1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5 *
6 * Lightly modified for gPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 *
20 */
21
22 FILE_LICENCE ( MIT );
23
24 /*************************************\
25 * EEPROM access functions and helpers *
26 \*************************************/
27
28 #include <unistd.h>
29 #include <stdlib.h>
30
31 #include "ath5k.h"
32 #include "reg.h"
33 #include "base.h"
34
35 /*
36 * Read from eeprom
37 */
ath5k_hw_eeprom_read(struct ath5k_hw * ah,u32 offset,u16 * data)38 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
39 {
40 u32 status, timeout;
41
42 /*
43 * Initialize EEPROM access
44 */
45 if (ah->ah_version == AR5K_AR5210) {
46 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
47 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
48 } else {
49 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
50 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
51 AR5K_EEPROM_CMD_READ);
52 }
53
54 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
55 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
56 if (status & AR5K_EEPROM_STAT_RDDONE) {
57 if (status & AR5K_EEPROM_STAT_RDERR)
58 return -EIO;
59 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
60 0xffff);
61 return 0;
62 }
63 udelay(15);
64 }
65
66 return -ETIMEDOUT;
67 }
68
69 /*
70 * Translate binary channel representation in EEPROM to frequency
71 */
ath5k_eeprom_bin2freq(struct ath5k_eeprom_info * ee,u16 bin,unsigned int mode)72 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
73 unsigned int mode)
74 {
75 u16 val;
76
77 if (bin == AR5K_EEPROM_CHANNEL_DIS)
78 return bin;
79
80 if (mode == AR5K_EEPROM_MODE_11A) {
81 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
82 val = (5 * bin) + 4800;
83 else
84 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
85 (bin * 10) + 5100;
86 } else {
87 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
88 val = bin + 2300;
89 else
90 val = bin + 2400;
91 }
92
93 return val;
94 }
95
96 /*
97 * Initialize eeprom & capabilities structs
98 */
99 static int
ath5k_eeprom_init_header(struct ath5k_hw * ah)100 ath5k_eeprom_init_header(struct ath5k_hw *ah)
101 {
102 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
103 int ret;
104 u16 val;
105
106 /*
107 * Read values from EEPROM and store them in the capability structure
108 */
109 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
110 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
111 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
112 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
113 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
114
115 /* Return if we have an old EEPROM */
116 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
117 return 0;
118
119 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
120 ee_ant_gain);
121
122 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
123 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
124 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
125
126 /* XXX: Don't know which versions include these two */
127 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
128
129 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
130 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
131
132 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
133 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
134 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
135 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
136 }
137 }
138
139 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
140 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
141 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
142 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
143
144 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
145 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
146 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
147 }
148
149 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
150
151 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
152 ee->ee_is_hb63 = 1;
153 else
154 ee->ee_is_hb63 = 0;
155
156 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
157 ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
158 ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? 1 : 0;
159
160 return 0;
161 }
162
163
164 /*
165 * Read antenna infos from eeprom
166 */
ath5k_eeprom_read_ants(struct ath5k_hw * ah,u32 * offset,unsigned int mode)167 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
168 unsigned int mode)
169 {
170 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
171 u32 o = *offset;
172 u16 val;
173 int ret, i = 0;
174
175 AR5K_EEPROM_READ(o++, val);
176 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
177 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
178 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
179
180 AR5K_EEPROM_READ(o++, val);
181 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
182 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
183 ee->ee_ant_control[mode][i++] = val & 0x3f;
184
185 AR5K_EEPROM_READ(o++, val);
186 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
187 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
188 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
189
190 AR5K_EEPROM_READ(o++, val);
191 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
192 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
193 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
194 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
195
196 AR5K_EEPROM_READ(o++, val);
197 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
198 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
199 ee->ee_ant_control[mode][i++] = val & 0x3f;
200
201 /* Get antenna modes */
202 ah->ah_antenna[mode][0] =
203 (ee->ee_ant_control[mode][0] << 4);
204 ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
205 ee->ee_ant_control[mode][1] |
206 (ee->ee_ant_control[mode][2] << 6) |
207 (ee->ee_ant_control[mode][3] << 12) |
208 (ee->ee_ant_control[mode][4] << 18) |
209 (ee->ee_ant_control[mode][5] << 24);
210 ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
211 ee->ee_ant_control[mode][6] |
212 (ee->ee_ant_control[mode][7] << 6) |
213 (ee->ee_ant_control[mode][8] << 12) |
214 (ee->ee_ant_control[mode][9] << 18) |
215 (ee->ee_ant_control[mode][10] << 24);
216
217 /* return new offset */
218 *offset = o;
219
220 return 0;
221 }
222
223 /*
224 * Read supported modes and some mode-specific calibration data
225 * from eeprom
226 */
ath5k_eeprom_read_modes(struct ath5k_hw * ah,u32 * offset,unsigned int mode)227 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
228 unsigned int mode)
229 {
230 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
231 u32 o = *offset;
232 u16 val;
233 int ret;
234
235 ee->ee_n_piers[mode] = 0;
236 AR5K_EEPROM_READ(o++, val);
237 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
238 switch(mode) {
239 case AR5K_EEPROM_MODE_11A:
240 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
241 ee->ee_db[mode][3] = (val >> 2) & 0x7;
242 ee->ee_ob[mode][2] = (val << 1) & 0x7;
243
244 AR5K_EEPROM_READ(o++, val);
245 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
246 ee->ee_db[mode][2] = (val >> 12) & 0x7;
247 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
248 ee->ee_db[mode][1] = (val >> 6) & 0x7;
249 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
250 ee->ee_db[mode][0] = val & 0x7;
251 break;
252 case AR5K_EEPROM_MODE_11G:
253 case AR5K_EEPROM_MODE_11B:
254 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
255 ee->ee_db[mode][1] = val & 0x7;
256 break;
257 }
258
259 AR5K_EEPROM_READ(o++, val);
260 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
261 ee->ee_thr_62[mode] = val & 0xff;
262
263 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
264 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
265
266 AR5K_EEPROM_READ(o++, val);
267 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
268 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
269
270 AR5K_EEPROM_READ(o++, val);
271 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
272
273 if ((val & 0xff) & 0x80)
274 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
275 else
276 ee->ee_noise_floor_thr[mode] = val & 0xff;
277
278 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
279 ee->ee_noise_floor_thr[mode] =
280 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
281
282 AR5K_EEPROM_READ(o++, val);
283 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
284 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
285 ee->ee_xpd[mode] = val & 0x1;
286
287 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
288 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
289
290 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
291 AR5K_EEPROM_READ(o++, val);
292 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
293
294 if (mode == AR5K_EEPROM_MODE_11A)
295 ee->ee_xr_power[mode] = val & 0x3f;
296 else {
297 ee->ee_ob[mode][0] = val & 0x7;
298 ee->ee_db[mode][0] = (val >> 3) & 0x7;
299 }
300 }
301
302 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
303 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
304 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
305 } else {
306 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
307
308 AR5K_EEPROM_READ(o++, val);
309 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
310
311 if (mode == AR5K_EEPROM_MODE_11G) {
312 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
313 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
314 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
315 }
316 }
317
318 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
319 mode == AR5K_EEPROM_MODE_11A) {
320 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
321 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
322 }
323
324 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
325 goto done;
326
327 /* Note: >= v5 have bg freq piers on another location
328 * so these freq piers are ignored for >= v5 (should be 0xff
329 * anyway) */
330 switch(mode) {
331 case AR5K_EEPROM_MODE_11A:
332 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
333 break;
334
335 AR5K_EEPROM_READ(o++, val);
336 ee->ee_margin_tx_rx[mode] = val & 0x3f;
337 break;
338 case AR5K_EEPROM_MODE_11B:
339 AR5K_EEPROM_READ(o++, val);
340
341 ee->ee_pwr_cal_b[0].freq =
342 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
343 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
344 ee->ee_n_piers[mode]++;
345
346 ee->ee_pwr_cal_b[1].freq =
347 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
348 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
349 ee->ee_n_piers[mode]++;
350
351 AR5K_EEPROM_READ(o++, val);
352 ee->ee_pwr_cal_b[2].freq =
353 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
354 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
355 ee->ee_n_piers[mode]++;
356
357 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
358 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
359 break;
360 case AR5K_EEPROM_MODE_11G:
361 AR5K_EEPROM_READ(o++, val);
362
363 ee->ee_pwr_cal_g[0].freq =
364 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
365 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
366 ee->ee_n_piers[mode]++;
367
368 ee->ee_pwr_cal_g[1].freq =
369 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
370 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
371 ee->ee_n_piers[mode]++;
372
373 AR5K_EEPROM_READ(o++, val);
374 ee->ee_turbo_max_power[mode] = val & 0x7f;
375 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
376
377 AR5K_EEPROM_READ(o++, val);
378 ee->ee_pwr_cal_g[2].freq =
379 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
380 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
381 ee->ee_n_piers[mode]++;
382
383 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
384 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
385
386 AR5K_EEPROM_READ(o++, val);
387 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
388 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
389
390 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
391 AR5K_EEPROM_READ(o++, val);
392 ee->ee_cck_ofdm_gain_delta = val & 0xff;
393 }
394 break;
395 }
396
397 done:
398 /* return new offset */
399 *offset = o;
400
401 return 0;
402 }
403
404 /*
405 * Read turbo mode information on newer EEPROM versions
406 */
407 static int
ath5k_eeprom_read_turbo_modes(struct ath5k_hw * ah,u32 * offset,unsigned int mode)408 ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
409 u32 *offset, unsigned int mode)
410 {
411 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
412 u32 o = *offset;
413 u16 val;
414 int ret;
415
416 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
417 return 0;
418
419 switch (mode){
420 case AR5K_EEPROM_MODE_11A:
421 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
422
423 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
424 AR5K_EEPROM_READ(o++, val);
425 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
426 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
427
428 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
429 AR5K_EEPROM_READ(o++, val);
430 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
431 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
432
433 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
434 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
435 break;
436 case AR5K_EEPROM_MODE_11G:
437 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
438
439 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
440 AR5K_EEPROM_READ(o++, val);
441 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
442 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
443
444 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
445 AR5K_EEPROM_READ(o++, val);
446 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
447 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
448 break;
449 }
450
451 /* return new offset */
452 *offset = o;
453
454 return 0;
455 }
456
457 /* Read mode-specific data (except power calibration data) */
458 static int
ath5k_eeprom_init_modes(struct ath5k_hw * ah)459 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
460 {
461 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
462 u32 mode_offset[3];
463 unsigned int mode;
464 u32 offset;
465 int ret;
466
467 /*
468 * Get values for all modes
469 */
470 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
471 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
472 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
473
474 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
475 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
476
477 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
478 offset = mode_offset[mode];
479
480 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
481 if (ret)
482 return ret;
483
484 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
485 if (ret)
486 return ret;
487
488 ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
489 if (ret)
490 return ret;
491 }
492
493 /* override for older eeprom versions for better performance */
494 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
495 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
496 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
497 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
498 }
499
500 return 0;
501 }
502
503 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
504 * frequency mask) */
505 static inline int
ath5k_eeprom_read_freq_list(struct ath5k_hw * ah,int * offset,int max,struct ath5k_chan_pcal_info * pc,unsigned int mode)506 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
507 struct ath5k_chan_pcal_info *pc, unsigned int mode)
508 {
509 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
510 int o = *offset;
511 int i = 0;
512 u8 freq1, freq2;
513 int ret;
514 u16 val;
515
516 ee->ee_n_piers[mode] = 0;
517 while(i < max) {
518 AR5K_EEPROM_READ(o++, val);
519
520 freq1 = val & 0xff;
521 if (!freq1)
522 break;
523
524 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
525 freq1, mode);
526 ee->ee_n_piers[mode]++;
527
528 freq2 = (val >> 8) & 0xff;
529 if (!freq2)
530 break;
531
532 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
533 freq2, mode);
534 ee->ee_n_piers[mode]++;
535 }
536
537 /* return new offset */
538 *offset = o;
539
540 return 0;
541 }
542
543 /* Read frequency piers for 802.11a */
544 static int
ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw * ah,int offset)545 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
546 {
547 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
548 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
549 int i, ret;
550 u16 val;
551 u8 mask;
552
553 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
554 ath5k_eeprom_read_freq_list(ah, &offset,
555 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
556 AR5K_EEPROM_MODE_11A);
557 } else {
558 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
559
560 AR5K_EEPROM_READ(offset++, val);
561 pcal[0].freq = (val >> 9) & mask;
562 pcal[1].freq = (val >> 2) & mask;
563 pcal[2].freq = (val << 5) & mask;
564
565 AR5K_EEPROM_READ(offset++, val);
566 pcal[2].freq |= (val >> 11) & 0x1f;
567 pcal[3].freq = (val >> 4) & mask;
568 pcal[4].freq = (val << 3) & mask;
569
570 AR5K_EEPROM_READ(offset++, val);
571 pcal[4].freq |= (val >> 13) & 0x7;
572 pcal[5].freq = (val >> 6) & mask;
573 pcal[6].freq = (val << 1) & mask;
574
575 AR5K_EEPROM_READ(offset++, val);
576 pcal[6].freq |= (val >> 15) & 0x1;
577 pcal[7].freq = (val >> 8) & mask;
578 pcal[8].freq = (val >> 1) & mask;
579 pcal[9].freq = (val << 6) & mask;
580
581 AR5K_EEPROM_READ(offset++, val);
582 pcal[9].freq |= (val >> 10) & 0x3f;
583
584 /* Fixed number of piers */
585 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
586
587 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
588 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
589 pcal[i].freq, AR5K_EEPROM_MODE_11A);
590 }
591 }
592
593 return 0;
594 }
595
596 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
597 static inline int
ath5k_eeprom_init_11bg_2413(struct ath5k_hw * ah,unsigned int mode,int offset)598 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
599 {
600 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
601 struct ath5k_chan_pcal_info *pcal;
602
603 switch(mode) {
604 case AR5K_EEPROM_MODE_11B:
605 pcal = ee->ee_pwr_cal_b;
606 break;
607 case AR5K_EEPROM_MODE_11G:
608 pcal = ee->ee_pwr_cal_g;
609 break;
610 default:
611 return -EINVAL;
612 }
613
614 ath5k_eeprom_read_freq_list(ah, &offset,
615 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
616 mode);
617
618 return 0;
619 }
620
621 /*
622 * Read power calibration for RF5111 chips
623 *
624 * For RF5111 we have an XPD -eXternal Power Detector- curve
625 * for each calibrated channel. Each curve has 0,5dB Power steps
626 * on x axis and PCDAC steps (offsets) on y axis and looks like an
627 * exponential function. To recreate the curve we read 11 points
628 * here and interpolate later.
629 */
630
631 /* Used to match PCDAC steps with power values on RF5111 chips
632 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
633 * steps that match with the power values we read from eeprom. On
634 * older eeprom versions (< 3.2) these steps are equaly spaced at
635 * 10% of the pcdac curve -until the curve reaches it's maximum-
636 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
637 * these 11 steps are spaced in a different way. This function returns
638 * the pcdac steps based on eeprom version and curve min/max so that we
639 * can have pcdac/pwr points.
640 */
641 static inline void
ath5k_get_pcdac_intercepts(struct ath5k_hw * ah,u8 min,u8 max,u8 * vp)642 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
643 {
644 static const u16 intercepts3[] =
645 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
646 static const u16 intercepts3_2[] =
647 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
648 const u16 *ip;
649 unsigned i;
650
651 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
652 ip = intercepts3_2;
653 else
654 ip = intercepts3;
655
656 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
657 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
658 }
659
660 /* Convert RF5111 specific data to generic raw data
661 * used by interpolation code */
662 static int
ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw * ah,int mode,struct ath5k_chan_pcal_info * chinfo)663 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
664 struct ath5k_chan_pcal_info *chinfo)
665 {
666 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
667 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
668 struct ath5k_pdgain_info *pd;
669 u8 pier, point, idx;
670 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
671
672 /* Fill raw data for each calibration pier */
673 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
674
675 pcinfo = &chinfo[pier].rf5111_info;
676
677 /* Allocate pd_curves for this cal pier */
678 chinfo[pier].pd_curves =
679 calloc(AR5K_EEPROM_N_PD_CURVES,
680 sizeof(struct ath5k_pdgain_info));
681
682 if (!chinfo[pier].pd_curves)
683 return -ENOMEM;
684
685 /* Only one curve for RF5111
686 * find out which one and place
687 * in in pd_curves.
688 * Note: ee_x_gain is reversed here */
689 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
690
691 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
692 pdgain_idx[0] = idx;
693 break;
694 }
695 }
696
697 ee->ee_pd_gains[mode] = 1;
698
699 pd = &chinfo[pier].pd_curves[idx];
700
701 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
702
703 /* Allocate pd points for this curve */
704 pd->pd_step = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(u8));
705 if (!pd->pd_step)
706 return -ENOMEM;
707
708 pd->pd_pwr = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(s16));
709 if (!pd->pd_pwr)
710 return -ENOMEM;
711
712 /* Fill raw dataset
713 * (convert power to 0.25dB units
714 * for RF5112 combatibility) */
715 for (point = 0; point < pd->pd_points; point++) {
716
717 /* Absolute values */
718 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
719
720 /* Already sorted */
721 pd->pd_step[point] = pcinfo->pcdac[point];
722 }
723
724 /* Set min/max pwr */
725 chinfo[pier].min_pwr = pd->pd_pwr[0];
726 chinfo[pier].max_pwr = pd->pd_pwr[10];
727
728 }
729
730 return 0;
731 }
732
733 /* Parse EEPROM data */
734 static int
ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw * ah,int mode)735 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
736 {
737 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
738 struct ath5k_chan_pcal_info *pcal;
739 int offset, ret;
740 int i;
741 u16 val;
742
743 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
744 switch(mode) {
745 case AR5K_EEPROM_MODE_11A:
746 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
747 return 0;
748
749 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
750 offset + AR5K_EEPROM_GROUP1_OFFSET);
751 if (ret < 0)
752 return ret;
753
754 offset += AR5K_EEPROM_GROUP2_OFFSET;
755 pcal = ee->ee_pwr_cal_a;
756 break;
757 case AR5K_EEPROM_MODE_11B:
758 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
759 !AR5K_EEPROM_HDR_11G(ee->ee_header))
760 return 0;
761
762 pcal = ee->ee_pwr_cal_b;
763 offset += AR5K_EEPROM_GROUP3_OFFSET;
764
765 /* fixed piers */
766 pcal[0].freq = 2412;
767 pcal[1].freq = 2447;
768 pcal[2].freq = 2484;
769 ee->ee_n_piers[mode] = 3;
770 break;
771 case AR5K_EEPROM_MODE_11G:
772 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
773 return 0;
774
775 pcal = ee->ee_pwr_cal_g;
776 offset += AR5K_EEPROM_GROUP4_OFFSET;
777
778 /* fixed piers */
779 pcal[0].freq = 2312;
780 pcal[1].freq = 2412;
781 pcal[2].freq = 2484;
782 ee->ee_n_piers[mode] = 3;
783 break;
784 default:
785 return -EINVAL;
786 }
787
788 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
789 struct ath5k_chan_pcal_info_rf5111 *cdata =
790 &pcal[i].rf5111_info;
791
792 AR5K_EEPROM_READ(offset++, val);
793 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
794 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
795 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
796
797 AR5K_EEPROM_READ(offset++, val);
798 cdata->pwr[0] |= ((val >> 14) & 0x3);
799 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
800 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
801 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
802
803 AR5K_EEPROM_READ(offset++, val);
804 cdata->pwr[3] |= ((val >> 12) & 0xf);
805 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
806 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
807
808 AR5K_EEPROM_READ(offset++, val);
809 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
810 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
811 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
812
813 AR5K_EEPROM_READ(offset++, val);
814 cdata->pwr[8] |= ((val >> 14) & 0x3);
815 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
816 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
817
818 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
819 cdata->pcdac_max, cdata->pcdac);
820 }
821
822 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
823 }
824
825
826 /*
827 * Read power calibration for RF5112 chips
828 *
829 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
830 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
831 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
832 * power steps on x axis and PCDAC steps on y axis and looks like a
833 * linear function. To recreate the curve and pass the power values
834 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
835 * and 3 points for xpd 3 (higher gain -> lower power) here and
836 * interpolate later.
837 *
838 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
839 */
840
841 /* Convert RF5112 specific data to generic raw data
842 * used by interpolation code */
843 static int
ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw * ah,int mode,struct ath5k_chan_pcal_info * chinfo)844 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
845 struct ath5k_chan_pcal_info *chinfo)
846 {
847 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
848 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
849 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
850 unsigned int pier, pdg, point;
851
852 /* Fill raw data for each calibration pier */
853 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
854
855 pcinfo = &chinfo[pier].rf5112_info;
856
857 /* Allocate pd_curves for this cal pier */
858 chinfo[pier].pd_curves =
859 calloc(AR5K_EEPROM_N_PD_CURVES,
860 sizeof(struct ath5k_pdgain_info));
861
862 if (!chinfo[pier].pd_curves)
863 return -ENOMEM;
864
865 /* Fill pd_curves */
866 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
867
868 u8 idx = pdgain_idx[pdg];
869 struct ath5k_pdgain_info *pd =
870 &chinfo[pier].pd_curves[idx];
871
872 /* Lowest gain curve (max power) */
873 if (pdg == 0) {
874 /* One more point for better accuracy */
875 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
876
877 /* Allocate pd points for this curve */
878 pd->pd_step = calloc(pd->pd_points, sizeof(u8));
879
880 if (!pd->pd_step)
881 return -ENOMEM;
882
883 pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
884
885 if (!pd->pd_pwr)
886 return -ENOMEM;
887
888
889 /* Fill raw dataset
890 * (all power levels are in 0.25dB units) */
891 pd->pd_step[0] = pcinfo->pcdac_x0[0];
892 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
893
894 for (point = 1; point < pd->pd_points;
895 point++) {
896 /* Absolute values */
897 pd->pd_pwr[point] =
898 pcinfo->pwr_x0[point];
899
900 /* Deltas */
901 pd->pd_step[point] =
902 pd->pd_step[point - 1] +
903 pcinfo->pcdac_x0[point];
904 }
905
906 /* Set min power for this frequency */
907 chinfo[pier].min_pwr = pd->pd_pwr[0];
908
909 /* Highest gain curve (min power) */
910 } else if (pdg == 1) {
911
912 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
913
914 /* Allocate pd points for this curve */
915 pd->pd_step = calloc(pd->pd_points, sizeof(u8));
916
917 if (!pd->pd_step)
918 return -ENOMEM;
919
920 pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
921
922 if (!pd->pd_pwr)
923 return -ENOMEM;
924
925 /* Fill raw dataset
926 * (all power levels are in 0.25dB units) */
927 for (point = 0; point < pd->pd_points;
928 point++) {
929 /* Absolute values */
930 pd->pd_pwr[point] =
931 pcinfo->pwr_x3[point];
932
933 /* Fixed points */
934 pd->pd_step[point] =
935 pcinfo->pcdac_x3[point];
936 }
937
938 /* Since we have a higher gain curve
939 * override min power */
940 chinfo[pier].min_pwr = pd->pd_pwr[0];
941 }
942 }
943 }
944
945 return 0;
946 }
947
948 /* Parse EEPROM data */
949 static int
ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw * ah,int mode)950 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
951 {
952 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
953 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
954 struct ath5k_chan_pcal_info *gen_chan_info;
955 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
956 u32 offset;
957 u8 i, c;
958 u16 val;
959 int ret;
960 u8 pd_gains = 0;
961
962 /* Count how many curves we have and
963 * identify them (which one of the 4
964 * available curves we have on each count).
965 * Curves are stored from lower (x0) to
966 * higher (x3) gain */
967 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
968 /* ee_x_gain[mode] is x gain mask */
969 if ((ee->ee_x_gain[mode] >> i) & 0x1)
970 pdgain_idx[pd_gains++] = i;
971 }
972 ee->ee_pd_gains[mode] = pd_gains;
973
974 if (pd_gains == 0 || pd_gains > 2)
975 return -EINVAL;
976
977 switch (mode) {
978 case AR5K_EEPROM_MODE_11A:
979 /*
980 * Read 5GHz EEPROM channels
981 */
982 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
983 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
984
985 offset += AR5K_EEPROM_GROUP2_OFFSET;
986 gen_chan_info = ee->ee_pwr_cal_a;
987 break;
988 case AR5K_EEPROM_MODE_11B:
989 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
990 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
991 offset += AR5K_EEPROM_GROUP3_OFFSET;
992
993 /* NB: frequency piers parsed during mode init */
994 gen_chan_info = ee->ee_pwr_cal_b;
995 break;
996 case AR5K_EEPROM_MODE_11G:
997 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
998 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
999 offset += AR5K_EEPROM_GROUP4_OFFSET;
1000 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1001 offset += AR5K_EEPROM_GROUP2_OFFSET;
1002
1003 /* NB: frequency piers parsed during mode init */
1004 gen_chan_info = ee->ee_pwr_cal_g;
1005 break;
1006 default:
1007 return -EINVAL;
1008 }
1009
1010 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1011 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1012
1013 /* Power values in quarter dB
1014 * for the lower xpd gain curve
1015 * (0 dBm -> higher output power) */
1016 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1017 AR5K_EEPROM_READ(offset++, val);
1018 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1019 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1020 }
1021
1022 /* PCDAC steps
1023 * corresponding to the above power
1024 * measurements */
1025 AR5K_EEPROM_READ(offset++, val);
1026 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1027 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1028 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1029
1030 /* Power values in quarter dB
1031 * for the higher xpd gain curve
1032 * (18 dBm -> lower output power) */
1033 AR5K_EEPROM_READ(offset++, val);
1034 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1035 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1036
1037 AR5K_EEPROM_READ(offset++, val);
1038 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1039
1040 /* PCDAC steps
1041 * corresponding to the above power
1042 * measurements (fixed) */
1043 chan_pcal_info->pcdac_x3[0] = 20;
1044 chan_pcal_info->pcdac_x3[1] = 35;
1045 chan_pcal_info->pcdac_x3[2] = 63;
1046
1047 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1048 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1049
1050 /* Last xpd0 power level is also channel maximum */
1051 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1052 } else {
1053 chan_pcal_info->pcdac_x0[0] = 1;
1054 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1055 }
1056
1057 }
1058
1059 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1060 }
1061
1062
1063 /*
1064 * Read power calibration for RF2413 chips
1065 *
1066 * For RF2413 we have a Power to PDDAC table (Power Detector)
1067 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1068 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1069 * axis and looks like an exponential function like the RF5111 curve.
1070 *
1071 * To recreate the curves we read here the points and interpolate
1072 * later. Note that in most cases only 2 (higher and lower) curves are
1073 * used (like RF5112) but vendors have the oportunity to include all
1074 * 4 curves on eeprom. The final curve (higher power) has an extra
1075 * point for better accuracy like RF5112.
1076 */
1077
1078 /* For RF2413 power calibration data doesn't start on a fixed location and
1079 * if a mode is not supported, it's section is missing -not zeroed-.
1080 * So we need to calculate the starting offset for each section by using
1081 * these two functions */
1082
1083 /* Return the size of each section based on the mode and the number of pd
1084 * gains available (maximum 4). */
1085 static inline unsigned int
ath5k_pdgains_size_2413(struct ath5k_eeprom_info * ee,unsigned int mode)1086 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1087 {
1088 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1089 unsigned int sz;
1090
1091 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1092 sz *= ee->ee_n_piers[mode];
1093
1094 return sz;
1095 }
1096
1097 /* Return the starting offset for a section based on the modes supported
1098 * and each section's size. */
1099 static unsigned int
ath5k_cal_data_offset_2413(struct ath5k_eeprom_info * ee,int mode)1100 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1101 {
1102 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1103
1104 switch(mode) {
1105 case AR5K_EEPROM_MODE_11G:
1106 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1107 offset += ath5k_pdgains_size_2413(ee,
1108 AR5K_EEPROM_MODE_11B) +
1109 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1110 /* fall through */
1111 case AR5K_EEPROM_MODE_11B:
1112 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1113 offset += ath5k_pdgains_size_2413(ee,
1114 AR5K_EEPROM_MODE_11A) +
1115 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1116 /* fall through */
1117 case AR5K_EEPROM_MODE_11A:
1118 break;
1119 default:
1120 break;
1121 }
1122
1123 return offset;
1124 }
1125
1126 /* Convert RF2413 specific data to generic raw data
1127 * used by interpolation code */
1128 static int
ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw * ah,int mode,struct ath5k_chan_pcal_info * chinfo)1129 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1130 struct ath5k_chan_pcal_info *chinfo)
1131 {
1132 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1133 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1134 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1135 unsigned int pier, point;
1136 int pdg;
1137
1138 /* Fill raw data for each calibration pier */
1139 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1140
1141 pcinfo = &chinfo[pier].rf2413_info;
1142
1143 /* Allocate pd_curves for this cal pier */
1144 chinfo[pier].pd_curves =
1145 calloc(AR5K_EEPROM_N_PD_CURVES,
1146 sizeof(struct ath5k_pdgain_info));
1147
1148 if (!chinfo[pier].pd_curves)
1149 return -ENOMEM;
1150
1151 /* Fill pd_curves */
1152 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1153
1154 u8 idx = pdgain_idx[pdg];
1155 struct ath5k_pdgain_info *pd =
1156 &chinfo[pier].pd_curves[idx];
1157
1158 /* One more point for the highest power
1159 * curve (lowest gain) */
1160 if (pdg == ee->ee_pd_gains[mode] - 1)
1161 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1162 else
1163 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1164
1165 /* Allocate pd points for this curve */
1166 pd->pd_step = calloc(pd->pd_points, sizeof(u8));
1167
1168 if (!pd->pd_step)
1169 return -ENOMEM;
1170
1171 pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
1172
1173 if (!pd->pd_pwr)
1174 return -ENOMEM;
1175
1176 /* Fill raw dataset
1177 * convert all pwr levels to
1178 * quarter dB for RF5112 combatibility */
1179 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1180 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1181
1182 for (point = 1; point < pd->pd_points; point++) {
1183
1184 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1185 2 * pcinfo->pwr[pdg][point - 1];
1186
1187 pd->pd_step[point] = pd->pd_step[point - 1] +
1188 pcinfo->pddac[pdg][point - 1];
1189
1190 }
1191
1192 /* Highest gain curve -> min power */
1193 if (pdg == 0)
1194 chinfo[pier].min_pwr = pd->pd_pwr[0];
1195
1196 /* Lowest gain curve -> max power */
1197 if (pdg == ee->ee_pd_gains[mode] - 1)
1198 chinfo[pier].max_pwr =
1199 pd->pd_pwr[pd->pd_points - 1];
1200 }
1201 }
1202
1203 return 0;
1204 }
1205
1206 /* Parse EEPROM data */
1207 static int
ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw * ah,int mode)1208 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1209 {
1210 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1211 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1212 struct ath5k_chan_pcal_info *chinfo;
1213 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1214 u32 offset;
1215 int idx, i, ret;
1216 u16 val;
1217 u8 pd_gains = 0;
1218
1219 /* Count how many curves we have and
1220 * identify them (which one of the 4
1221 * available curves we have on each count).
1222 * Curves are stored from higher to
1223 * lower gain so we go backwards */
1224 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1225 /* ee_x_gain[mode] is x gain mask */
1226 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1227 pdgain_idx[pd_gains++] = idx;
1228
1229 }
1230 ee->ee_pd_gains[mode] = pd_gains;
1231
1232 if (pd_gains == 0)
1233 return -EINVAL;
1234
1235 offset = ath5k_cal_data_offset_2413(ee, mode);
1236 switch (mode) {
1237 case AR5K_EEPROM_MODE_11A:
1238 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1239 return 0;
1240
1241 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1242 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1243 chinfo = ee->ee_pwr_cal_a;
1244 break;
1245 case AR5K_EEPROM_MODE_11B:
1246 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1247 return 0;
1248
1249 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1250 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1251 chinfo = ee->ee_pwr_cal_b;
1252 break;
1253 case AR5K_EEPROM_MODE_11G:
1254 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1255 return 0;
1256
1257 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1258 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1259 chinfo = ee->ee_pwr_cal_g;
1260 break;
1261 default:
1262 return -EINVAL;
1263 }
1264
1265 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1266 pcinfo = &chinfo[i].rf2413_info;
1267
1268 /*
1269 * Read pwr_i, pddac_i and the first
1270 * 2 pd points (pwr, pddac)
1271 */
1272 AR5K_EEPROM_READ(offset++, val);
1273 pcinfo->pwr_i[0] = val & 0x1f;
1274 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1275 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1276
1277 AR5K_EEPROM_READ(offset++, val);
1278 pcinfo->pddac[0][0] = val & 0x3f;
1279 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1280 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1281
1282 AR5K_EEPROM_READ(offset++, val);
1283 pcinfo->pwr[0][2] = val & 0xf;
1284 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1285
1286 pcinfo->pwr[0][3] = 0;
1287 pcinfo->pddac[0][3] = 0;
1288
1289 if (pd_gains > 1) {
1290 /*
1291 * Pd gain 0 is not the last pd gain
1292 * so it only has 2 pd points.
1293 * Continue wih pd gain 1.
1294 */
1295 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1296
1297 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1298 AR5K_EEPROM_READ(offset++, val);
1299 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1300
1301 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1302 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1303
1304 AR5K_EEPROM_READ(offset++, val);
1305 pcinfo->pwr[1][1] = val & 0xf;
1306 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1307 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1308
1309 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1310 AR5K_EEPROM_READ(offset++, val);
1311 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1312
1313 pcinfo->pwr[1][3] = 0;
1314 pcinfo->pddac[1][3] = 0;
1315 } else if (pd_gains == 1) {
1316 /*
1317 * Pd gain 0 is the last one so
1318 * read the extra point.
1319 */
1320 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1321
1322 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1323 AR5K_EEPROM_READ(offset++, val);
1324 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1325 }
1326
1327 /*
1328 * Proceed with the other pd_gains
1329 * as above.
1330 */
1331 if (pd_gains > 2) {
1332 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1333 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1334
1335 AR5K_EEPROM_READ(offset++, val);
1336 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1337 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1338 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1339
1340 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1341 AR5K_EEPROM_READ(offset++, val);
1342 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1343
1344 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1345 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1346
1347 pcinfo->pwr[2][3] = 0;
1348 pcinfo->pddac[2][3] = 0;
1349 } else if (pd_gains == 2) {
1350 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1351 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1352 }
1353
1354 if (pd_gains > 3) {
1355 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1356 AR5K_EEPROM_READ(offset++, val);
1357 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1358
1359 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1360 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1361 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1362
1363 AR5K_EEPROM_READ(offset++, val);
1364 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1365 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1366 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1367
1368 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1369 AR5K_EEPROM_READ(offset++, val);
1370 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1371
1372 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1373 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1374
1375 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1376 AR5K_EEPROM_READ(offset++, val);
1377 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1378 } else if (pd_gains == 3) {
1379 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1380 AR5K_EEPROM_READ(offset++, val);
1381 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1382
1383 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1384 }
1385 }
1386
1387 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1388 }
1389
1390
1391 /*
1392 * Read per rate target power (this is the maximum tx power
1393 * supported by the card). This info is used when setting
1394 * tx power, no matter the channel.
1395 *
1396 * This also works for v5 EEPROMs.
1397 */
1398 static int
ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw * ah,unsigned int mode)1399 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1400 {
1401 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1402 struct ath5k_rate_pcal_info *rate_pcal_info;
1403 u8 *rate_target_pwr_num;
1404 u32 offset;
1405 u16 val;
1406 int ret, i;
1407
1408 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1409 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1410 switch (mode) {
1411 case AR5K_EEPROM_MODE_11A:
1412 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1413 rate_pcal_info = ee->ee_rate_tpwr_a;
1414 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1415 break;
1416 case AR5K_EEPROM_MODE_11B:
1417 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1418 rate_pcal_info = ee->ee_rate_tpwr_b;
1419 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1420 break;
1421 case AR5K_EEPROM_MODE_11G:
1422 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1423 rate_pcal_info = ee->ee_rate_tpwr_g;
1424 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1425 break;
1426 default:
1427 return -EINVAL;
1428 }
1429
1430 /* Different freq mask for older eeproms (<= v3.2) */
1431 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1432 for (i = 0; i < (*rate_target_pwr_num); i++) {
1433 AR5K_EEPROM_READ(offset++, val);
1434 rate_pcal_info[i].freq =
1435 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1436
1437 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1438 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1439
1440 AR5K_EEPROM_READ(offset++, val);
1441
1442 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1443 val == 0) {
1444 (*rate_target_pwr_num) = i;
1445 break;
1446 }
1447
1448 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1449 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1450 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1451 }
1452 } else {
1453 for (i = 0; i < (*rate_target_pwr_num); i++) {
1454 AR5K_EEPROM_READ(offset++, val);
1455 rate_pcal_info[i].freq =
1456 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1457
1458 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1459 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1460
1461 AR5K_EEPROM_READ(offset++, val);
1462
1463 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1464 val == 0) {
1465 (*rate_target_pwr_num) = i;
1466 break;
1467 }
1468
1469 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1470 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1471 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1472 }
1473 }
1474
1475 return 0;
1476 }
1477
1478 /*
1479 * Read per channel calibration info from EEPROM
1480 *
1481 * This info is used to calibrate the baseband power table. Imagine
1482 * that for each channel there is a power curve that's hw specific
1483 * (depends on amplifier etc) and we try to "correct" this curve using
1484 * offests we pass on to phy chip (baseband -> before amplifier) so that
1485 * it can use accurate power values when setting tx power (takes amplifier's
1486 * performance on each channel into account).
1487 *
1488 * EEPROM provides us with the offsets for some pre-calibrated channels
1489 * and we have to interpolate to create the full table for these channels and
1490 * also the table for any channel.
1491 */
1492 static int
ath5k_eeprom_read_pcal_info(struct ath5k_hw * ah)1493 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1494 {
1495 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1496 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1497 int mode;
1498 int err;
1499
1500 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1501 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1502 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1503 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1504 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1505 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1506 else
1507 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1508
1509
1510 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1511 mode++) {
1512 err = read_pcal(ah, mode);
1513 if (err)
1514 return err;
1515
1516 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1517 if (err < 0)
1518 return err;
1519 }
1520
1521 return 0;
1522 }
1523
1524 static int
ath5k_eeprom_free_pcal_info(struct ath5k_hw * ah,int mode)1525 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1526 {
1527 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1528 struct ath5k_chan_pcal_info *chinfo;
1529 u8 pier, pdg;
1530
1531 switch (mode) {
1532 case AR5K_EEPROM_MODE_11A:
1533 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1534 return 0;
1535 chinfo = ee->ee_pwr_cal_a;
1536 break;
1537 case AR5K_EEPROM_MODE_11B:
1538 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1539 return 0;
1540 chinfo = ee->ee_pwr_cal_b;
1541 break;
1542 case AR5K_EEPROM_MODE_11G:
1543 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1544 return 0;
1545 chinfo = ee->ee_pwr_cal_g;
1546 break;
1547 default:
1548 return -EINVAL;
1549 }
1550
1551 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1552 if (!chinfo[pier].pd_curves)
1553 continue;
1554
1555 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1556 struct ath5k_pdgain_info *pd =
1557 &chinfo[pier].pd_curves[pdg];
1558
1559 if (pd != NULL) {
1560 free(pd->pd_step);
1561 free(pd->pd_pwr);
1562 }
1563 }
1564
1565 free(chinfo[pier].pd_curves);
1566 }
1567
1568 return 0;
1569 }
1570
1571 void
ath5k_eeprom_detach(struct ath5k_hw * ah)1572 ath5k_eeprom_detach(struct ath5k_hw *ah)
1573 {
1574 u8 mode;
1575
1576 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1577 ath5k_eeprom_free_pcal_info(ah, mode);
1578 }
1579
1580 /* Read conformance test limits used for regulatory control */
1581 static int
ath5k_eeprom_read_ctl_info(struct ath5k_hw * ah)1582 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1583 {
1584 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1585 struct ath5k_edge_power *rep;
1586 unsigned int fmask, pmask;
1587 unsigned int ctl_mode;
1588 int ret, i, j;
1589 u32 offset;
1590 u16 val;
1591
1592 pmask = AR5K_EEPROM_POWER_M;
1593 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1594 offset = AR5K_EEPROM_CTL(ee->ee_version);
1595 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1596 for (i = 0; i < ee->ee_ctls; i += 2) {
1597 AR5K_EEPROM_READ(offset++, val);
1598 ee->ee_ctl[i] = (val >> 8) & 0xff;
1599 ee->ee_ctl[i + 1] = val & 0xff;
1600 }
1601
1602 offset = AR5K_EEPROM_GROUP8_OFFSET;
1603 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1604 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1605 AR5K_EEPROM_GROUP5_OFFSET;
1606 else
1607 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1608
1609 rep = ee->ee_ctl_pwr;
1610 for(i = 0; i < ee->ee_ctls; i++) {
1611 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1612 case AR5K_CTL_11A:
1613 case AR5K_CTL_TURBO:
1614 ctl_mode = AR5K_EEPROM_MODE_11A;
1615 break;
1616 default:
1617 ctl_mode = AR5K_EEPROM_MODE_11G;
1618 break;
1619 }
1620 if (ee->ee_ctl[i] == 0) {
1621 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1622 offset += 8;
1623 else
1624 offset += 7;
1625 rep += AR5K_EEPROM_N_EDGES;
1626 continue;
1627 }
1628 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1629 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1630 AR5K_EEPROM_READ(offset++, val);
1631 rep[j].freq = (val >> 8) & fmask;
1632 rep[j + 1].freq = val & fmask;
1633 }
1634 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1635 AR5K_EEPROM_READ(offset++, val);
1636 rep[j].edge = (val >> 8) & pmask;
1637 rep[j].flag = (val >> 14) & 1;
1638 rep[j + 1].edge = val & pmask;
1639 rep[j + 1].flag = (val >> 6) & 1;
1640 }
1641 } else {
1642 AR5K_EEPROM_READ(offset++, val);
1643 rep[0].freq = (val >> 9) & fmask;
1644 rep[1].freq = (val >> 2) & fmask;
1645 rep[2].freq = (val << 5) & fmask;
1646
1647 AR5K_EEPROM_READ(offset++, val);
1648 rep[2].freq |= (val >> 11) & 0x1f;
1649 rep[3].freq = (val >> 4) & fmask;
1650 rep[4].freq = (val << 3) & fmask;
1651
1652 AR5K_EEPROM_READ(offset++, val);
1653 rep[4].freq |= (val >> 13) & 0x7;
1654 rep[5].freq = (val >> 6) & fmask;
1655 rep[6].freq = (val << 1) & fmask;
1656
1657 AR5K_EEPROM_READ(offset++, val);
1658 rep[6].freq |= (val >> 15) & 0x1;
1659 rep[7].freq = (val >> 8) & fmask;
1660
1661 rep[0].edge = (val >> 2) & pmask;
1662 rep[1].edge = (val << 4) & pmask;
1663
1664 AR5K_EEPROM_READ(offset++, val);
1665 rep[1].edge |= (val >> 12) & 0xf;
1666 rep[2].edge = (val >> 6) & pmask;
1667 rep[3].edge = val & pmask;
1668
1669 AR5K_EEPROM_READ(offset++, val);
1670 rep[4].edge = (val >> 10) & pmask;
1671 rep[5].edge = (val >> 4) & pmask;
1672 rep[6].edge = (val << 2) & pmask;
1673
1674 AR5K_EEPROM_READ(offset++, val);
1675 rep[6].edge |= (val >> 14) & 0x3;
1676 rep[7].edge = (val >> 8) & pmask;
1677 }
1678 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1679 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1680 rep[j].freq, ctl_mode);
1681 }
1682 rep += AR5K_EEPROM_N_EDGES;
1683 }
1684
1685 return 0;
1686 }
1687
1688
1689 /*
1690 * Initialize eeprom power tables
1691 */
1692 int
ath5k_eeprom_init(struct ath5k_hw * ah)1693 ath5k_eeprom_init(struct ath5k_hw *ah)
1694 {
1695 int err;
1696
1697 err = ath5k_eeprom_init_header(ah);
1698 if (err < 0)
1699 return err;
1700
1701 err = ath5k_eeprom_init_modes(ah);
1702 if (err < 0)
1703 return err;
1704
1705 err = ath5k_eeprom_read_pcal_info(ah);
1706 if (err < 0)
1707 return err;
1708
1709 err = ath5k_eeprom_read_ctl_info(ah);
1710 if (err < 0)
1711 return err;
1712
1713 return 0;
1714 }
1715
1716 /*
1717 * Read the MAC address from eeprom
1718 */
ath5k_eeprom_read_mac(struct ath5k_hw * ah,u8 * mac)1719 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1720 {
1721 u8 mac_d[ETH_ALEN] = {};
1722 u32 total, offset;
1723 u16 data;
1724 int octet, ret;
1725
1726 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1727 if (ret)
1728 return ret;
1729
1730 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1731 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1732 if (ret)
1733 return ret;
1734
1735 total += data;
1736 mac_d[octet + 1] = data & 0xff;
1737 mac_d[octet] = data >> 8;
1738 octet += 2;
1739 }
1740
1741 if (!total || total == 3 * 0xffff)
1742 return -EINVAL;
1743
1744 memcpy(mac, mac_d, ETH_ALEN);
1745
1746 return 0;
1747 }
1748
ath5k_eeprom_is_hb63(struct ath5k_hw * ah)1749 int ath5k_eeprom_is_hb63(struct ath5k_hw *ah)
1750 {
1751 u16 data;
1752
1753 ath5k_hw_eeprom_read(ah, AR5K_EEPROM_IS_HB63, &data);
1754
1755 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && data)
1756 return 1;
1757 else
1758 return 0;
1759 }
1760
1761