {
345 return -1;
346 }
347
348 std::wstring path_wide;
349 if (!android::base::UTF8ToWide(path, &path_wide)) {
350 return -1;
351 }
352 f->fh_handle = CreateFileW( path_wide.c_str(), desiredAccess, shareMode,
353 NULL, OPEN_EXISTING, 0, NULL );
354
355 if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
356 const DWORD err = GetLastError();
357 _fh_close(f);
358 D( "adb_open: could not open '%s': ", path );
359 switch (err) {
360 case ERROR_FILE_NOT_FOUND:
361 D( "file not found" );
362 errno = ENOENT;
363 return -1;
364
365 case ERROR_PATH_NOT_FOUND:
366 D( "path not found" );
367 errno = ENOTDIR;
368 return -1;
369
370 default:
371 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
372 errno = ENOENT;
373 return -1;
374 }
375 }
376
377 snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
378 D( "adb_open: '%s' => fd %d", path, _fh_to_int(f) );
379 return _fh_to_int(f);
380 }
381
382 /* ignore mode on Win32 */
adb_creat(const char * path,int mode)383 int adb_creat(const char* path, int mode)
384 {
385 FH f;
386
387 f = _fh_alloc( &_fh_file_class );
388 if ( !f ) {
389 return -1;
390 }
391
392 std::wstring path_wide;
393 if (!android::base::UTF8ToWide(path, &path_wide)) {
394 return -1;
395 }
396 f->fh_handle = CreateFileW( path_wide.c_str(), GENERIC_WRITE,
397 FILE_SHARE_READ | FILE_SHARE_WRITE,
398 NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
399 NULL );
400
401 if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
402 const DWORD err = GetLastError();
403 _fh_close(f);
404 D( "adb_creat: could not open '%s': ", path );
405 switch (err) {
406 case ERROR_FILE_NOT_FOUND:
407 D( "file not found" );
408 errno = ENOENT;
409 return -1;
410
411 case ERROR_PATH_NOT_FOUND:
412 D( "path not found" );
413 errno = ENOTDIR;
414 return -1;
415
416 default:
417 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
418 errno = ENOENT;
419 return -1;
420 }
421 }
422 snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
423 D( "adb_creat: '%s' => fd %d", path, _fh_to_int(f) );
424 return _fh_to_int(f);
425 }
426
427
adb_read(int fd,void * buf,int len)428 int adb_read(int fd, void* buf, int len)
429 {
430 FH f = _fh_from_int(fd, __func__);
431
432 if (f == NULL) {
433 return -1;
434 }
435
436 return f->clazz->_fh_read( f, buf, len );
437 }
438
439
adb_write(int fd,const void * buf,int len)440 int adb_write(int fd, const void* buf, int len)
441 {
442 FH f = _fh_from_int(fd, __func__);
443
444 if (f == NULL) {
445 return -1;
446 }
447
448 return f->clazz->_fh_write(f, buf, len);
449 }
450
451
adb_lseek(int fd,int pos,int where)452 int adb_lseek(int fd, int pos, int where)
453 {
454 FH f = _fh_from_int(fd, __func__);
455
456 if (!f) {
457 return -1;
458 }
459
460 return f->clazz->_fh_lseek(f, pos, where);
461 }
462
463
adb_close(int fd)464 int adb_close(int fd)
465 {
466 FH f = _fh_from_int(fd, __func__);
467
468 if (!f) {
469 return -1;
470 }
471
472 D( "adb_close: %s", f->name);
473 _fh_close(f);
474 return 0;
475 }
476
477 /**************************************************************************/
478 /**************************************************************************/
479 /***** *****/
480 /***** socket-based file descriptors *****/
481 /***** *****/
482 /**************************************************************************/
483 /**************************************************************************/
484
485 #undef setsockopt
486
_socket_set_errno(const DWORD err)487 static void _socket_set_errno( const DWORD err ) {
488 // Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a
489 // lot of POSIX and socket error codes, some of the resulting error codes
490 // are mapped to strings by adb_strerror().
491 switch ( err ) {
492 case 0: errno = 0; break;
493 // Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use.
494 // case WSAEINTR: errno = EINTR; break;
495 case WSAEFAULT: errno = EFAULT; break;
496 case WSAEINVAL: errno = EINVAL; break;
497 case WSAEMFILE: errno = EMFILE; break;
498 // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because
499 // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and
500 // callers check specifically for EAGAIN.
501 case WSAEWOULDBLOCK: errno = EAGAIN; break;
502 case WSAENOTSOCK: errno = ENOTSOCK; break;
503 case WSAENOPROTOOPT: errno = ENOPROTOOPT; break;
504 case WSAEOPNOTSUPP: errno = EOPNOTSUPP; break;
505 case WSAENETDOWN: errno = ENETDOWN; break;
506 case WSAENETRESET: errno = ENETRESET; break;
507 // Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems
508 // to use EPIPE for these situations and there are some callers that look
509 // for EPIPE.
510 case WSAECONNABORTED: errno = EPIPE; break;
511 case WSAECONNRESET: errno = ECONNRESET; break;
512 case WSAENOBUFS: errno = ENOBUFS; break;
513 case WSAENOTCONN: errno = ENOTCONN; break;
514 // Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or
515 // SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future
516 // considerations: Reportedly send() can return zero on timeout, and POSIX
517 // code may expect EAGAIN instead of ETIMEDOUT on timeout.
518 // case WSAETIMEDOUT: errno = ETIMEDOUT; break;
519 case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break;
520 default:
521 errno = EINVAL;
522 D( "_socket_set_errno: mapping Windows error code %lu to errno %d",
523 err, errno );
524 }
525 }
526
adb_poll(adb_pollfd * fds,size_t nfds,int timeout)527 extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) {
528 // WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves.
529 int skipped = 0;
530 std::vector<WSAPOLLFD> sockets;
531 std::vector<adb_pollfd*> original;
532 for (size_t i = 0; i < nfds; ++i) {
533 FH fh = _fh_from_int(fds[i].fd, __func__);
534 if (!fh || !fh->used || fh->clazz != &_fh_socket_class) {
535 D("adb_poll received bad FD %d", fds[i].fd);
536 fds[i].revents = POLLNVAL;
537 ++skipped;
538 } else {
539 WSAPOLLFD wsapollfd = {
540 .fd = fh->u.socket,
541 .events = static_cast<short>(fds[i].events)
542 };
543 sockets.push_back(wsapollfd);
544 original.push_back(&fds[i]);
545 }
546 }
547
548 if (sockets.empty()) {
549 return skipped;
550 }
551
552 int result = WSAPoll(sockets.data(), sockets.size(), timeout);
553 if (result == SOCKET_ERROR) {
554 _socket_set_errno(WSAGetLastError());
555 return -1;
556 }
557
558 // Map the results back onto the original set.
559 for (size_t i = 0; i < sockets.size(); ++i) {
560 original[i]->revents = sockets[i].revents;
561 }
562
563 // WSAPoll appears to return the number of unique FDs with avaiable events, instead of how many
564 // of the pollfd elements have a non-zero revents field, which is what it and poll are specified
565 // to do. Ignore its result and calculate the proper return value.
566 result = 0;
567 for (size_t i = 0; i < nfds; ++i) {
568 if (fds[i].revents != 0) {
569 ++result;
570 }
571 }
572 return result;
573 }
574
_fh_socket_init(FH f)575 static void _fh_socket_init(FH f) {
576 f->fh_socket = INVALID_SOCKET;
577 }
578
_fh_socket_close(FH f)579 static int _fh_socket_close( FH f ) {
580 if (f->fh_socket != INVALID_SOCKET) {
581 /* gently tell any peer that we're closing the socket */
582 if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
583 // If the socket is not connected, this returns an error. We want to
584 // minimize logging spam, so don't log these errors for now.
585 #if 0
586 D("socket shutdown failed: %s",
587 android::base::SystemErrorCodeToString(WSAGetLastError()).c_str());
588 #endif
589 }
590 if (closesocket(f->fh_socket) == SOCKET_ERROR) {
591 // Don't set errno here, since adb_close will ignore it.
592 const DWORD err = WSAGetLastError();
593 D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str());
594 }
595 f->fh_socket = INVALID_SOCKET;
596 }
597 return 0;
598 }
599
_fh_socket_lseek(FH f,int pos,int origin)600 static int _fh_socket_lseek( FH f, int pos, int origin ) {
601 errno = EPIPE;
602 return -1;
603 }
604
_fh_socket_read(FH f,void * buf,int len)605 static int _fh_socket_read(FH f, void* buf, int len) {
606 int result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
607 if (result == SOCKET_ERROR) {
608 const DWORD err = WSAGetLastError();
609 // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
610 // that to reduce spam and confusion.
611 if (err != WSAEWOULDBLOCK) {
612 D("recv fd %d failed: %s", _fh_to_int(f),
613 android::base::SystemErrorCodeToString(err).c_str());
614 }
615 _socket_set_errno(err);
616 result = -1;
617 }
618 return result;
619 }
620
_fh_socket_write(FH f,const void * buf,int len)621 static int _fh_socket_write(FH f, const void* buf, int len) {
622 int result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
623 if (result == SOCKET_ERROR) {
624 const DWORD err = WSAGetLastError();
625 // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
626 // that to reduce spam and confusion.
627 if (err != WSAEWOULDBLOCK) {
628 D("send fd %d failed: %s", _fh_to_int(f),
629 android::base::SystemErrorCodeToString(err).c_str());
630 }
631 _socket_set_errno(err);
632 result = -1;
633 } else {
634 // According to https://code.google.com/p/chromium/issues/detail?id=27870
635 // Winsock Layered Service Providers may cause this.
636 CHECK_LE(result, len) << "Tried to write " << len << " bytes to "
637 << f->name << ", but " << result
638 << " bytes reportedly written";
639 }
640 return result;
641 }
642
643 /**************************************************************************/
644 /**************************************************************************/
645 /***** *****/
646 /***** replacement for libs/cutils/socket_xxxx.c *****/
647 /***** *****/
648 /**************************************************************************/
649 /**************************************************************************/
650
651 #include <winsock2.h>
652
653 static int _winsock_init;
654
655 static void
_init_winsock(void)656 _init_winsock( void )
657 {
658 // TODO: Multiple threads calling this may potentially cause multiple calls
659 // to WSAStartup() which offers no real benefit.
660 if (!_winsock_init) {
661 WSADATA wsaData;
662 int rc = WSAStartup( MAKEWORD(2,2), &wsaData);
663 if (rc != 0) {
664 fatal("adb: could not initialize Winsock: %s",
665 android::base::SystemErrorCodeToString(rc).c_str());
666 }
667 _winsock_init = 1;
668
669 // Note that we do not call atexit() to register WSACleanup to be called
670 // at normal process termination because:
671 // 1) When exit() is called, there are still threads actively using
672 // Winsock because we don't cleanly shutdown all threads, so it
673 // doesn't make sense to call WSACleanup() and may cause problems
674 // with those threads.
675 // 2) A deadlock can occur when exit() holds a C Runtime lock, then it
676 // calls WSACleanup() which tries to unload a DLL, which tries to
677 // grab the LoaderLock. This conflicts with the device_poll_thread
678 // which holds the LoaderLock because AdbWinApi.dll calls
679 // setupapi.dll which tries to load wintrust.dll which tries to load
680 // crypt32.dll which calls atexit() which tries to acquire the C
681 // Runtime lock that the other thread holds.
682 }
683 }
684
685 // Map a socket type to an explicit socket protocol instead of using the socket
686 // protocol of 0. Explicit socket protocols are used by most apps and we should
687 // do the same to reduce the chance of exercising uncommon code-paths that might
688 // have problems or that might load different Winsock service providers that
689 // have problems.
GetSocketProtocolFromSocketType(int type)690 static int GetSocketProtocolFromSocketType(int type) {
691 switch (type) {
692 case SOCK_STREAM:
693 return IPPROTO_TCP;
694 case SOCK_DGRAM:
695 return IPPROTO_UDP;
696 default:
697 LOG(FATAL) << "Unknown socket type: " << type;
698 return 0;
699 }
700 }
701
network_loopback_client(int port,int type,std::string * error)702 int network_loopback_client(int port, int type, std::string* error) {
703 struct sockaddr_in addr;
704 SOCKET s;
705
706 unique_fh f(_fh_alloc(&_fh_socket_class));
707 if (!f) {
708 *error = strerror(errno);
709 return -1;
710 }
711
712 if (!_winsock_init) _init_winsock();
713
714 memset(&addr, 0, sizeof(addr));
715 addr.sin_family = AF_INET;
716 addr.sin_port = htons(port);
717 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
718
719 s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
720 if (s == INVALID_SOCKET) {
721 const DWORD err = WSAGetLastError();
722 *error = android::base::StringPrintf("cannot create socket: %s",
723 android::base::SystemErrorCodeToString(err).c_str());
724 D("%s", error->c_str());
725 _socket_set_errno(err);
726 return -1;
727 }
728 f->fh_socket = s;
729
730 if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
731 // Save err just in case inet_ntoa() or ntohs() changes the last error.
732 const DWORD err = WSAGetLastError();
733 *error = android::base::StringPrintf("cannot connect to %s:%u: %s",
734 inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
735 android::base::SystemErrorCodeToString(err).c_str());
736 D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
737 error->c_str());
738 _socket_set_errno(err);
739 return -1;
740 }
741
742 const int fd = _fh_to_int(f.get());
743 snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
744 port);
745 D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
746 f.release();
747 return fd;
748 }
749
750 // interface_address is INADDR_LOOPBACK or INADDR_ANY.
_network_server(int port,int type,u_long interface_address,std::string * error)751 static int _network_server(int port, int type, u_long interface_address, std::string* error) {
752 struct sockaddr_in addr;
753 SOCKET s;
754 int n;
755
756 unique_fh f(_fh_alloc(&_fh_socket_class));
757 if (!f) {
758 *error = strerror(errno);
759 return -1;
760 }
761
762 if (!_winsock_init) _init_winsock();
763
764 memset(&addr, 0, sizeof(addr));
765 addr.sin_family = AF_INET;
766 addr.sin_port = htons(port);
767 addr.sin_addr.s_addr = htonl(interface_address);
768
769 // TODO: Consider using dual-stack socket that can simultaneously listen on
770 // IPv4 and IPv6.
771 s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
772 if (s == INVALID_SOCKET) {
773 const DWORD err = WSAGetLastError();
774 *error = android::base::StringPrintf("cannot create socket: %s",
775 android::base::SystemErrorCodeToString(err).c_str());
776 D("%s", error->c_str());
777 _socket_set_errno(err);
778 return -1;
779 }
780
781 f->fh_socket = s;
782
783 // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the
784 // same port, so instead use SO_EXCLUSIVEADDRUSE.
785 n = 1;
786 if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) {
787 const DWORD err = WSAGetLastError();
788 *error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s",
789 android::base::SystemErrorCodeToString(err).c_str());
790 D("%s", error->c_str());
791 _socket_set_errno(err);
792 return -1;
793 }
794
795 if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
796 // Save err just in case inet_ntoa() or ntohs() changes the last error.
797 const DWORD err = WSAGetLastError();
798 *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr),
799 ntohs(addr.sin_port),
800 android::base::SystemErrorCodeToString(err).c_str());
801 D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
802 _socket_set_errno(err);
803 return -1;
804 }
805 if (type == SOCK_STREAM) {
806 if (listen(s, SOMAXCONN) == SOCKET_ERROR) {
807 const DWORD err = WSAGetLastError();
808 *error = android::base::StringPrintf(
809 "cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str());
810 D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
811 error->c_str());
812 _socket_set_errno(err);
813 return -1;
814 }
815 }
816 const int fd = _fh_to_int(f.get());
817 snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd,
818 interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "",
819 port);
820 D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
821 f.release();
822 return fd;
823 }
824
network_loopback_server(int port,int type,std::string * error)825 int network_loopback_server(int port, int type, std::string* error) {
826 return _network_server(port, type, INADDR_LOOPBACK, error);
827 }
828
network_inaddr_any_server(int port,int type,std::string * error)829 int network_inaddr_any_server(int port, int type, std::string* error) {
830 return _network_server(port, type, INADDR_ANY, error);
831 }
832
network_connect(const std::string & host,int port,int type,int timeout,std::string * error)833 int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) {
834 unique_fh f(_fh_alloc(&_fh_socket_class));
835 if (!f) {
836 *error = strerror(errno);
837 return -1;
838 }
839
840 if (!_winsock_init) _init_winsock();
841
842 struct addrinfo hints;
843 memset(&hints, 0, sizeof(hints));
844 hints.ai_family = AF_UNSPEC;
845 hints.ai_socktype = type;
846 hints.ai_protocol = GetSocketProtocolFromSocketType(type);
847
848 char port_str[16];
849 snprintf(port_str, sizeof(port_str), "%d", port);
850
851 struct addrinfo* addrinfo_ptr = nullptr;
852
853 #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03)
854 // TODO: When the Android SDK tools increases the Windows system
855 // requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW().
856 #else
857 // Otherwise, keep using getaddrinfo(), or do runtime API detection
858 // with GetProcAddress("GetAddrInfoW").
859 #endif
860 if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) {
861 const DWORD err = WSAGetLastError();
862 *error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s",
863 host.c_str(), port_str,
864 android::base::SystemErrorCodeToString(err).c_str());
865
866 D("%s", error->c_str());
867 _socket_set_errno(err);
868 return -1;
869 }
870 std::unique_ptr<struct addrinfo, decltype(&freeaddrinfo)> addrinfo(addrinfo_ptr, freeaddrinfo);
871 addrinfo_ptr = nullptr;
872
873 // TODO: Try all the addresses if there's more than one? This just uses
874 // the first. Or, could call WSAConnectByName() (Windows Vista and newer)
875 // which tries all addresses, takes a timeout and more.
876 SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol);
877 if (s == INVALID_SOCKET) {
878 const DWORD err = WSAGetLastError();
879 *error = android::base::StringPrintf("cannot create socket: %s",
880 android::base::SystemErrorCodeToString(err).c_str());
881 D("%s", error->c_str());
882 _socket_set_errno(err);
883 return -1;
884 }
885 f->fh_socket = s;
886
887 // TODO: Implement timeouts for Windows. Seems like the default in theory
888 // (according to http://serverfault.com/a/671453) and in practice is 21 sec.
889 if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) {
890 // TODO: Use WSAAddressToString or inet_ntop on address.
891 const DWORD err = WSAGetLastError();
892 *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str,
893 android::base::SystemErrorCodeToString(err).c_str());
894 D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(),
895 port_str, error->c_str());
896 _socket_set_errno(err);
897 return -1;
898 }
899
900 const int fd = _fh_to_int(f.get());
901 snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
902 port);
903 D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp",
904 fd);
905 f.release();
906 return fd;
907 }
908
adb_register_socket(SOCKET s)909 int adb_register_socket(SOCKET s) {
910 FH f = _fh_alloc( &_fh_socket_class );
911 f->fh_socket = s;
912 return _fh_to_int(f);
913 }
914
915 #undef accept
adb_socket_accept(int serverfd,struct sockaddr * addr,socklen_t * addrlen)916 int adb_socket_accept(int serverfd, struct sockaddr* addr, socklen_t *addrlen)
917 {
918 FH serverfh = _fh_from_int(serverfd, __func__);
919
920 if ( !serverfh || serverfh->clazz != &_fh_socket_class ) {
921 D("adb_socket_accept: invalid fd %d", serverfd);
922 errno = EBADF;
923 return -1;
924 }
925
926 unique_fh fh(_fh_alloc( &_fh_socket_class ));
927 if (!fh) {
928 PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket "
929 "descriptor";
930 return -1;
931 }
932
933 fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen );
934 if (fh->fh_socket == INVALID_SOCKET) {
935 const DWORD err = WSAGetLastError();
936 LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd <<
937 " failed: " + android::base::SystemErrorCodeToString(err);
938 _socket_set_errno( err );
939 return -1;
940 }
941
942 const int fd = _fh_to_int(fh.get());
943 snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name );
944 D( "adb_socket_accept on fd %d returns fd %d", serverfd, fd );
945 fh.release();
946 return fd;
947 }
948
949
adb_setsockopt(int fd,int level,int optname,const void * optval,socklen_t optlen)950 int adb_setsockopt( int fd, int level, int optname, const void* optval, socklen_t optlen )
951 {
952 FH fh = _fh_from_int(fd, __func__);
953
954 if ( !fh || fh->clazz != &_fh_socket_class ) {
955 D("adb_setsockopt: invalid fd %d", fd);
956 errno = EBADF;
957 return -1;
958 }
959
960 // TODO: Once we can assume Windows Vista or later, if the caller is trying
961 // to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has
962 // auto-tuning.
963
964 int result = setsockopt( fh->fh_socket, level, optname,
965 reinterpret_cast<const char*>(optval), optlen );
966 if ( result == SOCKET_ERROR ) {
967 const DWORD err = WSAGetLastError();
968 D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n",
969 fd, level, optname, android::base::SystemErrorCodeToString(err).c_str());
970 _socket_set_errno( err );
971 result = -1;
972 }
973 return result;
974 }
975
adb_getsockname(int fd,struct sockaddr * sockaddr,socklen_t * optlen)976 int adb_getsockname(int fd, struct sockaddr* sockaddr, socklen_t* optlen) {
977 FH fh = _fh_from_int(fd, __func__);
978
979 if (!fh || fh->clazz != &_fh_socket_class) {
980 D("adb_getsockname: invalid fd %d", fd);
981 errno = EBADF;
982 return -1;
983 }
984
985 int result = getsockname(fh->fh_socket, sockaddr, optlen);
986 if (result == SOCKET_ERROR) {
987 const DWORD err = WSAGetLastError();
988 D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd,
989 android::base::SystemErrorCodeToString(err).c_str());
990 _socket_set_errno(err);
991 result = -1;
992 }
993 return result;
994 }
995
adb_socket_get_local_port(int fd)996 int adb_socket_get_local_port(int fd) {
997 sockaddr_storage addr_storage;
998 socklen_t addr_len = sizeof(addr_storage);
999
1000 if (adb_getsockname(fd, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) {
1001 D("adb_socket_get_local_port: adb_getsockname failed: %s", strerror(errno));
1002 return -1;
1003 }
1004
1005 if (!(addr_storage.ss_family == AF_INET || addr_storage.ss_family == AF_INET6)) {
1006 D("adb_socket_get_local_port: unknown address family received: %d", addr_storage.ss_family);
1007 errno = ECONNABORTED;
1008 return -1;
1009 }
1010
1011 return ntohs(reinterpret_cast<sockaddr_in*>(&addr_storage)->sin_port);
1012 }
1013
adb_shutdown(int fd,int direction)1014 int adb_shutdown(int fd, int direction) {
1015 FH f = _fh_from_int(fd, __func__);
1016
1017 if (!f || f->clazz != &_fh_socket_class) {
1018 D("adb_shutdown: invalid fd %d", fd);
1019 errno = EBADF;
1020 return -1;
1021 }
1022
1023 D("adb_shutdown: %s", f->name);
1024 if (shutdown(f->fh_socket, direction) == SOCKET_ERROR) {
1025 const DWORD err = WSAGetLastError();
1026 D("socket shutdown fd %d failed: %s", fd,
1027 android::base::SystemErrorCodeToString(err).c_str());
1028 _socket_set_errno(err);
1029 return -1;
1030 }
1031 return 0;
1032 }
1033
1034 // Emulate socketpair(2) by binding and connecting to a socket.
adb_socketpair(int sv[2])1035 int adb_socketpair(int sv[2]) {
1036 int server = -1;
1037 int client = -1;
1038 int accepted = -1;
1039 int local_port = -1;
1040 std::string error;
1041
1042 server = network_loopback_server(0, SOCK_STREAM, &error);
1043 if (server < 0) {
1044 D("adb_socketpair: failed to create server: %s", error.c_str());
1045 goto fail;
1046 }
1047
1048 local_port = adb_socket_get_local_port(server);
1049 if (local_port < 0) {
1050 D("adb_socketpair: failed to get server port number: %s", error.c_str());
1051 goto fail;
1052 }
1053 D("adb_socketpair: bound on port %d", local_port);
1054
1055 client = network_loopback_client(local_port, SOCK_STREAM, &error);
1056 if (client < 0) {
1057 D("adb_socketpair: failed to connect client: %s", error.c_str());
1058 goto fail;
1059 }
1060
1061 accepted = adb_socket_accept(server, nullptr, nullptr);
1062 if (accepted < 0) {
1063 D("adb_socketpair: failed to accept: %s", strerror(errno));
1064 goto fail;
1065 }
1066 adb_close(server);
1067 sv[0] = client;
1068 sv[1] = accepted;
1069 return 0;
1070
1071 fail:
1072 if (server >= 0) {
1073 adb_close(server);
1074 }
1075 if (client >= 0) {
1076 adb_close(client);
1077 }
1078 if (accepted >= 0) {
1079 adb_close(accepted);
1080 }
1081 return -1;
1082 }
1083
set_file_block_mode(int fd,bool block)1084 bool set_file_block_mode(int fd, bool block) {
1085 FH fh = _fh_from_int(fd, __func__);
1086
1087 if (!fh || !fh->used) {
1088 errno = EBADF;
1089 D("Setting nonblocking on bad file descriptor %d", fd);
1090 return false;
1091 }
1092
1093 if (fh->clazz == &_fh_socket_class) {
1094 u_long x = !block;
1095 if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) {
1096 int error = WSAGetLastError();
1097 _socket_set_errno(error);
1098 D("Setting %d nonblocking failed (%d)", fd, error);
1099 return false;
1100 }
1101 return true;
1102 } else {
1103 errno = ENOTSOCK;
1104 D("Setting nonblocking on non-socket %d", fd);
1105 return false;
1106 }
1107 }
1108
set_tcp_keepalive(int fd,int interval_sec)1109 bool set_tcp_keepalive(int fd, int interval_sec) {
1110 FH fh = _fh_from_int(fd, __func__);
1111
1112 if (!fh || fh->clazz != &_fh_socket_class) {
1113 D("set_tcp_keepalive(%d) failed: invalid fd", fd);
1114 errno = EBADF;
1115 return false;
1116 }
1117
1118 tcp_keepalive keepalive;
1119 keepalive.onoff = (interval_sec > 0);
1120 keepalive.keepalivetime = interval_sec * 1000;
1121 keepalive.keepaliveinterval = interval_sec * 1000;
1122
1123 DWORD bytes_returned = 0;
1124 if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0,
1125 &bytes_returned, nullptr, nullptr) != 0) {
1126 const DWORD err = WSAGetLastError();
1127 D("set_tcp_keepalive(%d) failed: %s", fd,
1128 android::base::SystemErrorCodeToString(err).c_str());
1129 _socket_set_errno(err);
1130 return false;
1131 }
1132
1133 return true;
1134 }
1135
1136 /**************************************************************************/
1137 /**************************************************************************/
1138 /***** *****/
1139 /***** Console Window Terminal Emulation *****/
1140 /***** *****/
1141 /**************************************************************************/
1142 /**************************************************************************/
1143
1144 // This reads input from a Win32 console window and translates it into Unix
1145 // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
1146 // mode, not Application mode), which itself emulates xterm. Gnome Terminal
1147 // is emulated instead of xterm because it is probably more popular than xterm:
1148 // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
1149 // supports modern fonts, etc. It seems best to emulate the terminal that most
1150 // Android developers use because they'll fix apps (the shell, etc.) to keep
1151 // working with that terminal's emulation.
1152 //
1153 // The point of this emulation is not to be perfect or to solve all issues with
1154 // console windows on Windows, but to be better than the original code which
1155 // just called read() (which called ReadFile(), which called ReadConsoleA())
1156 // which did not support Ctrl-C, tab completion, shell input line editing
1157 // keys, server echo, and more.
1158 //
1159 // This implementation reconfigures the console with SetConsoleMode(), then
1160 // calls ReadConsoleInput() to get raw input which it remaps to Unix
1161 // terminal-style sequences which is returned via unix_read() which is used
1162 // by the 'adb shell' command.
1163 //
1164 // Code organization:
1165 //
1166 // * _get_console_handle() and unix_isatty() provide console information.
1167 // * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
1168 // * unix_read() detects console windows (as opposed to pipes, files, etc.).
1169 // * _console_read() is the main code of the emulation.
1170
1171 // Returns a console HANDLE if |fd| is a console, otherwise returns nullptr.
1172 // If a valid HANDLE is returned and |mode| is not null, |mode| is also filled
1173 // with the console mode. Requires GENERIC_READ access to the underlying HANDLE.
_get_console_handle(int fd,DWORD * mode=nullptr)1174 static HANDLE _get_console_handle(int fd, DWORD* mode=nullptr) {
1175 // First check isatty(); this is very fast and eliminates most non-console
1176 // FDs, but returns 1 for both consoles and character devices like NUL.
1177 #pragma push_macro("isatty")
1178 #undef isatty
1179 if (!isatty(fd)) {
1180 return nullptr;
1181 }
1182 #pragma pop_macro("isatty")
1183
1184 // To differentiate between character devices and consoles we need to get
1185 // the underlying HANDLE and use GetConsoleMode(), which is what requires
1186 // GENERIC_READ permissions.
1187 const intptr_t intptr_handle = _get_osfhandle(fd);
1188 if (intptr_handle == -1) {
1189 return nullptr;
1190 }
1191 const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
1192 DWORD temp_mode = 0;
1193 if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) {
1194 return nullptr;
1195 }
1196
1197 return handle;
1198 }
1199
1200 // Returns a console handle if |stream| is a console, otherwise returns nullptr.
_get_console_handle(FILE * const stream)1201 static HANDLE _get_console_handle(FILE* const stream) {
1202 // Save and restore errno to make it easier for callers to prevent from overwriting errno.
1203 android::base::ErrnoRestorer er;
1204 const int fd = fileno(stream);
1205 if (fd < 0) {
1206 return nullptr;
1207 }
1208 return _get_console_handle(fd);
1209 }
1210
unix_isatty(int fd)1211 int unix_isatty(int fd) {
1212 return _get_console_handle(fd) ? 1 : 0;
1213 }
1214
1215 // Get the next KEY_EVENT_RECORD that should be processed.
_get_key_event_record(const HANDLE console,INPUT_RECORD * const input_record)1216 static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) {
1217 for (;;) {
1218 DWORD read_count = 0;
1219 memset(input_record, 0, sizeof(*input_record));
1220 if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
1221 D("_get_key_event_record: ReadConsoleInputA() failed: %s\n",
1222 android::base::SystemErrorCodeToString(GetLastError()).c_str());
1223 errno = EIO;
1224 return false;
1225 }
1226
1227 if (read_count == 0) { // should be impossible
1228 fatal("ReadConsoleInputA returned 0");
1229 }
1230
1231 if (read_count != 1) { // should be impossible
1232 fatal("ReadConsoleInputA did not return one input record");
1233 }
1234
1235 // If the console window is resized, emulate SIGWINCH by breaking out
1236 // of read() with errno == EINTR. Note that there is no event on
1237 // vertical resize because we don't give the console our own custom
1238 // screen buffer (with CreateConsoleScreenBuffer() +
1239 // SetConsoleActiveScreenBuffer()). Instead, we use the default which
1240 // supports scrollback, but doesn't seem to raise an event for vertical
1241 // window resize.
1242 if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) {
1243 errno = EINTR;
1244 return false;
1245 }
1246
1247 if ((input_record->EventType == KEY_EVENT) &&
1248 (input_record->Event.KeyEvent.bKeyDown)) {
1249 if (input_record->Event.KeyEvent.wRepeatCount == 0) {
1250 fatal("ReadConsoleInputA returned a key event with zero repeat"
1251 " count");
1252 }
1253
1254 // Got an interesting INPUT_RECORD, so return
1255 return true;
1256 }
1257 }
1258 }
1259
_is_shift_pressed(const DWORD control_key_state)1260 static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
1261 return (control_key_state & SHIFT_PRESSED) != 0;
1262 }
1263
_is_ctrl_pressed(const DWORD control_key_state)1264 static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
1265 return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
1266 }
1267
_is_alt_pressed(const DWORD control_key_state)1268 static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
1269 return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
1270 }
1271
_is_numlock_on(const DWORD control_key_state)1272 static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
1273 return (control_key_state & NUMLOCK_ON) != 0;
1274 }
1275
_is_capslock_on(const DWORD control_key_state)1276 static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
1277 return (control_key_state & CAPSLOCK_ON) != 0;
1278 }
1279
_is_enhanced_key(const DWORD control_key_state)1280 static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
1281 return (control_key_state & ENHANCED_KEY) != 0;
1282 }
1283
1284 // Constants from MSDN for ToAscii().
1285 static const BYTE TOASCII_KEY_OFF = 0x00;
1286 static const BYTE TOASCII_KEY_DOWN = 0x80;
1287 static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock
1288
1289 // Given a key event, ignore a modifier key and return the character that was
1290 // entered without the modifier. Writes to *ch and returns the number of bytes
1291 // written.
_get_char_ignoring_modifier(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state,const WORD modifier)1292 static size_t _get_char_ignoring_modifier(char* const ch,
1293 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
1294 const WORD modifier) {
1295 // If there is no character from Windows, try ignoring the specified
1296 // modifier and look for a character. Note that if AltGr is being used,
1297 // there will be a character from Windows.
1298 if (key_event->uChar.AsciiChar == '\0') {
1299 // Note that we read the control key state from the passed in argument
1300 // instead of from key_event since the argument has been normalized.
1301 if (((modifier == VK_SHIFT) &&
1302 _is_shift_pressed(control_key_state)) ||
1303 ((modifier == VK_CONTROL) &&
1304 _is_ctrl_pressed(control_key_state)) ||
1305 ((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) {
1306
1307 BYTE key_state[256] = {0};
1308 key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ?
1309 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1310 key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ?
1311 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1312 key_state[VK_MENU] = _is_alt_pressed(control_key_state) ?
1313 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1314 key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ?
1315 TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
1316
1317 // cause this modifier to be ignored
1318 key_state[modifier] = TOASCII_KEY_OFF;
1319
1320 WORD translated = 0;
1321 if (ToAscii(key_event->wVirtualKeyCode,
1322 key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
1323 // Ignoring the modifier, we found a character.
1324 *ch = (CHAR)translated;
1325 return 1;
1326 }
1327 }
1328 }
1329
1330 // Just use whatever Windows told us originally.
1331 *ch = key_event->uChar.AsciiChar;
1332
1333 // If the character from Windows is NULL, return a size of zero.
1334 return (*ch == '\0') ? 0 : 1;
1335 }
1336
1337 // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
1338 // but taking into account the shift key. This is because for a sequence like
1339 // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
1340 // we want to find the character ')'.
1341 //
1342 // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
1343 // because it is the default key-sequence to switch the input language.
1344 // This is configurable in the Region and Language control panel.
_get_non_control_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1345 static __inline__ size_t _get_non_control_char(char* const ch,
1346 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1347 return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1348 VK_CONTROL);
1349 }
1350
1351 // Get without Alt.
_get_non_alt_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1352 static __inline__ size_t _get_non_alt_char(char* const ch,
1353 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1354 return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1355 VK_MENU);
1356 }
1357
1358 // Ignore the control key, find the character from Windows, and apply any
1359 // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
1360 // *pch and returns number of bytes written.
_get_control_character(char * const pch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1361 static size_t _get_control_character(char* const pch,
1362 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1363 const size_t len = _get_non_control_char(pch, key_event,
1364 control_key_state);
1365
1366 if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
1367 char ch = *pch;
1368 switch (ch) {
1369 case '2':
1370 case '@':
1371 case '`':
1372 ch = '\0';
1373 break;
1374 case '3':
1375 case '[':
1376 case '{':
1377 ch = '\x1b';
1378 break;
1379 case '4':
1380 case '\\':
1381 case '|':
1382 ch = '\x1c';
1383 break;
1384 case '5':
1385 case ']':
1386 case '}':
1387 ch = '\x1d';
1388 break;
1389 case '6':
1390 case '^':
1391 case '~':
1392 ch = '\x1e';
1393 break;
1394 case '7':
1395 case '-':
1396 case '_':
1397 ch = '\x1f';
1398 break;
1399 case '8':
1400 ch = '\x7f';
1401 break;
1402 case '/':
1403 if (!_is_alt_pressed(control_key_state)) {
1404 ch = '\x1f';
1405 }
1406 break;
1407 case '?':
1408 if (!_is_alt_pressed(control_key_state)) {
1409 ch = '\x7f';
1410 }
1411 break;
1412 }
1413 *pch = ch;
1414 }
1415
1416 return len;
1417 }
1418
_normalize_altgr_control_key_state(const KEY_EVENT_RECORD * const key_event)1419 static DWORD _normalize_altgr_control_key_state(
1420 const KEY_EVENT_RECORD* const key_event) {
1421 DWORD control_key_state = key_event->dwControlKeyState;
1422
1423 // If we're in an AltGr situation where the AltGr key is down (depending on
1424 // the keyboard layout, that might be the physical right alt key which
1425 // produces a control_key_state where Right-Alt and Left-Ctrl are down) or
1426 // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
1427 // a character (which indicates that there was an AltGr mapping), then act
1428 // as if alt and control are not really down for the purposes of modifiers.
1429 // This makes it so that if the user with, say, a German keyboard layout
1430 // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
1431 // output the key and we don't see the Alt and Ctrl keys.
1432 if (_is_ctrl_pressed(control_key_state) &&
1433 _is_alt_pressed(control_key_state)
1434 && (key_event->uChar.AsciiChar != '\0')) {
1435 // Try to remove as few bits as possible to improve our chances of
1436 // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
1437 // Left-Alt + Right-Ctrl + AltGr.
1438 if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
1439 // Remove Right-Alt.
1440 control_key_state &= ~RIGHT_ALT_PRESSED;
1441 // If uChar is set, a Ctrl key is pressed, and Right-Alt is
1442 // pressed, Left-Ctrl is almost always set, except if the user
1443 // presses Right-Ctrl, then AltGr (in that specific order) for
1444 // whatever reason. At any rate, make sure the bit is not set.
1445 control_key_state &= ~LEFT_CTRL_PRESSED;
1446 } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
1447 // Remove Left-Alt.
1448 control_key_state &= ~LEFT_ALT_PRESSED;
1449 // Whichever Ctrl key is down, remove it from the state. We only
1450 // remove one key, to improve our chances of detecting the
1451 // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
1452 if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
1453 // Remove Left-Ctrl.
1454 control_key_state &= ~LEFT_CTRL_PRESSED;
1455 } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
1456 // Remove Right-Ctrl.
1457 control_key_state &= ~RIGHT_CTRL_PRESSED;
1458 }
1459 }
1460
1461 // Note that this logic isn't 100% perfect because Windows doesn't
1462 // allow us to detect all combinations because a physical AltGr key
1463 // press shows up as two bits, plus some combinations are ambiguous
1464 // about what is actually physically pressed.
1465 }
1466
1467 return control_key_state;
1468 }
1469
1470 // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
1471 // dwControlKeyState for the following keypad keys: period, 0-9. If we detect
1472 // this scenario, set the SHIFT_PRESSED bit so we can add modifiers
1473 // appropriately.
_normalize_keypad_control_key_state(const WORD vk,const DWORD control_key_state)1474 static DWORD _normalize_keypad_control_key_state(const WORD vk,
1475 const DWORD control_key_state) {
1476 if (!_is_numlock_on(control_key_state)) {
1477 return control_key_state;
1478 }
1479 if (!_is_enhanced_key(control_key_state)) {
1480 switch (vk) {
1481 case VK_INSERT: // 0
1482 case VK_DELETE: // .
1483 case VK_END: // 1
1484 case VK_DOWN: // 2
1485 case VK_NEXT: // 3
1486 case VK_LEFT: // 4
1487 case VK_CLEAR: // 5
1488 case VK_RIGHT: // 6
1489 case VK_HOME: // 7
1490 case VK_UP: // 8
1491 case VK_PRIOR: // 9
1492 return control_key_state | SHIFT_PRESSED;
1493 }
1494 }
1495
1496 return control_key_state;
1497 }
1498
_get_keypad_sequence(const DWORD control_key_state,const char * const normal,const char * const shifted)1499 static const char* _get_keypad_sequence(const DWORD control_key_state,
1500 const char* const normal, const char* const shifted) {
1501 if (_is_shift_pressed(control_key_state)) {
1502 // Shift is pressed and NumLock is off
1503 return shifted;
1504 } else {
1505 // Shift is not pressed and NumLock is off, or,
1506 // Shift is pressed and NumLock is on, in which case we want the
1507 // NumLock and Shift to neutralize each other, thus, we want the normal
1508 // sequence.
1509 return normal;
1510 }
1511 // If Shift is not pressed and NumLock is on, a different virtual key code
1512 // is returned by Windows, which can be taken care of by a different case
1513 // statement in _console_read().
1514 }
1515
1516 // Write sequence to buf and return the number of bytes written.
_get_modifier_sequence(char * const buf,const WORD vk,DWORD control_key_state,const char * const normal)1517 static size_t _get_modifier_sequence(char* const buf, const WORD vk,
1518 DWORD control_key_state, const char* const normal) {
1519 // Copy the base sequence into buf.
1520 const size_t len = strlen(normal);
1521 memcpy(buf, normal, len);
1522
1523 int code = 0;
1524
1525 control_key_state = _normalize_keypad_control_key_state(vk,
1526 control_key_state);
1527
1528 if (_is_shift_pressed(control_key_state)) {
1529 code |= 0x1;
1530 }
1531 if (_is_alt_pressed(control_key_state)) { // any alt key pressed
1532 code |= 0x2;
1533 }
1534 if (_is_ctrl_pressed(control_key_state)) { // any control key pressed
1535 code |= 0x4;
1536 }
1537 // If some modifier was held down, then we need to insert the modifier code
1538 if (code != 0) {
1539 if (len == 0) {
1540 // Should be impossible because caller should pass a string of
1541 // non-zero length.
1542 return 0;
1543 }
1544 size_t index = len - 1;
1545 const char lastChar = buf[index];
1546 if (lastChar != '~') {
1547 buf[index++] = '1';
1548 }
1549 buf[index++] = ';'; // modifier separator
1550 // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
1551 // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
1552 buf[index++] = '1' + code;
1553 buf[index++] = lastChar; // move ~ (or other last char) to the end
1554 return index;
1555 }
1556 return len;
1557 }
1558
1559 // Write sequence to buf and return the number of bytes written.
_get_modifier_keypad_sequence(char * const buf,const WORD vk,const DWORD control_key_state,const char * const normal,const char shifted)1560 static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
1561 const DWORD control_key_state, const char* const normal,
1562 const char shifted) {
1563 if (_is_shift_pressed(control_key_state)) {
1564 // Shift is pressed and NumLock is off
1565 if (shifted != '\0') {
1566 buf[0] = shifted;
1567 return sizeof(buf[0]);
1568 } else {
1569 return 0;
1570 }
1571 } else {
1572 // Shift is not pressed and NumLock is off, or,
1573 // Shift is pressed and NumLock is on, in which case we want the
1574 // NumLock and Shift to neutralize each other, thus, we want the normal
1575 // sequence.
1576 return _get_modifier_sequence(buf, vk, control_key_state, normal);
1577 }
1578 // If Shift is not pressed and NumLock is on, a different virtual key code
1579 // is returned by Windows, which can be taken care of by a different case
1580 // statement in _console_read().
1581 }
1582
1583 // The decimal key on the keypad produces a '.' for U.S. English and a ',' for
1584 // Standard German. Figure this out at runtime so we know what to output for
1585 // Shift-VK_DELETE.
_get_decimal_char()1586 static char _get_decimal_char() {
1587 return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
1588 }
1589
1590 // Prefix the len bytes in buf with the escape character, and then return the
1591 // new buffer length.
_escape_prefix(char * const buf,const size_t len)1592 size_t _escape_prefix(char* const buf, const size_t len) {
1593 // If nothing to prefix, don't do anything. We might be called with
1594 // len == 0, if alt was held down with a dead key which produced nothing.
1595 if (len == 0) {
1596 return 0;
1597 }
1598
1599 memmove(&buf[1], buf, len);
1600 buf[0] = '\x1b';
1601 return len + 1;
1602 }
1603
1604 // Internal buffer to satisfy future _console_read() calls.
1605 static auto& g_console_input_buffer = *new std::vector<char>();
1606
1607 // Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never
1608 // returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell).
_console_read(const HANDLE console,void * buf,size_t len)1609 static int _console_read(const HANDLE console, void* buf, size_t len) {
1610 for (;;) {
1611 // Read of zero bytes should not block waiting for something from the console.
1612 if (len == 0) {
1613 return 0;
1614 }
1615
1616 // Flush as much as possible from input buffer.
1617 if (!g_console_input_buffer.empty()) {
1618 const int bytes_read = std::min(len, g_console_input_buffer.size());
1619 memcpy(buf, g_console_input_buffer.data(), bytes_read);
1620 const auto begin = g_console_input_buffer.begin();
1621 g_console_input_buffer.erase(begin, begin + bytes_read);
1622 return bytes_read;
1623 }
1624
1625 // Read from the actual console. This may block until input.
1626 INPUT_RECORD input_record;
1627 if (!_get_key_event_record(console, &input_record)) {
1628 return -1;
1629 }
1630
1631 KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent;
1632 const WORD vk = key_event->wVirtualKeyCode;
1633 const CHAR ch = key_event->uChar.AsciiChar;
1634 const DWORD control_key_state = _normalize_altgr_control_key_state(
1635 key_event);
1636
1637 // The following emulation code should write the output sequence to
1638 // either seqstr or to seqbuf and seqbuflen.
1639 const char* seqstr = NULL; // NULL terminated C-string
1640 // Enough space for max sequence string below, plus modifiers and/or
1641 // escape prefix.
1642 char seqbuf[16];
1643 size_t seqbuflen = 0; // Space used in seqbuf.
1644
1645 #define MATCH(vk, normal) \
1646 case (vk): \
1647 { \
1648 seqstr = (normal); \
1649 } \
1650 break;
1651
1652 // Modifier keys should affect the output sequence.
1653 #define MATCH_MODIFIER(vk, normal) \
1654 case (vk): \
1655 { \
1656 seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
1657 control_key_state, (normal)); \
1658 } \
1659 break;
1660
1661 // The shift key should affect the output sequence.
1662 #define MATCH_KEYPAD(vk, normal, shifted) \
1663 case (vk): \
1664 { \
1665 seqstr = _get_keypad_sequence(control_key_state, (normal), \
1666 (shifted)); \
1667 } \
1668 break;
1669
1670 // The shift key and other modifier keys should affect the output
1671 // sequence.
1672 #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
1673 case (vk): \
1674 { \
1675 seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
1676 control_key_state, (normal), (shifted)); \
1677 } \
1678 break;
1679
1680 #define ESC "\x1b"
1681 #define CSI ESC "["
1682 #define SS3 ESC "O"
1683
1684 // Only support normal mode, not application mode.
1685
1686 // Enhanced keys:
1687 // * 6-pack: insert, delete, home, end, page up, page down
1688 // * cursor keys: up, down, right, left
1689 // * keypad: divide, enter
1690 // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
1691 // VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
1692 if (_is_enhanced_key(control_key_state)) {
1693 switch (vk) {
1694 case VK_RETURN: // Enter key on keypad
1695 if (_is_ctrl_pressed(control_key_state)) {
1696 seqstr = "\n";
1697 } else {
1698 seqstr = "\r";
1699 }
1700 break;
1701
1702 MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
1703 MATCH_MODIFIER(VK_NEXT, CSI "6~"); // Page Down
1704
1705 // gnome-terminal currently sends SS3 "F" and SS3 "H", but that
1706 // will be fixed soon to match xterm which sends CSI "F" and
1707 // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
1708 MATCH(VK_END, CSI "F");
1709 MATCH(VK_HOME, CSI "H");
1710
1711 MATCH_MODIFIER(VK_LEFT, CSI "D");
1712 MATCH_MODIFIER(VK_UP, CSI "A");
1713 MATCH_MODIFIER(VK_RIGHT, CSI "C");
1714 MATCH_MODIFIER(VK_DOWN, CSI "B");
1715
1716 MATCH_MODIFIER(VK_INSERT, CSI "2~");
1717 MATCH_MODIFIER(VK_DELETE, CSI "3~");
1718
1719 MATCH(VK_DIVIDE, "/");
1720 }
1721 } else { // Non-enhanced keys:
1722 switch (vk) {
1723 case VK_BACK: // backspace
1724 if (_is_alt_pressed(control_key_state)) {
1725 seqstr = ESC "\x7f";
1726 } else {
1727 seqstr = "\x7f";
1728 }
1729 break;
1730
1731 case VK_TAB:
1732 if (_is_shift_pressed(control_key_state)) {
1733 seqstr = CSI "Z";
1734 } else {
1735 seqstr = "\t";
1736 }
1737 break;
1738
1739 // Number 5 key in keypad when NumLock is off, or if NumLock is
1740 // on and Shift is down.
1741 MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
1742
1743 case VK_RETURN: // Enter key on main keyboard
1744 if (_is_alt_pressed(control_key_state)) {
1745 seqstr = ESC "\n";
1746 } else if (_is_ctrl_pressed(control_key_state)) {
1747 seqstr = "\n";
1748 } else {
1749 seqstr = "\r";
1750 }
1751 break;
1752
1753 // VK_ESCAPE: Don't do any special handling. The OS uses many
1754 // of the sequences with Escape and many of the remaining
1755 // sequences don't produce bKeyDown messages, only !bKeyDown
1756 // for whatever reason.
1757
1758 case VK_SPACE:
1759 if (_is_alt_pressed(control_key_state)) {
1760 seqstr = ESC " ";
1761 } else if (_is_ctrl_pressed(control_key_state)) {
1762 seqbuf[0] = '\0'; // NULL char
1763 seqbuflen = 1;
1764 } else {
1765 seqstr = " ";
1766 }
1767 break;
1768
1769 MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
1770 MATCH_MODIFIER_KEYPAD(VK_NEXT, CSI "6~", '3'); // Page Down
1771
1772 MATCH_KEYPAD(VK_END, CSI "4~", "1");
1773 MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
1774
1775 MATCH_MODIFIER_KEYPAD(VK_LEFT, CSI "D", '4');
1776 MATCH_MODIFIER_KEYPAD(VK_UP, CSI "A", '8');
1777 MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
1778 MATCH_MODIFIER_KEYPAD(VK_DOWN, CSI "B", '2');
1779
1780 MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
1781 MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
1782 _get_decimal_char());
1783
1784 case 0x30: // 0
1785 case 0x31: // 1
1786 case 0x39: // 9
1787 case VK_OEM_1: // ;:
1788 case VK_OEM_PLUS: // =+
1789 case VK_OEM_COMMA: // ,<
1790 case VK_OEM_PERIOD: // .>
1791 case VK_OEM_7: // '"
1792 case VK_OEM_102: // depends on keyboard, could be <> or \|
1793 case VK_OEM_2: // /?
1794 case VK_OEM_3: // `~
1795 case VK_OEM_4: // [{
1796 case VK_OEM_5: // \|
1797 case VK_OEM_6: // ]}
1798 {
1799 seqbuflen = _get_control_character(seqbuf, key_event,
1800 control_key_state);
1801
1802 if (_is_alt_pressed(control_key_state)) {
1803 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1804 }
1805 }
1806 break;
1807
1808 case 0x32: // 2
1809 case 0x33: // 3
1810 case 0x34: // 4
1811 case 0x35: // 5
1812 case 0x36: // 6
1813 case 0x37: // 7
1814 case 0x38: // 8
1815 case VK_OEM_MINUS: // -_
1816 {
1817 seqbuflen = _get_control_character(seqbuf, key_event,
1818 control_key_state);
1819
1820 // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
1821 // prefix with escape.
1822 if (_is_alt_pressed(control_key_state) &&
1823 !(_is_ctrl_pressed(control_key_state) &&
1824 !_is_shift_pressed(control_key_state))) {
1825 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1826 }
1827 }
1828 break;
1829
1830 case 0x41: // a
1831 case 0x42: // b
1832 case 0x43: // c
1833 case 0x44: // d
1834 case 0x45: // e
1835 case 0x46: // f
1836 case 0x47: // g
1837 case 0x48: // h
1838 case 0x49: // i
1839 case 0x4a: // j
1840 case 0x4b: // k
1841 case 0x4c: // l
1842 case 0x4d: // m
1843 case 0x4e: // n
1844 case 0x4f: // o
1845 case 0x50: // p
1846 case 0x51: // q
1847 case 0x52: // r
1848 case 0x53: // s
1849 case 0x54: // t
1850 case 0x55: // u
1851 case 0x56: // v
1852 case 0x57: // w
1853 case 0x58: // x
1854 case 0x59: // y
1855 case 0x5a: // z
1856 {
1857 seqbuflen = _get_non_alt_char(seqbuf, key_event,
1858 control_key_state);
1859
1860 // If Alt is pressed, then prefix with escape.
1861 if (_is_alt_pressed(control_key_state)) {
1862 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1863 }
1864 }
1865 break;
1866
1867 // These virtual key codes are generated by the keys on the
1868 // keypad *when NumLock is on* and *Shift is up*.
1869 MATCH(VK_NUMPAD0, "0");
1870 MATCH(VK_NUMPAD1, "1");
1871 MATCH(VK_NUMPAD2, "2");
1872 MATCH(VK_NUMPAD3, "3");
1873 MATCH(VK_NUMPAD4, "4");
1874 MATCH(VK_NUMPAD5, "5");
1875 MATCH(VK_NUMPAD6, "6");
1876 MATCH(VK_NUMPAD7, "7");
1877 MATCH(VK_NUMPAD8, "8");
1878 MATCH(VK_NUMPAD9, "9");
1879
1880 MATCH(VK_MULTIPLY, "*");
1881 MATCH(VK_ADD, "+");
1882 MATCH(VK_SUBTRACT, "-");
1883 // VK_DECIMAL is generated by the . key on the keypad *when
1884 // NumLock is on* and *Shift is up* and the sequence is not
1885 // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
1886 // Windows Security screen to come up).
1887 case VK_DECIMAL:
1888 // U.S. English uses '.', Germany German uses ','.
1889 seqbuflen = _get_non_control_char(seqbuf, key_event,
1890 control_key_state);
1891 break;
1892
1893 MATCH_MODIFIER(VK_F1, SS3 "P");
1894 MATCH_MODIFIER(VK_F2, SS3 "Q");
1895 MATCH_MODIFIER(VK_F3, SS3 "R");
1896 MATCH_MODIFIER(VK_F4, SS3 "S");
1897 MATCH_MODIFIER(VK_F5, CSI "15~");
1898 MATCH_MODIFIER(VK_F6, CSI "17~");
1899 MATCH_MODIFIER(VK_F7, CSI "18~");
1900 MATCH_MODIFIER(VK_F8, CSI "19~");
1901 MATCH_MODIFIER(VK_F9, CSI "20~");
1902 MATCH_MODIFIER(VK_F10, CSI "21~");
1903 MATCH_MODIFIER(VK_F11, CSI "23~");
1904 MATCH_MODIFIER(VK_F12, CSI "24~");
1905
1906 MATCH_MODIFIER(VK_F13, CSI "25~");
1907 MATCH_MODIFIER(VK_F14, CSI "26~");
1908 MATCH_MODIFIER(VK_F15, CSI "28~");
1909 MATCH_MODIFIER(VK_F16, CSI "29~");
1910 MATCH_MODIFIER(VK_F17, CSI "31~");
1911 MATCH_MODIFIER(VK_F18, CSI "32~");
1912 MATCH_MODIFIER(VK_F19, CSI "33~");
1913 MATCH_MODIFIER(VK_F20, CSI "34~");
1914
1915 // MATCH_MODIFIER(VK_F21, ???);
1916 // MATCH_MODIFIER(VK_F22, ???);
1917 // MATCH_MODIFIER(VK_F23, ???);
1918 // MATCH_MODIFIER(VK_F24, ???);
1919 }
1920 }
1921
1922 #undef MATCH
1923 #undef MATCH_MODIFIER
1924 #undef MATCH_KEYPAD
1925 #undef MATCH_MODIFIER_KEYPAD
1926 #undef ESC
1927 #undef CSI
1928 #undef SS3
1929
1930 const char* out;
1931 size_t outlen;
1932
1933 // Check for output in any of:
1934 // * seqstr is set (and strlen can be used to determine the length).
1935 // * seqbuf and seqbuflen are set
1936 // Fallback to ch from Windows.
1937 if (seqstr != NULL) {
1938 out = seqstr;
1939 outlen = strlen(seqstr);
1940 } else if (seqbuflen > 0) {
1941 out = seqbuf;
1942 outlen = seqbuflen;
1943 } else if (ch != '\0') {
1944 // Use whatever Windows told us it is.
1945 seqbuf[0] = ch;
1946 seqbuflen = 1;
1947 out = seqbuf;
1948 outlen = seqbuflen;
1949 } else {
1950 // No special handling for the virtual key code and Windows isn't
1951 // telling us a character code, then we don't know how to translate
1952 // the key press.
1953 //
1954 // Consume the input and 'continue' to cause us to get a new key
1955 // event.
1956 D("_console_read: unknown virtual key code: %d, enhanced: %s",
1957 vk, _is_enhanced_key(control_key_state) ? "true" : "false");
1958 continue;
1959 }
1960
1961 // put output wRepeatCount times into g_console_input_buffer
1962 while (key_event->wRepeatCount-- > 0) {
1963 g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen);
1964 }
1965
1966 // Loop around and try to flush g_console_input_buffer
1967 }
1968 }
1969
1970 static DWORD _old_console_mode; // previous GetConsoleMode() result
1971 static HANDLE _console_handle; // when set, console mode should be restored
1972
stdin_raw_init()1973 void stdin_raw_init() {
1974 const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode);
1975 if (in == nullptr) {
1976 return;
1977 }
1978
1979 // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
1980 // calling the process Ctrl-C routine (configured by
1981 // SetConsoleCtrlHandler()).
1982 // Disable ENABLE_LINE_INPUT so that input is immediately sent.
1983 // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
1984 // flag also seems necessary to have proper line-ending processing.
1985 DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
1986 ENABLE_LINE_INPUT |
1987 ENABLE_ECHO_INPUT);
1988 // Enable ENABLE_WINDOW_INPUT to get window resizes.
1989 new_console_mode |= ENABLE_WINDOW_INPUT;
1990
1991 if (!SetConsoleMode(in, new_console_mode)) {
1992 // This really should not fail.
1993 D("stdin_raw_init: SetConsoleMode() failed: %s",
1994 android::base::SystemErrorCodeToString(GetLastError()).c_str());
1995 }
1996
1997 // Once this is set, it means that stdin has been configured for
1998 // reading from and that the old console mode should be restored later.
1999 _console_handle = in;
2000
2001 // Note that we don't need to configure C Runtime line-ending
2002 // translation because _console_read() does not call the C Runtime to
2003 // read from the console.
2004 }
2005
stdin_raw_restore()2006 void stdin_raw_restore() {
2007 if (_console_handle != NULL) {
2008 const HANDLE in = _console_handle;
2009 _console_handle = NULL; // clear state
2010
2011 if (!SetConsoleMode(in, _old_console_mode)) {
2012 // This really should not fail.
2013 D("stdin_raw_restore: SetConsoleMode() failed: %s",
2014 android::base::SystemErrorCodeToString(GetLastError()).c_str());
2015 }
2016 }
2017 }
2018
2019 // Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin.
unix_read_interruptible(int fd,void * buf,size_t len)2020 int unix_read_interruptible(int fd, void* buf, size_t len) {
2021 if ((fd == STDIN_FILENO) && (_console_handle != NULL)) {
2022 // If it is a request to read from stdin, and stdin_raw_init() has been
2023 // called, and it successfully configured the console, then read from
2024 // the console using Win32 console APIs and partially emulate a unix
2025 // terminal.
2026 return _console_read(_console_handle, buf, len);
2027 } else {
2028 // On older versions of Windows (definitely 7, definitely not 10),
2029 // ReadConsole() with a size >= 31367 fails, so if |fd| is a console
2030 // we need to limit the read size.
2031 if (len > 4096 && unix_isatty(fd)) {
2032 len = 4096;
2033 }
2034 // Just call into C Runtime which can read from pipes/files and which
2035 // can do LF/CR translation (which is overridable with _setmode()).
2036 // Undefine the macro that is set in sysdeps.h which bans calls to
2037 // plain read() in favor of unix_read() or adb_read().
2038 #pragma push_macro("read")
2039 #undef read
2040 return read(fd, buf, len);
2041 #pragma pop_macro("read")
2042 }
2043 }
2044
2045 /**************************************************************************/
2046 /**************************************************************************/
2047 /***** *****/
2048 /***** Unicode support *****/
2049 /***** *****/
2050 /**************************************************************************/
2051 /**************************************************************************/
2052
2053 // This implements support for using files with Unicode filenames and for
2054 // outputting Unicode text to a Win32 console window. This is inspired from
2055 // http://utf8everywhere.org/.
2056 //
2057 // Background
2058 // ----------
2059 //
2060 // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8
2061 // filenames to APIs such as open(). This works because filenames are largely
2062 // opaque 'cookies' (perhaps excluding path separators).
2063 //
2064 // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t
2065 // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char
2066 // strings, but the strings are in the ANSI codepage and not UTF-8. (The
2067 // CreateFile() API is really just a macro that adds the W/A based on whether
2068 // the UNICODE preprocessor symbol is defined).
2069 //
2070 // Options
2071 // -------
2072 //
2073 // Thus, to write a portable program, there are a few options:
2074 //
2075 // 1. Write the program with wchar_t filenames (wchar_t path[256];).
2076 // For Windows, just call CreateFileW(). For POSIX, write a wrapper openW()
2077 // that takes a wchar_t string, converts it to UTF-8 and then calls the real
2078 // open() API.
2079 //
2080 // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and
2081 // 1 byte on POSIX. Make T-* wrappers for various OS APIs and call those,
2082 // potentially touching a lot of code.
2083 //
2084 // 3. Write the program with a 1-byte char filenames (char path[256];) that are
2085 // UTF-8. For POSIX, just call open(). For Windows, write a wrapper that
2086 // takes a UTF-8 string, converts it to UTF-16 and then calls the real OS
2087 // or C Runtime API.
2088 //
2089 // The Choice
2090 // ----------
2091 //
2092 // The code below chooses option 3, the UTF-8 everywhere strategy. It uses
2093 // android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the
2094 // NarrowArgs helper class that is used to convert wmain() args into UTF-8
2095 // args that are passed to main() at the beginning of program startup. We also use
2096 // android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to
2097 // implement wrappers below that call UTF-16 OS and C Runtime APIs.
2098 //
2099 // Unicode console output
2100 // ----------------------
2101 //
2102 // The way to output Unicode to a Win32 console window is to call
2103 // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font
2104 // such as Lucida Console or Consolas, and in the case of East Asian languages
2105 // (such as Chinese, Japanese, Korean), the user must go to the Control Panel
2106 // and change the "system locale" to Chinese, etc., which allows a Chinese, etc.
2107 // font to be used in console windows.)
2108 //
2109 // The problem is getting the C Runtime to make fprintf and related APIs call
2110 // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds
2111 // promising, but the various modes have issues:
2112 //
2113 // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and
2114 // UTF-16 do not display properly.
2115 // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out
2116 // totally wrong.
2117 // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter
2118 // handler to be called (upon a later I/O call), aborting the process.
2119 // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf
2120 // to output nothing.
2121 //
2122 // So the only solution is to write our own adb_fprintf() that converts UTF-8
2123 // to UTF-16 and then calls WriteConsoleW().
2124
2125
2126 // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to
2127 // be passed to main().
NarrowArgs(const int argc,wchar_t ** const argv)2128 NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) {
2129 narrow_args = new char*[argc + 1];
2130
2131 for (int i = 0; i < argc; ++i) {
2132 std::string arg_narrow;
2133 if (!android::base::WideToUTF8(argv[i], &arg_narrow)) {
2134 fatal_errno("cannot convert argument from UTF-16 to UTF-8");
2135 }
2136 narrow_args[i] = strdup(arg_narrow.c_str());
2137 }
2138 narrow_args[argc] = nullptr; // terminate
2139 }
2140
~NarrowArgs()2141 NarrowArgs::~NarrowArgs() {
2142 if (narrow_args != nullptr) {
2143 for (char** argp = narrow_args; *argp != nullptr; ++argp) {
2144 free(*argp);
2145 }
2146 delete[] narrow_args;
2147 narrow_args = nullptr;
2148 }
2149 }
2150
unix_open(const char * path,int options,...)2151 int unix_open(const char* path, int options, ...) {
2152 std::wstring path_wide;
2153 if (!android::base::UTF8ToWide(path, &path_wide)) {
2154 return -1;
2155 }
2156 if ((options & O_CREAT) == 0) {
2157 return _wopen(path_wide.c_str(), options);
2158 } else {
2159 int mode;
2160 va_list args;
2161 va_start(args, options);
2162 mode = va_arg(args, int);
2163 va_end(args);
2164 return _wopen(path_wide.c_str(), options, mode);
2165 }
2166 }
2167
2168 // Version of opendir() that takes a UTF-8 path.
adb_opendir(const char * path)2169 DIR* adb_opendir(const char* path) {
2170 std::wstring path_wide;
2171 if (!android::base::UTF8ToWide(path, &path_wide)) {
2172 return nullptr;
2173 }
2174
2175 // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of
2176 // the fields, but right now all the callers treat the structure as
2177 // opaque.
2178 return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str()));
2179 }
2180
2181 // Version of readdir() that returns UTF-8 paths.
adb_readdir(DIR * dir)2182 struct dirent* adb_readdir(DIR* dir) {
2183 _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir);
2184 struct _wdirent* const went = _wreaddir(wdir);
2185 if (went == nullptr) {
2186 return nullptr;
2187 }
2188
2189 // Convert from UTF-16 to UTF-8.
2190 std::string name_utf8;
2191 if (!android::base::WideToUTF8(went->d_name, &name_utf8)) {
2192 return nullptr;
2193 }
2194
2195 // Cast the _wdirent* to dirent* and overwrite the d_name field (which has
2196 // space for UTF-16 wchar_t's) with UTF-8 char's.
2197 struct dirent* ent = reinterpret_cast<struct dirent*>(went);
2198
2199 if (name_utf8.length() + 1 > sizeof(went->d_name)) {
2200 // Name too big to fit in existing buffer.
2201 errno = ENOMEM;
2202 return nullptr;
2203 }
2204
2205 // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name)
2206 // because _wdirent contains wchar_t instead of char. So even if name_utf8
2207 // can fit in _wdirent::d_name, the resulting dirent::d_name field may be
2208 // bigger than the caller expects because they expect a dirent structure
2209 // which has a smaller d_name field. Ignore this since the caller should be
2210 // resilient.
2211
2212 // Rewrite the UTF-16 d_name field to UTF-8.
2213 strcpy(ent->d_name, name_utf8.c_str());
2214
2215 return ent;
2216 }
2217
2218 // Version of closedir() to go with our version of adb_opendir().
adb_closedir(DIR * dir)2219 int adb_closedir(DIR* dir) {
2220 return _wclosedir(reinterpret_cast<_WDIR*>(dir));
2221 }
2222
2223 // Version of unlink() that takes a UTF-8 path.
adb_unlink(const char * path)2224 int adb_unlink(const char* path) {
2225 std::wstring wpath;
2226 if (!android::base::UTF8ToWide(path, &wpath)) {
2227 return -1;
2228 }
2229
2230 int rc = _wunlink(wpath.c_str());
2231
2232 if (rc == -1 && errno == EACCES) {
2233 /* unlink returns EACCES when the file is read-only, so we first */
2234 /* try to make it writable, then unlink again... */
2235 rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE);
2236 if (rc == 0)
2237 rc = _wunlink(wpath.c_str());
2238 }
2239 return rc;
2240 }
2241
2242 // Version of mkdir() that takes a UTF-8 path.
adb_mkdir(const std::string & path,int mode)2243 int adb_mkdir(const std::string& path, int mode) {
2244 std::wstring path_wide;
2245 if (!android::base::UTF8ToWide(path, &path_wide)) {
2246 return -1;
2247 }
2248
2249 return _wmkdir(path_wide.c_str());
2250 }
2251
2252 // Version of utime() that takes a UTF-8 path.
adb_utime(const char * path,struct utimbuf * u)2253 int adb_utime(const char* path, struct utimbuf* u) {
2254 std::wstring path_wide;
2255 if (!android::base::UTF8ToWide(path, &path_wide)) {
2256 return -1;
2257 }
2258
2259 static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf),
2260 "utimbuf and _utimbuf should be the same size because they both "
2261 "contain the same types, namely time_t");
2262 return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u));
2263 }
2264
2265 // Version of chmod() that takes a UTF-8 path.
adb_chmod(const char * path,int mode)2266 int adb_chmod(const char* path, int mode) {
2267 std::wstring path_wide;
2268 if (!android::base::UTF8ToWide(path, &path_wide)) {
2269 return -1;
2270 }
2271
2272 return _wchmod(path_wide.c_str(), mode);
2273 }
2274
2275 // From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte.
utf8_codepoint_len(uint8_t ch)2276 static inline size_t utf8_codepoint_len(uint8_t ch) {
2277 return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1;
2278 }
2279
2280 namespace internal {
2281
2282 // Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes
2283 // (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to
2284 // remaining_bytes.
ParseCompleteUTF8(const char * const first,const char * const last,std::vector<char> * const remaining_bytes)2285 size_t ParseCompleteUTF8(const char* const first, const char* const last,
2286 std::vector<char>* const remaining_bytes) {
2287 // Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence.
2288 // Current_after points one byte past the current byte to be examined.
2289 for (const char* current_after = last; current_after != first; --current_after) {
2290 const char* const current = current_after - 1;
2291 const char ch = *current;
2292 const char kHighBit = 0x80u;
2293 const char kTwoHighestBits = 0xC0u;
2294 if ((ch & kHighBit) == 0) { // high bit not set
2295 // The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing
2296 // bytes with no leading byte, so return the entire buffer.
2297 break;
2298 } else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set
2299 // Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence.
2300 const size_t bytes_available = last - current;
2301 if (bytes_available < utf8_codepoint_len(ch)) {
2302 // We don't have all the bytes in the UTF-8 sequence, so return all the bytes
2303 // preceding the current incomplete UTF-8 sequence and append the remaining bytes
2304 // to remaining_bytes.
2305 remaining_bytes->insert(remaining_bytes->end(), current, last);
2306 return current - first;
2307 } else {
2308 // The buffer ends with a complete UTF-8 sequence, possibly followed by invalid
2309 // trailing bytes with no lead byte, so return the entire buffer.
2310 break;
2311 }
2312 } else {
2313 // Trailing byte, so keep going backwards looking for the lead byte.
2314 }
2315 }
2316
2317 // Return the size of the entire buffer. It is possible that we walked backward past invalid
2318 // trailing bytes with no lead byte, in which case we want to return all those invalid bytes
2319 // so that they can be processed.
2320 return last - first;
2321 }
2322
2323 }
2324
2325 // Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences.
2326 // Note that we use only one buffer even though stderr and stdout are logically separate streams.
2327 // This matches the behavior of Linux.
2328
2329 // Internal helper function to write UTF-8 bytes to a console. Returns -1 on error.
_console_write_utf8(const char * const buf,const size_t buf_size,FILE * stream,HANDLE console)2330 static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream,
2331 HANDLE console) {
2332 static std::mutex& console_output_buffer_lock = *new std::mutex();
2333 static auto& console_output_buffer = *new std::vector<char>();
2334
2335 const int saved_errno = errno;
2336 std::vector<char> combined_buffer;
2337
2338 // Complete UTF-8 sequences that should be immediately written to the console.
2339 const char* utf8;
2340 size_t utf8_size;
2341
2342 {
2343 std::lock_guard<std::mutex> lock(console_output_buffer_lock);
2344 if (console_output_buffer.empty()) {
2345 // If console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the
2346 // common case with plain ASCII), parse buf directly.
2347 utf8 = buf;
2348 utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &console_output_buffer);
2349 } else {
2350 // If console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to
2351 // combined_buffer (and effectively clear console_output_buffer) and append buf to
2352 // combined_buffer, then parse it all together.
2353 combined_buffer.swap(console_output_buffer);
2354 combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size);
2355
2356 utf8 = combined_buffer.data();
2357 utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(),
2358 &console_output_buffer);
2359 }
2360 }
2361
2362 std::wstring utf16;
2363
2364 // Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux
2365 // which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's
2366 // random data, runs dmesg (which might have non-UTF-8), etc.
2367 // This could throw std::bad_alloc.
2368 (void)android::base::UTF8ToWide(utf8, utf8_size, &utf16);
2369
2370 // Note that this does not do \n => \r\n translation because that
2371 // doesn't seem necessary for the Windows console. For the Windows
2372 // console \r moves to the beginning of the line and \n moves to a new
2373 // line.
2374
2375 // Flush any stream buffering so that our output is afterwards which
2376 // makes sense because our call is afterwards.
2377 (void)fflush(stream);
2378
2379 // Write UTF-16 to the console.
2380 DWORD written = 0;
2381 if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, NULL)) {
2382 errno = EIO;
2383 return -1;
2384 }
2385
2386 // Return the size of the original buffer passed in, signifying that we consumed it all, even
2387 // if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This
2388 // matches the Linux behavior.
2389 errno = saved_errno;
2390 return buf_size;
2391 }
2392
2393 // Function prototype because attributes cannot be placed on func definitions.
2394 static int _console_vfprintf(const HANDLE console, FILE* stream,
2395 const char *format, va_list ap)
2396 __attribute__((__format__(ADB_FORMAT_ARCHETYPE, 3, 0)));
2397
2398 // Internal function to format a UTF-8 string and write it to a Win32 console.
2399 // Returns -1 on error.
_console_vfprintf(const HANDLE console,FILE * stream,const char * format,va_list ap)2400 static int _console_vfprintf(const HANDLE console, FILE* stream,
2401 const char *format, va_list ap) {
2402 const int saved_errno = errno;
2403 std::string output_utf8;
2404
2405 // Format the string.
2406 // This could throw std::bad_alloc.
2407 android::base::StringAppendV(&output_utf8, format, ap);
2408
2409 const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream,
2410 console);
2411 if (result != -1) {
2412 errno = saved_errno;
2413 } else {
2414 // If -1 was returned, errno has been set.
2415 }
2416 return result;
2417 }
2418
2419 // Version of vfprintf() that takes UTF-8 and can write Unicode to a
2420 // Windows console.
adb_vfprintf(FILE * stream,const char * format,va_list ap)2421 int adb_vfprintf(FILE *stream, const char *format, va_list ap) {
2422 const HANDLE console = _get_console_handle(stream);
2423
2424 // If there is an associated Win32 console, write to it specially,
2425 // otherwise defer to the regular C Runtime, passing it UTF-8.
2426 if (console != NULL) {
2427 return _console_vfprintf(console, stream, format, ap);
2428 } else {
2429 // If vfprintf is a macro, undefine it, so we can call the real
2430 // C Runtime API.
2431 #pragma push_macro("vfprintf")
2432 #undef vfprintf
2433 return vfprintf(stream, format, ap);
2434 #pragma pop_macro("vfprintf")
2435 }
2436 }
2437
2438 // Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console.
adb_vprintf(const char * format,va_list ap)2439 int adb_vprintf(const char *format, va_list ap) {
2440 return adb_vfprintf(stdout, format, ap);
2441 }
2442
2443 // Version of fprintf() that takes UTF-8 and can write Unicode to a
2444 // Windows console.
adb_fprintf(FILE * stream,const char * format,...)2445 int adb_fprintf(FILE *stream, const char *format, ...) {
2446 va_list ap;
2447 va_start(ap, format);
2448 const int result = adb_vfprintf(stream, format, ap);
2449 va_end(ap);
2450
2451 return result;
2452 }
2453
2454 // Version of printf() that takes UTF-8 and can write Unicode to a
2455 // Windows console.
adb_printf(const char * format,...)2456 int adb_printf(const char *format, ...) {
2457 va_list ap;
2458 va_start(ap, format);
2459 const int result = adb_vfprintf(stdout, format, ap);
2460 va_end(ap);
2461
2462 return result;
2463 }
2464
2465 // Version of fputs() that takes UTF-8 and can write Unicode to a
2466 // Windows console.
adb_fputs(const char * buf,FILE * stream)2467 int adb_fputs(const char* buf, FILE* stream) {
2468 // adb_fprintf returns -1 on error, which is conveniently the same as EOF
2469 // which fputs (and hence adb_fputs) should return on error.
2470 static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2471 return adb_fprintf(stream, "%s", buf);
2472 }
2473
2474 // Version of fputc() that takes UTF-8 and can write Unicode to a
2475 // Windows console.
adb_fputc(int ch,FILE * stream)2476 int adb_fputc(int ch, FILE* stream) {
2477 const int result = adb_fprintf(stream, "%c", ch);
2478 if (result == -1) {
2479 return EOF;
2480 }
2481 // For success, fputc returns the char, cast to unsigned char, then to int.
2482 return static_cast<unsigned char>(ch);
2483 }
2484
2485 // Version of putchar() that takes UTF-8 and can write Unicode to a Windows console.
adb_putchar(int ch)2486 int adb_putchar(int ch) {
2487 return adb_fputc(ch, stdout);
2488 }
2489
2490 // Version of puts() that takes UTF-8 and can write Unicode to a Windows console.
adb_puts(const char * buf)2491 int adb_puts(const char* buf) {
2492 // adb_printf returns -1 on error, which is conveniently the same as EOF
2493 // which puts (and hence adb_puts) should return on error.
2494 static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2495 return adb_printf("%s\n", buf);
2496 }
2497
2498 // Internal function to write UTF-8 to a Win32 console. Returns the number of
2499 // items (of length size) written. On error, returns a short item count or 0.
_console_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream,HANDLE console)2500 static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb,
2501 FILE* stream, HANDLE console) {
2502 const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream,
2503 console);
2504 if (result == -1) {
2505 return 0;
2506 }
2507 return result / size;
2508 }
2509
2510 // Version of fwrite() that takes UTF-8 and can write Unicode to a
2511 // Windows console.
adb_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream)2512 size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) {
2513 const HANDLE console = _get_console_handle(stream);
2514
2515 // If there is an associated Win32 console, write to it specially,
2516 // otherwise defer to the regular C Runtime, passing it UTF-8.
2517 if (console != NULL) {
2518 return _console_fwrite(ptr, size, nmemb, stream, console);
2519 } else {
2520 // If fwrite is a macro, undefine it, so we can call the real
2521 // C Runtime API.
2522 #pragma push_macro("fwrite")
2523 #undef fwrite
2524 return fwrite(ptr, size, nmemb, stream);
2525 #pragma pop_macro("fwrite")
2526 }
2527 }
2528
2529 // Version of fopen() that takes a UTF-8 filename and can access a file with
2530 // a Unicode filename.
adb_fopen(const char * path,const char * mode)2531 FILE* adb_fopen(const char* path, const char* mode) {
2532 std::wstring path_wide;
2533 if (!android::base::UTF8ToWide(path, &path_wide)) {
2534 return nullptr;
2535 }
2536
2537 std::wstring mode_wide;
2538 if (!android::base::UTF8ToWide(mode, &mode_wide)) {
2539 return nullptr;
2540 }
2541
2542 return _wfopen(path_wide.c_str(), mode_wide.c_str());
2543 }
2544
2545 // Return a lowercase version of the argument. Uses C Runtime tolower() on
2546 // each byte which is not UTF-8 aware, and theoretically uses the current C
2547 // Runtime locale (which in practice is not changed, so this becomes a ASCII
2548 // conversion).
ToLower(const std::string & anycase)2549 static std::string ToLower(const std::string& anycase) {
2550 // copy string
2551 std::string str(anycase);
2552 // transform the copy
2553 std::transform(str.begin(), str.end(), str.begin(), tolower);
2554 return str;
2555 }
2556
2557 extern "C" int main(int argc, char** argv);
2558
2559 // Link with -municode to cause this wmain() to be used as the program
2560 // entrypoint. It will convert the args from UTF-16 to UTF-8 and call the
2561 // regular main() with UTF-8 args.
wmain(int argc,wchar_t ** argv)2562 extern "C" int wmain(int argc, wchar_t **argv) {
2563 // Convert args from UTF-16 to UTF-8 and pass that to main().
2564 NarrowArgs narrow_args(argc, argv);
2565 return main(argc, narrow_args.data());
2566 }
2567
2568 // Shadow UTF-8 environment variable name/value pairs that are created from
2569 // _wenviron the first time that adb_getenv() is called. Note that this is not
2570 // currently updated if putenv, setenv, unsetenv are called. Note that no
2571 // thread synchronization is done, but we're called early enough in
2572 // single-threaded startup that things work ok.
2573 static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>();
2574
2575 // Make sure that shadow UTF-8 environment variables are setup.
_ensure_env_setup()2576 static void _ensure_env_setup() {
2577 // If some name/value pairs exist, then we've already done the setup below.
2578 if (g_environ_utf8.size() != 0) {
2579 return;
2580 }
2581
2582 if (_wenviron == nullptr) {
2583 // If _wenviron is null, then -municode probably wasn't used. That
2584 // linker flag will cause the entry point to setup _wenviron. It will
2585 // also require an implementation of wmain() (which we provide above).
2586 fatal("_wenviron is not set, did you link with -municode?");
2587 }
2588
2589 // Read name/value pairs from UTF-16 _wenviron and write new name/value
2590 // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense
2591 // to use the D() macro here because that tracing only works if the
2592 // ADB_TRACE environment variable is setup, but that env var can't be read
2593 // until this code completes.
2594 for (wchar_t** env = _wenviron; *env != nullptr; ++env) {
2595 wchar_t* const equal = wcschr(*env, L'=');
2596 if (equal == nullptr) {
2597 // Malformed environment variable with no equal sign. Shouldn't
2598 // really happen, but we should be resilient to this.
2599 continue;
2600 }
2601
2602 // If we encounter an error converting UTF-16, don't error-out on account of a single env
2603 // var because the program might never even read this particular variable.
2604 std::string name_utf8;
2605 if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) {
2606 continue;
2607 }
2608
2609 // Store lowercase name so that we can do case-insensitive searches.
2610 name_utf8 = ToLower(name_utf8);
2611
2612 std::string value_utf8;
2613 if (!android::base::WideToUTF8(equal + 1, &value_utf8)) {
2614 continue;
2615 }
2616
2617 char* const value_dup = strdup(value_utf8.c_str());
2618
2619 // Don't overwrite a previus env var with the same name. In reality,
2620 // the system probably won't let two env vars with the same name exist
2621 // in _wenviron.
2622 g_environ_utf8.insert({name_utf8, value_dup});
2623 }
2624 }
2625
2626 // Version of getenv() that takes a UTF-8 environment variable name and
2627 // retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows.
adb_getenv(const char * name)2628 char* adb_getenv(const char* name) {
2629 _ensure_env_setup();
2630
2631 // Case-insensitive search by searching for lowercase name in a map of
2632 // lowercase names.
2633 const auto it = g_environ_utf8.find(ToLower(std::string(name)));
2634 if (it == g_environ_utf8.end()) {
2635 return nullptr;
2636 }
2637
2638 return it->second;
2639 }
2640
2641 // Version of getcwd() that returns the current working directory in UTF-8.
adb_getcwd(char * buf,int size)2642 char* adb_getcwd(char* buf, int size) {
2643 wchar_t* wbuf = _wgetcwd(nullptr, 0);
2644 if (wbuf == nullptr) {
2645 return nullptr;
2646 }
2647
2648 std::string buf_utf8;
2649 const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8);
2650 free(wbuf);
2651 wbuf = nullptr;
2652
2653 if (!narrow_result) {
2654 return nullptr;
2655 }
2656
2657 // If size was specified, make sure all the chars will fit.
2658 if (size != 0) {
2659 if (size < static_cast<int>(buf_utf8.length() + 1)) {
2660 errno = ERANGE;
2661 return nullptr;
2662 }
2663 }
2664
2665 // If buf was not specified, allocate storage.
2666 if (buf == nullptr) {
2667 if (size == 0) {
2668 size = buf_utf8.length() + 1;
2669 }
2670 buf = reinterpret_cast<char*>(malloc(size));
2671 if (buf == nullptr) {
2672 return nullptr;
2673 }
2674 }
2675
2676 // Destination buffer was allocated with enough space, or we've already
2677 // checked an existing buffer size for enough space.
2678 strcpy(buf, buf_utf8.c_str());
2679
2680 return buf;
2681 }
2682