1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <stdio.h>
13 #include <limits.h>
14
15 #include "vpx/vpx_encoder.h"
16 #include "vpx_dsp/bitwriter_buffer.h"
17 #include "vpx_dsp/vpx_dsp_common.h"
18 #include "vpx_mem/vpx_mem.h"
19 #include "vpx_ports/mem_ops.h"
20 #include "vpx_ports/system_state.h"
21
22 #include "vp9/common/vp9_entropy.h"
23 #include "vp9/common/vp9_entropymode.h"
24 #include "vp9/common/vp9_entropymv.h"
25 #include "vp9/common/vp9_mvref_common.h"
26 #include "vp9/common/vp9_pred_common.h"
27 #include "vp9/common/vp9_seg_common.h"
28 #include "vp9/common/vp9_tile_common.h"
29
30 #include "vp9/encoder/vp9_cost.h"
31 #include "vp9/encoder/vp9_bitstream.h"
32 #include "vp9/encoder/vp9_encodemv.h"
33 #include "vp9/encoder/vp9_mcomp.h"
34 #include "vp9/encoder/vp9_segmentation.h"
35 #include "vp9/encoder/vp9_subexp.h"
36 #include "vp9/encoder/vp9_tokenize.h"
37
38 static const struct vp9_token intra_mode_encodings[INTRA_MODES] = {
39 { 0, 1 }, { 6, 3 }, { 28, 5 }, { 30, 5 }, { 58, 6 },
40 { 59, 6 }, { 126, 7 }, { 127, 7 }, { 62, 6 }, { 2, 2 }
41 };
42 static const struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS] =
43 { { 0, 1 }, { 2, 2 }, { 3, 2 } };
44 static const struct vp9_token partition_encodings[PARTITION_TYPES] = {
45 { 0, 1 }, { 2, 2 }, { 6, 3 }, { 7, 3 }
46 };
47 static const struct vp9_token inter_mode_encodings[INTER_MODES] = {
48 { 2, 2 }, { 6, 3 }, { 0, 1 }, { 7, 3 }
49 };
50
write_intra_mode(vpx_writer * w,PREDICTION_MODE mode,const vpx_prob * probs)51 static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode,
52 const vpx_prob *probs) {
53 vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
54 }
55
write_inter_mode(vpx_writer * w,PREDICTION_MODE mode,const vpx_prob * probs)56 static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode,
57 const vpx_prob *probs) {
58 assert(is_inter_mode(mode));
59 vp9_write_token(w, vp9_inter_mode_tree, probs,
60 &inter_mode_encodings[INTER_OFFSET(mode)]);
61 }
62
encode_unsigned_max(struct vpx_write_bit_buffer * wb,int data,int max)63 static void encode_unsigned_max(struct vpx_write_bit_buffer *wb, int data,
64 int max) {
65 vpx_wb_write_literal(wb, data, get_unsigned_bits(max));
66 }
67
prob_diff_update(const vpx_tree_index * tree,vpx_prob probs[],const unsigned int counts[],int n,vpx_writer * w)68 static void prob_diff_update(const vpx_tree_index *tree,
69 vpx_prob probs[/*n - 1*/],
70 const unsigned int counts[/*n - 1*/], int n,
71 vpx_writer *w) {
72 int i;
73 unsigned int branch_ct[32][2];
74
75 // Assuming max number of probabilities <= 32
76 assert(n <= 32);
77
78 vp9_tree_probs_from_distribution(tree, branch_ct, counts);
79 for (i = 0; i < n - 1; ++i)
80 vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
81 }
82
write_selected_tx_size(const VP9_COMMON * cm,const MACROBLOCKD * const xd,vpx_writer * w)83 static void write_selected_tx_size(const VP9_COMMON *cm,
84 const MACROBLOCKD *const xd, vpx_writer *w) {
85 TX_SIZE tx_size = xd->mi[0]->tx_size;
86 BLOCK_SIZE bsize = xd->mi[0]->sb_type;
87 const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
88 const vpx_prob *const tx_probs =
89 get_tx_probs2(max_tx_size, xd, &cm->fc->tx_probs);
90 vpx_write(w, tx_size != TX_4X4, tx_probs[0]);
91 if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
92 vpx_write(w, tx_size != TX_8X8, tx_probs[1]);
93 if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
94 vpx_write(w, tx_size != TX_16X16, tx_probs[2]);
95 }
96 }
97
write_skip(const VP9_COMMON * cm,const MACROBLOCKD * const xd,int segment_id,const MODE_INFO * mi,vpx_writer * w)98 static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *const xd,
99 int segment_id, const MODE_INFO *mi, vpx_writer *w) {
100 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
101 return 1;
102 } else {
103 const int skip = mi->skip;
104 vpx_write(w, skip, vp9_get_skip_prob(cm, xd));
105 return skip;
106 }
107 }
108
update_skip_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)109 static void update_skip_probs(VP9_COMMON *cm, vpx_writer *w,
110 FRAME_COUNTS *counts) {
111 int k;
112
113 for (k = 0; k < SKIP_CONTEXTS; ++k)
114 vp9_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]);
115 }
116
update_switchable_interp_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)117 static void update_switchable_interp_probs(VP9_COMMON *cm, vpx_writer *w,
118 FRAME_COUNTS *counts) {
119 int j;
120 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
121 prob_diff_update(vp9_switchable_interp_tree,
122 cm->fc->switchable_interp_prob[j],
123 counts->switchable_interp[j], SWITCHABLE_FILTERS, w);
124 }
125
pack_mb_tokens(vpx_writer * w,TOKENEXTRA ** tp,const TOKENEXTRA * const stop,vpx_bit_depth_t bit_depth)126 static void pack_mb_tokens(vpx_writer *w, TOKENEXTRA **tp,
127 const TOKENEXTRA *const stop,
128 vpx_bit_depth_t bit_depth) {
129 const TOKENEXTRA *p;
130 const vp9_extra_bit *const extra_bits =
131 #if CONFIG_VP9_HIGHBITDEPTH
132 (bit_depth == VPX_BITS_12)
133 ? vp9_extra_bits_high12
134 : (bit_depth == VPX_BITS_10) ? vp9_extra_bits_high10 : vp9_extra_bits;
135 #else
136 vp9_extra_bits;
137 (void)bit_depth;
138 #endif // CONFIG_VP9_HIGHBITDEPTH
139
140 for (p = *tp; p < stop && p->token != EOSB_TOKEN; ++p) {
141 if (p->token == EOB_TOKEN) {
142 vpx_write(w, 0, p->context_tree[0]);
143 continue;
144 }
145 vpx_write(w, 1, p->context_tree[0]);
146 while (p->token == ZERO_TOKEN) {
147 vpx_write(w, 0, p->context_tree[1]);
148 ++p;
149 if (p == stop || p->token == EOSB_TOKEN) {
150 *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN);
151 return;
152 }
153 }
154
155 {
156 const int t = p->token;
157 const vpx_prob *const context_tree = p->context_tree;
158 assert(t != ZERO_TOKEN);
159 assert(t != EOB_TOKEN);
160 assert(t != EOSB_TOKEN);
161 vpx_write(w, 1, context_tree[1]);
162 if (t == ONE_TOKEN) {
163 vpx_write(w, 0, context_tree[2]);
164 vpx_write_bit(w, p->extra & 1);
165 } else { // t >= TWO_TOKEN && t < EOB_TOKEN
166 const struct vp9_token *const a = &vp9_coef_encodings[t];
167 const int v = a->value;
168 const int n = a->len;
169 const int e = p->extra;
170 vpx_write(w, 1, context_tree[2]);
171 vp9_write_tree(w, vp9_coef_con_tree,
172 vp9_pareto8_full[context_tree[PIVOT_NODE] - 1], v,
173 n - UNCONSTRAINED_NODES, 0);
174 if (t >= CATEGORY1_TOKEN) {
175 const vp9_extra_bit *const b = &extra_bits[t];
176 const unsigned char *pb = b->prob;
177 int v = e >> 1;
178 int n = b->len; // number of bits in v, assumed nonzero
179 do {
180 const int bb = (v >> --n) & 1;
181 vpx_write(w, bb, *pb++);
182 } while (n);
183 }
184 vpx_write_bit(w, e & 1);
185 }
186 }
187 }
188 *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN);
189 }
190
write_segment_id(vpx_writer * w,const struct segmentation * seg,int segment_id)191 static void write_segment_id(vpx_writer *w, const struct segmentation *seg,
192 int segment_id) {
193 if (seg->enabled && seg->update_map)
194 vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
195 }
196
197 // This function encodes the reference frame
write_ref_frames(const VP9_COMMON * cm,const MACROBLOCKD * const xd,vpx_writer * w)198 static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *const xd,
199 vpx_writer *w) {
200 const MODE_INFO *const mi = xd->mi[0];
201 const int is_compound = has_second_ref(mi);
202 const int segment_id = mi->segment_id;
203
204 // If segment level coding of this signal is disabled...
205 // or the segment allows multiple reference frame options
206 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
207 assert(!is_compound);
208 assert(mi->ref_frame[0] ==
209 get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
210 } else {
211 // does the feature use compound prediction or not
212 // (if not specified at the frame/segment level)
213 if (cm->reference_mode == REFERENCE_MODE_SELECT) {
214 vpx_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
215 } else {
216 assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE));
217 }
218
219 if (is_compound) {
220 vpx_write(w, mi->ref_frame[0] == GOLDEN_FRAME,
221 vp9_get_pred_prob_comp_ref_p(cm, xd));
222 } else {
223 const int bit0 = mi->ref_frame[0] != LAST_FRAME;
224 vpx_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
225 if (bit0) {
226 const int bit1 = mi->ref_frame[0] != GOLDEN_FRAME;
227 vpx_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
228 }
229 }
230 }
231 }
232
pack_inter_mode_mvs(VP9_COMP * cpi,const MACROBLOCKD * const xd,const MB_MODE_INFO_EXT * const mbmi_ext,vpx_writer * w,unsigned int * const max_mv_magnitude,int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE])233 static void pack_inter_mode_mvs(
234 VP9_COMP *cpi, const MACROBLOCKD *const xd,
235 const MB_MODE_INFO_EXT *const mbmi_ext, vpx_writer *w,
236 unsigned int *const max_mv_magnitude,
237 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) {
238 VP9_COMMON *const cm = &cpi->common;
239 const nmv_context *nmvc = &cm->fc->nmvc;
240 const struct segmentation *const seg = &cm->seg;
241 const MODE_INFO *const mi = xd->mi[0];
242 const PREDICTION_MODE mode = mi->mode;
243 const int segment_id = mi->segment_id;
244 const BLOCK_SIZE bsize = mi->sb_type;
245 const int allow_hp = cm->allow_high_precision_mv;
246 const int is_inter = is_inter_block(mi);
247 const int is_compound = has_second_ref(mi);
248 int skip, ref;
249
250 if (seg->update_map) {
251 if (seg->temporal_update) {
252 const int pred_flag = mi->seg_id_predicted;
253 vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
254 vpx_write(w, pred_flag, pred_prob);
255 if (!pred_flag) write_segment_id(w, seg, segment_id);
256 } else {
257 write_segment_id(w, seg, segment_id);
258 }
259 }
260
261 skip = write_skip(cm, xd, segment_id, mi, w);
262
263 if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
264 vpx_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
265
266 if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
267 !(is_inter && skip)) {
268 write_selected_tx_size(cm, xd, w);
269 }
270
271 if (!is_inter) {
272 if (bsize >= BLOCK_8X8) {
273 write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]);
274 } else {
275 int idx, idy;
276 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
277 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
278 for (idy = 0; idy < 2; idy += num_4x4_h) {
279 for (idx = 0; idx < 2; idx += num_4x4_w) {
280 const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
281 write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]);
282 }
283 }
284 }
285 write_intra_mode(w, mi->uv_mode, cm->fc->uv_mode_prob[mode]);
286 } else {
287 const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]];
288 const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx];
289 write_ref_frames(cm, xd, w);
290
291 // If segment skip is not enabled code the mode.
292 if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
293 if (bsize >= BLOCK_8X8) {
294 write_inter_mode(w, mode, inter_probs);
295 }
296 }
297
298 if (cm->interp_filter == SWITCHABLE) {
299 const int ctx = get_pred_context_switchable_interp(xd);
300 vp9_write_token(w, vp9_switchable_interp_tree,
301 cm->fc->switchable_interp_prob[ctx],
302 &switchable_interp_encodings[mi->interp_filter]);
303 ++interp_filter_selected[0][mi->interp_filter];
304 } else {
305 assert(mi->interp_filter == cm->interp_filter);
306 }
307
308 if (bsize < BLOCK_8X8) {
309 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
310 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
311 int idx, idy;
312 for (idy = 0; idy < 2; idy += num_4x4_h) {
313 for (idx = 0; idx < 2; idx += num_4x4_w) {
314 const int j = idy * 2 + idx;
315 const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
316 write_inter_mode(w, b_mode, inter_probs);
317 if (b_mode == NEWMV) {
318 for (ref = 0; ref < 1 + is_compound; ++ref)
319 vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
320 &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv,
321 nmvc, allow_hp, max_mv_magnitude);
322 }
323 }
324 }
325 } else {
326 if (mode == NEWMV) {
327 for (ref = 0; ref < 1 + is_compound; ++ref)
328 vp9_encode_mv(cpi, w, &mi->mv[ref].as_mv,
329 &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, nmvc,
330 allow_hp, max_mv_magnitude);
331 }
332 }
333 }
334 }
335
write_mb_modes_kf(const VP9_COMMON * cm,const MACROBLOCKD * xd,vpx_writer * w)336 static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd,
337 vpx_writer *w) {
338 const struct segmentation *const seg = &cm->seg;
339 const MODE_INFO *const mi = xd->mi[0];
340 const MODE_INFO *const above_mi = xd->above_mi;
341 const MODE_INFO *const left_mi = xd->left_mi;
342 const BLOCK_SIZE bsize = mi->sb_type;
343
344 if (seg->update_map) write_segment_id(w, seg, mi->segment_id);
345
346 write_skip(cm, xd, mi->segment_id, mi, w);
347
348 if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
349 write_selected_tx_size(cm, xd, w);
350
351 if (bsize >= BLOCK_8X8) {
352 write_intra_mode(w, mi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
353 } else {
354 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
355 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
356 int idx, idy;
357
358 for (idy = 0; idy < 2; idy += num_4x4_h) {
359 for (idx = 0; idx < 2; idx += num_4x4_w) {
360 const int block = idy * 2 + idx;
361 write_intra_mode(w, mi->bmi[block].as_mode,
362 get_y_mode_probs(mi, above_mi, left_mi, block));
363 }
364 }
365 }
366
367 write_intra_mode(w, mi->uv_mode, vp9_kf_uv_mode_prob[mi->mode]);
368 }
369
write_modes_b(VP9_COMP * cpi,MACROBLOCKD * const xd,const TileInfo * const tile,vpx_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col,unsigned int * const max_mv_magnitude,int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE])370 static void write_modes_b(
371 VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile,
372 vpx_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
373 int mi_row, int mi_col, unsigned int *const max_mv_magnitude,
374 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) {
375 const VP9_COMMON *const cm = &cpi->common;
376 const MB_MODE_INFO_EXT *const mbmi_ext =
377 cpi->td.mb.mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
378 MODE_INFO *m;
379
380 xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
381 m = xd->mi[0];
382
383 set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->sb_type],
384 mi_col, num_8x8_blocks_wide_lookup[m->sb_type], cm->mi_rows,
385 cm->mi_cols);
386 if (frame_is_intra_only(cm)) {
387 write_mb_modes_kf(cm, xd, w);
388 } else {
389 pack_inter_mode_mvs(cpi, xd, mbmi_ext, w, max_mv_magnitude,
390 interp_filter_selected);
391 }
392
393 assert(*tok < tok_end);
394 pack_mb_tokens(w, tok, tok_end, cm->bit_depth);
395 }
396
write_partition(const VP9_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,vpx_writer * w)397 static void write_partition(const VP9_COMMON *const cm,
398 const MACROBLOCKD *const xd, int hbs, int mi_row,
399 int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize,
400 vpx_writer *w) {
401 const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
402 const vpx_prob *const probs = xd->partition_probs[ctx];
403 const int has_rows = (mi_row + hbs) < cm->mi_rows;
404 const int has_cols = (mi_col + hbs) < cm->mi_cols;
405
406 if (has_rows && has_cols) {
407 vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
408 } else if (!has_rows && has_cols) {
409 assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
410 vpx_write(w, p == PARTITION_SPLIT, probs[1]);
411 } else if (has_rows && !has_cols) {
412 assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
413 vpx_write(w, p == PARTITION_SPLIT, probs[2]);
414 } else {
415 assert(p == PARTITION_SPLIT);
416 }
417 }
418
write_modes_sb(VP9_COMP * cpi,MACROBLOCKD * const xd,const TileInfo * const tile,vpx_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize,unsigned int * const max_mv_magnitude,int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE])419 static void write_modes_sb(
420 VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile,
421 vpx_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
422 int mi_row, int mi_col, BLOCK_SIZE bsize,
423 unsigned int *const max_mv_magnitude,
424 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) {
425 const VP9_COMMON *const cm = &cpi->common;
426 const int bsl = b_width_log2_lookup[bsize];
427 const int bs = (1 << bsl) / 4;
428 PARTITION_TYPE partition;
429 BLOCK_SIZE subsize;
430 const MODE_INFO *m = NULL;
431
432 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
433
434 m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
435
436 partition = partition_lookup[bsl][m->sb_type];
437 write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
438 subsize = get_subsize(bsize, partition);
439 if (subsize < BLOCK_8X8) {
440 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
441 max_mv_magnitude, interp_filter_selected);
442 } else {
443 switch (partition) {
444 case PARTITION_NONE:
445 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
446 max_mv_magnitude, interp_filter_selected);
447 break;
448 case PARTITION_HORZ:
449 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
450 max_mv_magnitude, interp_filter_selected);
451 if (mi_row + bs < cm->mi_rows)
452 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col,
453 max_mv_magnitude, interp_filter_selected);
454 break;
455 case PARTITION_VERT:
456 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
457 max_mv_magnitude, interp_filter_selected);
458 if (mi_col + bs < cm->mi_cols)
459 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs,
460 max_mv_magnitude, interp_filter_selected);
461 break;
462 case PARTITION_SPLIT:
463 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, subsize,
464 max_mv_magnitude, interp_filter_selected);
465 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs,
466 subsize, max_mv_magnitude, interp_filter_selected);
467 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col,
468 subsize, max_mv_magnitude, interp_filter_selected);
469 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
470 subsize, max_mv_magnitude, interp_filter_selected);
471 break;
472 default: assert(0);
473 }
474 }
475
476 // update partition context
477 if (bsize >= BLOCK_8X8 &&
478 (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
479 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
480 }
481
write_modes(VP9_COMP * cpi,MACROBLOCKD * const xd,const TileInfo * const tile,vpx_writer * w,int tile_row,int tile_col,unsigned int * const max_mv_magnitude,int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE])482 static void write_modes(
483 VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile,
484 vpx_writer *w, int tile_row, int tile_col,
485 unsigned int *const max_mv_magnitude,
486 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) {
487 const VP9_COMMON *const cm = &cpi->common;
488 int mi_row, mi_col, tile_sb_row;
489 TOKENEXTRA *tok = NULL;
490 TOKENEXTRA *tok_end = NULL;
491
492 set_partition_probs(cm, xd);
493
494 for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
495 mi_row += MI_BLOCK_SIZE) {
496 tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile->mi_row_start) >>
497 MI_BLOCK_SIZE_LOG2;
498 tok = cpi->tplist[tile_row][tile_col][tile_sb_row].start;
499 tok_end = tok + cpi->tplist[tile_row][tile_col][tile_sb_row].count;
500
501 vp9_zero(xd->left_seg_context);
502 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
503 mi_col += MI_BLOCK_SIZE)
504 write_modes_sb(cpi, xd, tile, w, &tok, tok_end, mi_row, mi_col,
505 BLOCK_64X64, max_mv_magnitude, interp_filter_selected);
506
507 assert(tok == cpi->tplist[tile_row][tile_col][tile_sb_row].stop);
508 }
509 }
510
build_tree_distribution(VP9_COMP * cpi,TX_SIZE tx_size,vp9_coeff_stats * coef_branch_ct,vp9_coeff_probs_model * coef_probs)511 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
512 vp9_coeff_stats *coef_branch_ct,
513 vp9_coeff_probs_model *coef_probs) {
514 vp9_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size];
515 unsigned int(*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
516 cpi->common.counts.eob_branch[tx_size];
517 int i, j, k, l, m;
518
519 for (i = 0; i < PLANE_TYPES; ++i) {
520 for (j = 0; j < REF_TYPES; ++j) {
521 for (k = 0; k < COEF_BANDS; ++k) {
522 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
523 vp9_tree_probs_from_distribution(vp9_coef_tree,
524 coef_branch_ct[i][j][k][l],
525 coef_counts[i][j][k][l]);
526 coef_branch_ct[i][j][k][l][0][1] =
527 eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0];
528 for (m = 0; m < UNCONSTRAINED_NODES; ++m)
529 coef_probs[i][j][k][l][m] =
530 get_binary_prob(coef_branch_ct[i][j][k][l][m][0],
531 coef_branch_ct[i][j][k][l][m][1]);
532 }
533 }
534 }
535 }
536 }
537
update_coef_probs_common(vpx_writer * const bc,VP9_COMP * cpi,TX_SIZE tx_size,vp9_coeff_stats * frame_branch_ct,vp9_coeff_probs_model * new_coef_probs)538 static void update_coef_probs_common(vpx_writer *const bc, VP9_COMP *cpi,
539 TX_SIZE tx_size,
540 vp9_coeff_stats *frame_branch_ct,
541 vp9_coeff_probs_model *new_coef_probs) {
542 vp9_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
543 const vpx_prob upd = DIFF_UPDATE_PROB;
544 const int entropy_nodes_update = UNCONSTRAINED_NODES;
545 int i, j, k, l, t;
546 int stepsize = cpi->sf.coeff_prob_appx_step;
547
548 switch (cpi->sf.use_fast_coef_updates) {
549 case TWO_LOOP: {
550 /* dry run to see if there is any update at all needed */
551 int savings = 0;
552 int update[2] = { 0, 0 };
553 for (i = 0; i < PLANE_TYPES; ++i) {
554 for (j = 0; j < REF_TYPES; ++j) {
555 for (k = 0; k < COEF_BANDS; ++k) {
556 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
557 for (t = 0; t < entropy_nodes_update; ++t) {
558 vpx_prob newp = new_coef_probs[i][j][k][l][t];
559 const vpx_prob oldp = old_coef_probs[i][j][k][l][t];
560 int s;
561 int u = 0;
562 if (t == PIVOT_NODE)
563 s = vp9_prob_diff_update_savings_search_model(
564 frame_branch_ct[i][j][k][l][0], oldp, &newp, upd,
565 stepsize);
566 else
567 s = vp9_prob_diff_update_savings_search(
568 frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
569 if (s > 0 && newp != oldp) u = 1;
570 if (u)
571 savings += s - (int)(vp9_cost_zero(upd));
572 else
573 savings -= (int)(vp9_cost_zero(upd));
574 update[u]++;
575 }
576 }
577 }
578 }
579 }
580
581 // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
582 /* Is coef updated at all */
583 if (update[1] == 0 || savings < 0) {
584 vpx_write_bit(bc, 0);
585 return;
586 }
587 vpx_write_bit(bc, 1);
588 for (i = 0; i < PLANE_TYPES; ++i) {
589 for (j = 0; j < REF_TYPES; ++j) {
590 for (k = 0; k < COEF_BANDS; ++k) {
591 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
592 // calc probs and branch cts for this frame only
593 for (t = 0; t < entropy_nodes_update; ++t) {
594 vpx_prob newp = new_coef_probs[i][j][k][l][t];
595 vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
596 const vpx_prob upd = DIFF_UPDATE_PROB;
597 int s;
598 int u = 0;
599 if (t == PIVOT_NODE)
600 s = vp9_prob_diff_update_savings_search_model(
601 frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd,
602 stepsize);
603 else
604 s = vp9_prob_diff_update_savings_search(
605 frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd);
606 if (s > 0 && newp != *oldp) u = 1;
607 vpx_write(bc, u, upd);
608 if (u) {
609 /* send/use new probability */
610 vp9_write_prob_diff_update(bc, newp, *oldp);
611 *oldp = newp;
612 }
613 }
614 }
615 }
616 }
617 }
618 return;
619 }
620
621 case ONE_LOOP_REDUCED: {
622 int updates = 0;
623 int noupdates_before_first = 0;
624 for (i = 0; i < PLANE_TYPES; ++i) {
625 for (j = 0; j < REF_TYPES; ++j) {
626 for (k = 0; k < COEF_BANDS; ++k) {
627 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
628 // calc probs and branch cts for this frame only
629 for (t = 0; t < entropy_nodes_update; ++t) {
630 vpx_prob newp = new_coef_probs[i][j][k][l][t];
631 vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
632 int s;
633 int u = 0;
634
635 if (t == PIVOT_NODE) {
636 s = vp9_prob_diff_update_savings_search_model(
637 frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd,
638 stepsize);
639 } else {
640 s = vp9_prob_diff_update_savings_search(
641 frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd);
642 }
643
644 if (s > 0 && newp != *oldp) u = 1;
645 updates += u;
646 if (u == 0 && updates == 0) {
647 noupdates_before_first++;
648 continue;
649 }
650 if (u == 1 && updates == 1) {
651 int v;
652 // first update
653 vpx_write_bit(bc, 1);
654 for (v = 0; v < noupdates_before_first; ++v)
655 vpx_write(bc, 0, upd);
656 }
657 vpx_write(bc, u, upd);
658 if (u) {
659 /* send/use new probability */
660 vp9_write_prob_diff_update(bc, newp, *oldp);
661 *oldp = newp;
662 }
663 }
664 }
665 }
666 }
667 }
668 if (updates == 0) {
669 vpx_write_bit(bc, 0); // no updates
670 }
671 return;
672 }
673 default: assert(0);
674 }
675 }
676
update_coef_probs(VP9_COMP * cpi,vpx_writer * w)677 static void update_coef_probs(VP9_COMP *cpi, vpx_writer *w) {
678 const TX_MODE tx_mode = cpi->common.tx_mode;
679 const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
680 TX_SIZE tx_size;
681 for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) {
682 vp9_coeff_stats frame_branch_ct[PLANE_TYPES];
683 vp9_coeff_probs_model frame_coef_probs[PLANE_TYPES];
684 if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 ||
685 (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) {
686 vpx_write_bit(w, 0);
687 } else {
688 build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs);
689 update_coef_probs_common(w, cpi, tx_size, frame_branch_ct,
690 frame_coef_probs);
691 }
692 }
693 }
694
encode_loopfilter(struct loopfilter * lf,struct vpx_write_bit_buffer * wb)695 static void encode_loopfilter(struct loopfilter *lf,
696 struct vpx_write_bit_buffer *wb) {
697 int i;
698
699 // Encode the loop filter level and type
700 vpx_wb_write_literal(wb, lf->filter_level, 6);
701 vpx_wb_write_literal(wb, lf->sharpness_level, 3);
702
703 // Write out loop filter deltas applied at the MB level based on mode or
704 // ref frame (if they are enabled).
705 vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled);
706
707 if (lf->mode_ref_delta_enabled) {
708 vpx_wb_write_bit(wb, lf->mode_ref_delta_update);
709 if (lf->mode_ref_delta_update) {
710 for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
711 const int delta = lf->ref_deltas[i];
712 const int changed = delta != lf->last_ref_deltas[i];
713 vpx_wb_write_bit(wb, changed);
714 if (changed) {
715 lf->last_ref_deltas[i] = delta;
716 vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
717 vpx_wb_write_bit(wb, delta < 0);
718 }
719 }
720
721 for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
722 const int delta = lf->mode_deltas[i];
723 const int changed = delta != lf->last_mode_deltas[i];
724 vpx_wb_write_bit(wb, changed);
725 if (changed) {
726 lf->last_mode_deltas[i] = delta;
727 vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
728 vpx_wb_write_bit(wb, delta < 0);
729 }
730 }
731 }
732 }
733 }
734
write_delta_q(struct vpx_write_bit_buffer * wb,int delta_q)735 static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) {
736 if (delta_q != 0) {
737 vpx_wb_write_bit(wb, 1);
738 vpx_wb_write_literal(wb, abs(delta_q), 4);
739 vpx_wb_write_bit(wb, delta_q < 0);
740 } else {
741 vpx_wb_write_bit(wb, 0);
742 }
743 }
744
encode_quantization(const VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)745 static void encode_quantization(const VP9_COMMON *const cm,
746 struct vpx_write_bit_buffer *wb) {
747 vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
748 write_delta_q(wb, cm->y_dc_delta_q);
749 write_delta_q(wb, cm->uv_dc_delta_q);
750 write_delta_q(wb, cm->uv_ac_delta_q);
751 }
752
encode_segmentation(VP9_COMMON * cm,MACROBLOCKD * xd,struct vpx_write_bit_buffer * wb)753 static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
754 struct vpx_write_bit_buffer *wb) {
755 int i, j;
756
757 const struct segmentation *seg = &cm->seg;
758
759 vpx_wb_write_bit(wb, seg->enabled);
760 if (!seg->enabled) return;
761
762 // Segmentation map
763 vpx_wb_write_bit(wb, seg->update_map);
764 if (seg->update_map) {
765 // Select the coding strategy (temporal or spatial)
766 vp9_choose_segmap_coding_method(cm, xd);
767 // Write out probabilities used to decode unpredicted macro-block segments
768 for (i = 0; i < SEG_TREE_PROBS; i++) {
769 const int prob = seg->tree_probs[i];
770 const int update = prob != MAX_PROB;
771 vpx_wb_write_bit(wb, update);
772 if (update) vpx_wb_write_literal(wb, prob, 8);
773 }
774
775 // Write out the chosen coding method.
776 vpx_wb_write_bit(wb, seg->temporal_update);
777 if (seg->temporal_update) {
778 for (i = 0; i < PREDICTION_PROBS; i++) {
779 const int prob = seg->pred_probs[i];
780 const int update = prob != MAX_PROB;
781 vpx_wb_write_bit(wb, update);
782 if (update) vpx_wb_write_literal(wb, prob, 8);
783 }
784 }
785 }
786
787 // Segmentation data
788 vpx_wb_write_bit(wb, seg->update_data);
789 if (seg->update_data) {
790 vpx_wb_write_bit(wb, seg->abs_delta);
791
792 for (i = 0; i < MAX_SEGMENTS; i++) {
793 for (j = 0; j < SEG_LVL_MAX; j++) {
794 const int active = segfeature_active(seg, i, j);
795 vpx_wb_write_bit(wb, active);
796 if (active) {
797 const int data = get_segdata(seg, i, j);
798 const int data_max = vp9_seg_feature_data_max(j);
799
800 if (vp9_is_segfeature_signed(j)) {
801 encode_unsigned_max(wb, abs(data), data_max);
802 vpx_wb_write_bit(wb, data < 0);
803 } else {
804 encode_unsigned_max(wb, data, data_max);
805 }
806 }
807 }
808 }
809 }
810 }
811
encode_txfm_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)812 static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w,
813 FRAME_COUNTS *counts) {
814 // Mode
815 vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2);
816 if (cm->tx_mode >= ALLOW_32X32)
817 vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
818
819 // Probabilities
820 if (cm->tx_mode == TX_MODE_SELECT) {
821 int i, j;
822 unsigned int ct_8x8p[TX_SIZES - 3][2];
823 unsigned int ct_16x16p[TX_SIZES - 2][2];
824 unsigned int ct_32x32p[TX_SIZES - 1][2];
825
826 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
827 tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p);
828 for (j = 0; j < TX_SIZES - 3; j++)
829 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]);
830 }
831
832 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
833 tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p);
834 for (j = 0; j < TX_SIZES - 2; j++)
835 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j],
836 ct_16x16p[j]);
837 }
838
839 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
840 tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p);
841 for (j = 0; j < TX_SIZES - 1; j++)
842 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j],
843 ct_32x32p[j]);
844 }
845 }
846 }
847
write_interp_filter(INTERP_FILTER filter,struct vpx_write_bit_buffer * wb)848 static void write_interp_filter(INTERP_FILTER filter,
849 struct vpx_write_bit_buffer *wb) {
850 const int filter_to_literal[] = { 1, 0, 2, 3 };
851
852 vpx_wb_write_bit(wb, filter == SWITCHABLE);
853 if (filter != SWITCHABLE)
854 vpx_wb_write_literal(wb, filter_to_literal[filter], 2);
855 }
856
fix_interp_filter(VP9_COMMON * cm,FRAME_COUNTS * counts)857 static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) {
858 if (cm->interp_filter == SWITCHABLE) {
859 // Check to see if only one of the filters is actually used
860 int count[SWITCHABLE_FILTERS];
861 int i, j, c = 0;
862 for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
863 count[i] = 0;
864 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
865 count[i] += counts->switchable_interp[j][i];
866 c += (count[i] > 0);
867 }
868 if (c == 1) {
869 // Only one filter is used. So set the filter at frame level
870 for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
871 if (count[i]) {
872 cm->interp_filter = i;
873 break;
874 }
875 }
876 }
877 }
878 }
879
write_tile_info(const VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)880 static void write_tile_info(const VP9_COMMON *const cm,
881 struct vpx_write_bit_buffer *wb) {
882 int min_log2_tile_cols, max_log2_tile_cols, ones;
883 vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
884
885 // columns
886 ones = cm->log2_tile_cols - min_log2_tile_cols;
887 while (ones--) vpx_wb_write_bit(wb, 1);
888
889 if (cm->log2_tile_cols < max_log2_tile_cols) vpx_wb_write_bit(wb, 0);
890
891 // rows
892 vpx_wb_write_bit(wb, cm->log2_tile_rows != 0);
893 if (cm->log2_tile_rows != 0) vpx_wb_write_bit(wb, cm->log2_tile_rows != 1);
894 }
895
vp9_get_refresh_mask(VP9_COMP * cpi)896 int vp9_get_refresh_mask(VP9_COMP *cpi) {
897 if (vp9_preserve_existing_gf(cpi)) {
898 // We have decided to preserve the previously existing golden frame as our
899 // new ARF frame. However, in the short term we leave it in the GF slot and,
900 // if we're updating the GF with the current decoded frame, we save it
901 // instead to the ARF slot.
902 // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we
903 // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
904 // there so that it can be done outside of the recode loop.
905 // Note: This is highly specific to the use of ARF as a forward reference,
906 // and this needs to be generalized as other uses are implemented
907 // (like RTC/temporal scalability).
908 return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
909 (cpi->refresh_golden_frame << cpi->alt_fb_idx);
910 } else {
911 int arf_idx = cpi->alt_fb_idx;
912 if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
913 const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
914 arf_idx = gf_group->arf_update_idx[gf_group->index];
915 }
916 return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
917 (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
918 (cpi->refresh_alt_ref_frame << arf_idx);
919 }
920 }
921
encode_tile_worker(void * arg1,void * arg2)922 static int encode_tile_worker(void *arg1, void *arg2) {
923 VP9_COMP *cpi = (VP9_COMP *)arg1;
924 VP9BitstreamWorkerData *data = (VP9BitstreamWorkerData *)arg2;
925 MACROBLOCKD *const xd = &data->xd;
926 const int tile_row = 0;
927 vpx_start_encode(&data->bit_writer, data->dest);
928 write_modes(cpi, xd, &cpi->tile_data[data->tile_idx].tile_info,
929 &data->bit_writer, tile_row, data->tile_idx,
930 &data->max_mv_magnitude, data->interp_filter_selected);
931 vpx_stop_encode(&data->bit_writer);
932 return 1;
933 }
934
vp9_bitstream_encode_tiles_buffer_dealloc(VP9_COMP * const cpi)935 void vp9_bitstream_encode_tiles_buffer_dealloc(VP9_COMP *const cpi) {
936 if (cpi->vp9_bitstream_worker_data) {
937 int i;
938 for (i = 1; i < cpi->num_workers; ++i) {
939 vpx_free(cpi->vp9_bitstream_worker_data[i].dest);
940 }
941 vpx_free(cpi->vp9_bitstream_worker_data);
942 cpi->vp9_bitstream_worker_data = NULL;
943 }
944 }
945
encode_tiles_buffer_alloc(VP9_COMP * const cpi)946 static int encode_tiles_buffer_alloc(VP9_COMP *const cpi) {
947 int i;
948 const size_t worker_data_size =
949 cpi->num_workers * sizeof(*cpi->vp9_bitstream_worker_data);
950 cpi->vp9_bitstream_worker_data = vpx_memalign(16, worker_data_size);
951 memset(cpi->vp9_bitstream_worker_data, 0, worker_data_size);
952 if (!cpi->vp9_bitstream_worker_data) return 1;
953 for (i = 1; i < cpi->num_workers; ++i) {
954 cpi->vp9_bitstream_worker_data[i].dest_size =
955 cpi->oxcf.width * cpi->oxcf.height;
956 cpi->vp9_bitstream_worker_data[i].dest =
957 vpx_malloc(cpi->vp9_bitstream_worker_data[i].dest_size);
958 if (!cpi->vp9_bitstream_worker_data[i].dest) return 1;
959 }
960 return 0;
961 }
962
encode_tiles_mt(VP9_COMP * cpi,uint8_t * data_ptr)963 static size_t encode_tiles_mt(VP9_COMP *cpi, uint8_t *data_ptr) {
964 const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
965 VP9_COMMON *const cm = &cpi->common;
966 const int tile_cols = 1 << cm->log2_tile_cols;
967 const int num_workers = cpi->num_workers;
968 size_t total_size = 0;
969 int tile_col = 0;
970
971 if (!cpi->vp9_bitstream_worker_data ||
972 cpi->vp9_bitstream_worker_data[1].dest_size >
973 (cpi->oxcf.width * cpi->oxcf.height)) {
974 vp9_bitstream_encode_tiles_buffer_dealloc(cpi);
975 if (encode_tiles_buffer_alloc(cpi)) return 0;
976 }
977
978 while (tile_col < tile_cols) {
979 int i, j;
980 for (i = 0; i < num_workers && tile_col < tile_cols; ++i) {
981 VPxWorker *const worker = &cpi->workers[i];
982 VP9BitstreamWorkerData *const data = &cpi->vp9_bitstream_worker_data[i];
983
984 // Populate the worker data.
985 data->xd = cpi->td.mb.e_mbd;
986 data->tile_idx = tile_col;
987 data->max_mv_magnitude = cpi->max_mv_magnitude;
988 memset(data->interp_filter_selected, 0,
989 sizeof(data->interp_filter_selected[0][0]) * SWITCHABLE);
990
991 // First thread can directly write into the output buffer.
992 if (i == 0) {
993 // If this worker happens to be for the last tile, then do not offset it
994 // by 4 for the tile size.
995 data->dest =
996 data_ptr + total_size + (tile_col == tile_cols - 1 ? 0 : 4);
997 }
998 worker->data1 = cpi;
999 worker->data2 = data;
1000 worker->hook = encode_tile_worker;
1001 worker->had_error = 0;
1002
1003 if (i < num_workers - 1) {
1004 winterface->launch(worker);
1005 } else {
1006 winterface->execute(worker);
1007 }
1008 ++tile_col;
1009 }
1010 for (j = 0; j < i; ++j) {
1011 VPxWorker *const worker = &cpi->workers[j];
1012 VP9BitstreamWorkerData *const data =
1013 (VP9BitstreamWorkerData *)worker->data2;
1014 uint32_t tile_size;
1015 int k;
1016
1017 if (!winterface->sync(worker)) return 0;
1018 tile_size = data->bit_writer.pos;
1019
1020 // Aggregate per-thread bitstream stats.
1021 cpi->max_mv_magnitude =
1022 VPXMAX(cpi->max_mv_magnitude, data->max_mv_magnitude);
1023 for (k = 0; k < SWITCHABLE; ++k) {
1024 cpi->interp_filter_selected[0][k] += data->interp_filter_selected[0][k];
1025 }
1026
1027 // Prefix the size of the tile on all but the last.
1028 if (tile_col != tile_cols || j < i - 1) {
1029 mem_put_be32(data_ptr + total_size, tile_size);
1030 total_size += 4;
1031 }
1032 if (j > 0) {
1033 memcpy(data_ptr + total_size, data->dest, tile_size);
1034 }
1035 total_size += tile_size;
1036 }
1037 }
1038 return total_size;
1039 }
1040
encode_tiles(VP9_COMP * cpi,uint8_t * data_ptr)1041 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
1042 VP9_COMMON *const cm = &cpi->common;
1043 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1044 vpx_writer residual_bc;
1045 int tile_row, tile_col;
1046 size_t total_size = 0;
1047 const int tile_cols = 1 << cm->log2_tile_cols;
1048 const int tile_rows = 1 << cm->log2_tile_rows;
1049
1050 memset(cm->above_seg_context, 0,
1051 sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols));
1052
1053 // Encoding tiles in parallel is done only for realtime mode now. In other
1054 // modes the speed up is insignificant and requires further testing to ensure
1055 // that it does not make the overall process worse in any case.
1056 if (cpi->oxcf.mode == REALTIME && cpi->num_workers > 1 && tile_rows == 1 &&
1057 tile_cols > 1) {
1058 return encode_tiles_mt(cpi, data_ptr);
1059 }
1060
1061 for (tile_row = 0; tile_row < tile_rows; tile_row++) {
1062 for (tile_col = 0; tile_col < tile_cols; tile_col++) {
1063 int tile_idx = tile_row * tile_cols + tile_col;
1064
1065 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
1066 vpx_start_encode(&residual_bc, data_ptr + total_size + 4);
1067 else
1068 vpx_start_encode(&residual_bc, data_ptr + total_size);
1069
1070 write_modes(cpi, xd, &cpi->tile_data[tile_idx].tile_info, &residual_bc,
1071 tile_row, tile_col, &cpi->max_mv_magnitude,
1072 cpi->interp_filter_selected);
1073
1074 vpx_stop_encode(&residual_bc);
1075 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
1076 // size of this tile
1077 mem_put_be32(data_ptr + total_size, residual_bc.pos);
1078 total_size += 4;
1079 }
1080
1081 total_size += residual_bc.pos;
1082 }
1083 }
1084 return total_size;
1085 }
1086
write_render_size(const VP9_COMMON * cm,struct vpx_write_bit_buffer * wb)1087 static void write_render_size(const VP9_COMMON *cm,
1088 struct vpx_write_bit_buffer *wb) {
1089 const int scaling_active =
1090 cm->width != cm->render_width || cm->height != cm->render_height;
1091 vpx_wb_write_bit(wb, scaling_active);
1092 if (scaling_active) {
1093 vpx_wb_write_literal(wb, cm->render_width - 1, 16);
1094 vpx_wb_write_literal(wb, cm->render_height - 1, 16);
1095 }
1096 }
1097
write_frame_size(const VP9_COMMON * cm,struct vpx_write_bit_buffer * wb)1098 static void write_frame_size(const VP9_COMMON *cm,
1099 struct vpx_write_bit_buffer *wb) {
1100 vpx_wb_write_literal(wb, cm->width - 1, 16);
1101 vpx_wb_write_literal(wb, cm->height - 1, 16);
1102
1103 write_render_size(cm, wb);
1104 }
1105
write_frame_size_with_refs(VP9_COMP * cpi,struct vpx_write_bit_buffer * wb)1106 static void write_frame_size_with_refs(VP9_COMP *cpi,
1107 struct vpx_write_bit_buffer *wb) {
1108 VP9_COMMON *const cm = &cpi->common;
1109 int found = 0;
1110
1111 MV_REFERENCE_FRAME ref_frame;
1112 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1113 YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
1114
1115 // Set "found" to 0 for temporal svc and for spatial svc key frame
1116 if (cpi->use_svc &&
1117 ((cpi->svc.number_temporal_layers > 1 &&
1118 cpi->oxcf.rc_mode == VPX_CBR) ||
1119 (cpi->svc.number_spatial_layers > 1 &&
1120 cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame) ||
1121 (is_two_pass_svc(cpi) &&
1122 cpi->svc.encode_empty_frame_state == ENCODING &&
1123 cpi->svc.layer_context[0].frames_from_key_frame <
1124 cpi->svc.number_temporal_layers + 1))) {
1125 found = 0;
1126 } else if (cfg != NULL) {
1127 found =
1128 cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height;
1129 }
1130 vpx_wb_write_bit(wb, found);
1131 if (found) {
1132 break;
1133 }
1134 }
1135
1136 if (!found) {
1137 vpx_wb_write_literal(wb, cm->width - 1, 16);
1138 vpx_wb_write_literal(wb, cm->height - 1, 16);
1139 }
1140
1141 write_render_size(cm, wb);
1142 }
1143
write_sync_code(struct vpx_write_bit_buffer * wb)1144 static void write_sync_code(struct vpx_write_bit_buffer *wb) {
1145 vpx_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
1146 vpx_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
1147 vpx_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
1148 }
1149
write_profile(BITSTREAM_PROFILE profile,struct vpx_write_bit_buffer * wb)1150 static void write_profile(BITSTREAM_PROFILE profile,
1151 struct vpx_write_bit_buffer *wb) {
1152 switch (profile) {
1153 case PROFILE_0: vpx_wb_write_literal(wb, 0, 2); break;
1154 case PROFILE_1: vpx_wb_write_literal(wb, 2, 2); break;
1155 case PROFILE_2: vpx_wb_write_literal(wb, 1, 2); break;
1156 case PROFILE_3: vpx_wb_write_literal(wb, 6, 3); break;
1157 default: assert(0);
1158 }
1159 }
1160
write_bitdepth_colorspace_sampling(VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)1161 static void write_bitdepth_colorspace_sampling(
1162 VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) {
1163 if (cm->profile >= PROFILE_2) {
1164 assert(cm->bit_depth > VPX_BITS_8);
1165 vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
1166 }
1167 vpx_wb_write_literal(wb, cm->color_space, 3);
1168 if (cm->color_space != VPX_CS_SRGB) {
1169 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
1170 vpx_wb_write_bit(wb, cm->color_range);
1171 if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
1172 assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
1173 vpx_wb_write_bit(wb, cm->subsampling_x);
1174 vpx_wb_write_bit(wb, cm->subsampling_y);
1175 vpx_wb_write_bit(wb, 0); // unused
1176 } else {
1177 assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
1178 }
1179 } else {
1180 assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
1181 vpx_wb_write_bit(wb, 0); // unused
1182 }
1183 }
1184
write_uncompressed_header(VP9_COMP * cpi,struct vpx_write_bit_buffer * wb)1185 static void write_uncompressed_header(VP9_COMP *cpi,
1186 struct vpx_write_bit_buffer *wb) {
1187 VP9_COMMON *const cm = &cpi->common;
1188 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1189
1190 vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
1191
1192 write_profile(cm->profile, wb);
1193
1194 vpx_wb_write_bit(wb, 0); // show_existing_frame
1195 vpx_wb_write_bit(wb, cm->frame_type);
1196 vpx_wb_write_bit(wb, cm->show_frame);
1197 vpx_wb_write_bit(wb, cm->error_resilient_mode);
1198
1199 if (cm->frame_type == KEY_FRAME) {
1200 write_sync_code(wb);
1201 write_bitdepth_colorspace_sampling(cm, wb);
1202 write_frame_size(cm, wb);
1203 } else {
1204 // In spatial svc if it's not error_resilient_mode then we need to code all
1205 // visible frames as invisible. But we need to keep the show_frame flag so
1206 // that the publisher could know whether it is supposed to be visible.
1207 // So we will code the show_frame flag as it is. Then code the intra_only
1208 // bit here. This will make the bitstream incompatible. In the player we
1209 // will change to show_frame flag to 0, then add an one byte frame with
1210 // show_existing_frame flag which tells the decoder which frame we want to
1211 // show.
1212 if (!cm->show_frame) vpx_wb_write_bit(wb, cm->intra_only);
1213
1214 if (!cm->error_resilient_mode)
1215 vpx_wb_write_literal(wb, cm->reset_frame_context, 2);
1216
1217 if (cm->intra_only) {
1218 write_sync_code(wb);
1219
1220 // Note for profile 0, 420 8bpp is assumed.
1221 if (cm->profile > PROFILE_0) {
1222 write_bitdepth_colorspace_sampling(cm, wb);
1223 }
1224
1225 vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES);
1226 write_frame_size(cm, wb);
1227 } else {
1228 MV_REFERENCE_FRAME ref_frame;
1229 vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES);
1230 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1231 assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
1232 vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
1233 REF_FRAMES_LOG2);
1234 vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
1235 }
1236
1237 write_frame_size_with_refs(cpi, wb);
1238
1239 vpx_wb_write_bit(wb, cm->allow_high_precision_mv);
1240
1241 fix_interp_filter(cm, cpi->td.counts);
1242 write_interp_filter(cm->interp_filter, wb);
1243 }
1244 }
1245
1246 if (!cm->error_resilient_mode) {
1247 vpx_wb_write_bit(wb, cm->refresh_frame_context);
1248 vpx_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
1249 }
1250
1251 vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
1252
1253 encode_loopfilter(&cm->lf, wb);
1254 encode_quantization(cm, wb);
1255 encode_segmentation(cm, xd, wb);
1256
1257 write_tile_info(cm, wb);
1258 }
1259
write_compressed_header(VP9_COMP * cpi,uint8_t * data)1260 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
1261 VP9_COMMON *const cm = &cpi->common;
1262 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1263 FRAME_CONTEXT *const fc = cm->fc;
1264 FRAME_COUNTS *counts = cpi->td.counts;
1265 vpx_writer header_bc;
1266
1267 vpx_start_encode(&header_bc, data);
1268
1269 if (xd->lossless)
1270 cm->tx_mode = ONLY_4X4;
1271 else
1272 encode_txfm_probs(cm, &header_bc, counts);
1273
1274 update_coef_probs(cpi, &header_bc);
1275 update_skip_probs(cm, &header_bc, counts);
1276
1277 if (!frame_is_intra_only(cm)) {
1278 int i;
1279
1280 for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
1281 prob_diff_update(vp9_inter_mode_tree, cm->fc->inter_mode_probs[i],
1282 counts->inter_mode[i], INTER_MODES, &header_bc);
1283
1284 if (cm->interp_filter == SWITCHABLE)
1285 update_switchable_interp_probs(cm, &header_bc, counts);
1286
1287 for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1288 vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
1289 counts->intra_inter[i]);
1290
1291 if (cpi->allow_comp_inter_inter) {
1292 const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
1293 const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
1294
1295 vpx_write_bit(&header_bc, use_compound_pred);
1296 if (use_compound_pred) {
1297 vpx_write_bit(&header_bc, use_hybrid_pred);
1298 if (use_hybrid_pred)
1299 for (i = 0; i < COMP_INTER_CONTEXTS; i++)
1300 vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
1301 counts->comp_inter[i]);
1302 }
1303 }
1304
1305 if (cm->reference_mode != COMPOUND_REFERENCE) {
1306 for (i = 0; i < REF_CONTEXTS; i++) {
1307 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
1308 counts->single_ref[i][0]);
1309 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
1310 counts->single_ref[i][1]);
1311 }
1312 }
1313
1314 if (cm->reference_mode != SINGLE_REFERENCE)
1315 for (i = 0; i < REF_CONTEXTS; i++)
1316 vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
1317 counts->comp_ref[i]);
1318
1319 for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
1320 prob_diff_update(vp9_intra_mode_tree, cm->fc->y_mode_prob[i],
1321 counts->y_mode[i], INTRA_MODES, &header_bc);
1322
1323 for (i = 0; i < PARTITION_CONTEXTS; ++i)
1324 prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
1325 counts->partition[i], PARTITION_TYPES, &header_bc);
1326
1327 vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc,
1328 &counts->mv);
1329 }
1330
1331 vpx_stop_encode(&header_bc);
1332 assert(header_bc.pos <= 0xffff);
1333
1334 return header_bc.pos;
1335 }
1336
vp9_pack_bitstream(VP9_COMP * cpi,uint8_t * dest,size_t * size)1337 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
1338 uint8_t *data = dest;
1339 size_t first_part_size, uncompressed_hdr_size;
1340 struct vpx_write_bit_buffer wb = { data, 0 };
1341 struct vpx_write_bit_buffer saved_wb;
1342
1343 write_uncompressed_header(cpi, &wb);
1344 saved_wb = wb;
1345 vpx_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
1346
1347 uncompressed_hdr_size = vpx_wb_bytes_written(&wb);
1348 data += uncompressed_hdr_size;
1349
1350 vpx_clear_system_state();
1351
1352 first_part_size = write_compressed_header(cpi, data);
1353 data += first_part_size;
1354 // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
1355 vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16);
1356
1357 data += encode_tiles(cpi, data);
1358
1359 *size = data - dest;
1360 }
1361