• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef SYSTEM_KEYMASTER_ANDROID_KEYMASTER_UTILS_H_
18 #define SYSTEM_KEYMASTER_ANDROID_KEYMASTER_UTILS_H_
19 
20 #include <stdint.h>
21 #include <string.h>
22 #include <time.h>  // for time_t.
23 
24 #include <keymaster/UniquePtr.h>
25 
26 #include <hardware/keymaster_defs.h>
27 #include <keymaster/serializable.h>
28 
29 namespace keymaster {
30 
31 /**
32  * Convert the specified time value into "Java time", which is a signed 64-bit integer representing
33  * elapsed milliseconds since Jan 1, 1970.
34  */
java_time(time_t time)35 inline int64_t java_time(time_t time) {
36     // The exact meaning of a time_t value is implementation-dependent.  If this code is ported to a
37     // platform that doesn't define it as "seconds since Jan 1, 1970 UTC", this function will have
38     // to be revised.
39     return static_cast<int64_t>(time) * 1000;
40 }
41 
42 /*
43  * Array Manipulation functions.  This set of templated inline functions provides some nice tools
44  * for operating on c-style arrays.  C-style arrays actually do have a defined size associated with
45  * them, as long as they are not allowed to decay to a pointer.  These template methods exploit this
46  * to allow size-based array operations without explicitly specifying the size.  If passed a pointer
47  * rather than an array, they'll fail to compile.
48  */
49 
50 /**
51  * Return the size in bytes of the array \p a.
52  */
array_size(const T (& a)[N])53 template <typename T, size_t N> inline size_t array_size(const T (&a)[N]) {
54     return sizeof(a);
55 }
56 
57 /**
58  * Return the number of elements in array \p a.
59  */
array_length(const T (&)[N])60 template <typename T, size_t N> inline size_t array_length(const T (&)[N]) {
61     return N;
62 }
63 
64 /**
65  * Duplicate the array \p a.  The memory for the new array is allocated and the caller takes
66  * responsibility.
67  */
dup_array(const T * a,size_t n)68 template <typename T> inline T* dup_array(const T* a, size_t n) {
69     T* dup = new (std::nothrow) T[n];
70     if (dup)
71         for (size_t i = 0; i < n; ++i)
72             dup[i] = a[i];
73     return dup;
74 }
75 
76 /**
77  * Duplicate the array \p a.  The memory for the new array is allocated and the caller takes
78  * responsibility.  Note that the dup is necessarily returned as a pointer, so size is lost.  Call
79  * array_length() on the original array to discover the size.
80  */
dup_array(const T (& a)[N])81 template <typename T, size_t N> inline T* dup_array(const T (&a)[N]) {
82     return dup_array(a, N);
83 }
84 
85 /**
86  * Duplicate the buffer \p buf.  The memory for the new buffer is allocated and the caller takes
87  * responsibility.
88  */
89 uint8_t* dup_buffer(const void* buf, size_t size);
90 
91 /**
92  * Copy the contents of array \p arr to \p dest.
93  */
copy_array(const T (& arr)[N],T * dest)94 template <typename T, size_t N> inline void copy_array(const T (&arr)[N], T* dest) {
95     for (size_t i = 0; i < N; ++i)
96         dest[i] = arr[i];
97 }
98 
99 /**
100  * Search array \p a for value \p val, returning true if found.  Note that this function is
101  * early-exit, meaning that it should not be used in contexts where timing analysis attacks could be
102  * a concern.
103  */
array_contains(const T (& a)[N],T val)104 template <typename T, size_t N> inline bool array_contains(const T (&a)[N], T val) {
105     for (size_t i = 0; i < N; ++i) {
106         if (a[i] == val) {
107             return true;
108         }
109     }
110     return false;
111 }
112 
113 /**
114  * Variant of memset() that uses GCC-specific pragmas to disable optimizations, so effect is not
115  * optimized away.  This is important because we often need to wipe blocks of sensitive data from
116  * memory.  As an additional convenience, this implementation avoids writing to NULL pointers.
117  */
118 #ifdef __clang__
119 #define OPTNONE __attribute__((optnone))
120 #else  // not __clang__
121 #define OPTNONE __attribute__((optimize("O0")))
122 #endif  // not __clang__
memset_s(void * s,int c,size_t n)123 inline OPTNONE void* memset_s(void* s, int c, size_t n) {
124     if (!s)
125         return s;
126     return memset(s, c, n);
127 }
128 #undef OPTNONE
129 
130 /**
131  * Variant of memcmp that has the same runtime regardless of whether the data matches (i.e. doesn't
132  * short-circuit).  Not an exact equivalent to memcmp because it doesn't return <0 if p1 < p2, just
133  * 0 for match and non-zero for non-match.
134  */
135 int memcmp_s(const void* p1, const void* p2, size_t length);
136 
137 /**
138  * Eraser clears buffers.  Construct it with a buffer or object and the destructor will ensure that
139  * it is zeroed.
140  */
141 class Eraser {
142   public:
143     /* Not implemented.  If this gets used, we want a link error. */
144     template <typename T> explicit Eraser(T* t);
145 
146     template <typename T>
Eraser(T & t)147     explicit Eraser(T& t) : buf_(reinterpret_cast<uint8_t*>(&t)), size_(sizeof(t)) {}
148 
Eraser(uint8_t (& arr)[N])149     template <size_t N> explicit Eraser(uint8_t (&arr)[N]) : buf_(arr), size_(N) {}
150 
Eraser(void * buf,size_t size)151     Eraser(void* buf, size_t size) : buf_(static_cast<uint8_t*>(buf)), size_(size) {}
~Eraser()152     ~Eraser() { memset_s(buf_, 0, size_); }
153 
154   private:
155     Eraser(const Eraser&);
156     void operator=(const Eraser&);
157 
158     uint8_t* buf_;
159     size_t size_;
160 };
161 
162 /**
163  * ArrayWrapper is a trivial wrapper around a C-style array that provides begin() and end()
164  * methods. This is primarily to facilitate range-based iteration on arrays.  It does not copy, nor
165  * does it take ownership; it just holds pointers.
166  */
167 template <typename T> class ArrayWrapper {
168   public:
ArrayWrapper(T * array,size_t size)169     ArrayWrapper(T* array, size_t size) : begin_(array), end_(array + size) {}
170 
begin()171     T* begin() { return begin_; }
end()172     T* end() { return end_; }
173 
174   private:
175     T* begin_;
176     T* end_;
177 };
178 
array_range(T * begin,size_t length)179 template <typename T> ArrayWrapper<T> array_range(T* begin, size_t length) {
180     return ArrayWrapper<T>(begin, length);
181 }
182 
array_range(T (& a)[n])183 template <typename T, size_t n> ArrayWrapper<T> array_range(T (&a)[n]) {
184     return ArrayWrapper<T>(a, n);
185 }
186 
187 /**
188  * Convert any unsigned integer from network to host order.  We implement this here rather than
189  * using the functions from arpa/inet.h because the TEE doesn't have inet.h.  This isn't the most
190  * efficient implementation, but the compiler should unroll the loop and tighten it up.
191  */
ntoh(T t)192 template <typename T> T ntoh(T t) {
193     const uint8_t* byte_ptr = reinterpret_cast<const uint8_t*>(&t);
194     T retval = 0;
195     for (size_t i = 0; i < sizeof(t); ++i) {
196         retval <<= 8;
197         retval |= byte_ptr[i];
198     }
199     return retval;
200 }
201 
202 /**
203  * Convert any unsigned integer from host to network order.  We implement this here rather than
204  * using the functions from arpa/inet.h because the TEE doesn't have inet.h.  This isn't the most
205  * efficient implementation, but the compiler should unroll the loop and tighten it up.
206  */
hton(T t)207 template <typename T> T hton(T t) {
208     T retval;
209     uint8_t* byte_ptr = reinterpret_cast<uint8_t*>(&retval);
210     for (size_t i = sizeof(t); i > 0; --i) {
211         byte_ptr[i - 1] = t & 0xFF;
212         t >>= 8;
213     }
214     return retval;
215 }
216 
217 inline
accessBlobData(const keymaster_key_blob_t * blob)218 const uint8_t* const & accessBlobData(const keymaster_key_blob_t* blob) {
219     return blob->key_material;
220 }
221 inline
accessBlobData(keymaster_key_blob_t * blob)222 const uint8_t*& accessBlobData(keymaster_key_blob_t* blob) {
223     return blob->key_material;
224 }
225 inline
accessBlobSize(const keymaster_key_blob_t * blob)226 const size_t& accessBlobSize(const keymaster_key_blob_t* blob) {
227     return blob->key_material_size;
228 }
229 inline
accessBlobSize(keymaster_key_blob_t * blob)230 size_t& accessBlobSize(keymaster_key_blob_t* blob) {
231     return blob->key_material_size;
232 }
233 
234 inline
accessBlobData(const keymaster_blob_t * blob)235 const uint8_t* const & accessBlobData(const keymaster_blob_t* blob) {
236     return blob->data;
237 }
238 inline
accessBlobData(keymaster_blob_t * blob)239 const uint8_t*& accessBlobData(keymaster_blob_t* blob) {
240     return blob->data;
241 }
242 inline
accessBlobSize(const keymaster_blob_t * blob)243 const size_t & accessBlobSize(const keymaster_blob_t* blob) {
244     return blob->data_length;
245 }
246 inline
accessBlobSize(keymaster_blob_t * blob)247 size_t& accessBlobSize(keymaster_blob_t* blob) {
248     return blob->data_length;
249 }
250 
251 /**
252  * TKeymasterBlob is a very simple extension of the C structs keymaster_blob_t and
253  * keymaster_key_blob_t.  It manages its own memory, which makes avoiding memory leaks
254  * much easier.
255  */
256 template <typename BlobType>
257 struct TKeymasterBlob : public BlobType {
TKeymasterBlobTKeymasterBlob258     TKeymasterBlob() {
259         accessBlobData(this) = nullptr;
260         accessBlobSize(this) = 0;
261     }
262 
TKeymasterBlobTKeymasterBlob263     TKeymasterBlob(const uint8_t* data, size_t size) {
264         accessBlobSize(this) = 0;
265         accessBlobData(this) = dup_buffer(data, size);
266         if (accessBlobData(this))
267             accessBlobSize(this) = size;
268     }
269 
TKeymasterBlobTKeymasterBlob270     explicit TKeymasterBlob(size_t size) {
271         accessBlobSize(this) = 0;
272         accessBlobData(this) = new (std::nothrow) uint8_t[size];
273         if (accessBlobData(this))
274             accessBlobSize(this) = size;
275     }
276 
TKeymasterBlobTKeymasterBlob277     explicit TKeymasterBlob(const BlobType& blob) {
278         accessBlobSize(this) = 0;
279         accessBlobData(this) = dup_buffer(accessBlobData(&blob), accessBlobSize(&blob));
280         if (accessBlobData(this))
281             accessBlobSize(this) = accessBlobSize(&blob);
282     }
283 
284     template<size_t N>
TKeymasterBlobTKeymasterBlob285     explicit TKeymasterBlob(const uint8_t (&data)[N]) {
286         accessBlobSize(this) = 0;
287         accessBlobData(this) = dup_buffer(data, N);
288         if (accessBlobData(this))
289             accessBlobSize(this) = N;
290     }
291 
TKeymasterBlobTKeymasterBlob292     TKeymasterBlob(const TKeymasterBlob& blob) {
293         accessBlobSize(this) = 0;
294         accessBlobData(this) = dup_buffer(accessBlobData(&blob), accessBlobSize(&blob));
295         if (accessBlobData(this))
296             accessBlobSize(this) = accessBlobSize(&blob);
297     }
298 
TKeymasterBlobTKeymasterBlob299     TKeymasterBlob(TKeymasterBlob&& rhs) {
300         accessBlobSize(this) = accessBlobSize(&rhs);
301         accessBlobData(this) = accessBlobData(&rhs);
302         accessBlobSize(&rhs) = 0;
303         accessBlobData(&rhs) = nullptr;
304     }
305 
306     TKeymasterBlob& operator=(const TKeymasterBlob& blob) {
307         if (this != &blob) {
308             Clear();
309             accessBlobData(this) = dup_buffer(accessBlobData(&blob), accessBlobSize(&blob));
310             accessBlobSize(this) = accessBlobSize(&blob);
311         }
312         return *this;
313     }
314 
315     TKeymasterBlob& operator=(TKeymasterBlob&& rhs) {
316         if (this != &rhs) {
317             Clear();
318             accessBlobSize(this) = accessBlobSize(&rhs);
319             accessBlobData(this) = accessBlobData(&rhs);
320             accessBlobSize(&rhs) = 0;
321             accessBlobData(&rhs) = nullptr;
322         }
323         return *this;
324     }
325 
~TKeymasterBlobTKeymasterBlob326     ~TKeymasterBlob() { Clear(); }
327 
beginTKeymasterBlob328     const uint8_t* begin() const { return accessBlobData(this); }
endTKeymasterBlob329     const uint8_t* end() const { return accessBlobData(this) + accessBlobSize(this); }
330 
ClearTKeymasterBlob331     void Clear() {
332         memset_s(const_cast<uint8_t*>(accessBlobData(this)), 0, accessBlobSize(this));
333         delete[] accessBlobData(this);
334         accessBlobData(this) = nullptr;
335         accessBlobSize(this) = 0;
336     }
337 
ResetTKeymasterBlob338     const uint8_t* Reset(size_t new_size) {
339         Clear();
340         accessBlobData(this) = new (std::nothrow) uint8_t[new_size];
341         if (accessBlobData(this))
342             accessBlobSize(this) = new_size;
343         return accessBlobData(this);
344     }
345 
346     // The key_material in keymaster_key_blob_t is const, which is the right thing in most
347     // circumstances, but occasionally we do need to write into it.  This method exposes a non-const
348     // version of the pointer.  Use sparingly.
writable_dataTKeymasterBlob349     uint8_t* writable_data() { return const_cast<uint8_t*>(accessBlobData(this)); }
350 
releaseTKeymasterBlob351     BlobType release() {
352         BlobType tmp = {accessBlobData(this), accessBlobSize(this)};
353         accessBlobData(this) = nullptr;
354         accessBlobSize(this) = 0;
355         return tmp;
356     }
357 
SerializedSizeTKeymasterBlob358     size_t SerializedSize() const { return sizeof(uint32_t) + accessBlobSize(this); }
SerializeTKeymasterBlob359     uint8_t* Serialize(uint8_t* buf, const uint8_t* end) const {
360         return append_size_and_data_to_buf(buf, end, accessBlobData(this), accessBlobSize(this));
361     }
362 
DeserializeTKeymasterBlob363     bool Deserialize(const uint8_t** buf_ptr, const uint8_t* end) {
364         Clear();
365         UniquePtr<uint8_t[]> tmp;
366         if (!copy_size_and_data_from_buf(buf_ptr, end, &accessBlobSize(this), &tmp)) {
367             accessBlobData(this) = nullptr;
368             accessBlobSize(this) = 0;
369             return false;
370         }
371         accessBlobData(this) = tmp.release();
372         return true;
373     }
374 };
375 
376 typedef TKeymasterBlob<keymaster_blob_t> KeymasterBlob;
377 typedef TKeymasterBlob<keymaster_key_blob_t> KeymasterKeyBlob;
378 
379 struct Characteristics_Delete {
operatorCharacteristics_Delete380     void operator()(keymaster_key_characteristics_t* p) {
381         keymaster_free_characteristics(p);
382         free(p);
383     }
384 };
385 
386 struct Malloc_Delete {
operatorMalloc_Delete387     void operator()(void* p) { free(p); }
388 };
389 
390 struct CertificateChainDelete {
operatorCertificateChainDelete391     void operator()(keymaster_cert_chain_t* p) {
392         if (!p)
393             return;
394         for (size_t i = 0; i < p->entry_count; ++i)
395             delete[] p->entries[i].data;
396         delete[] p->entries;
397         delete p;
398     }
399 };
400 
401 typedef UniquePtr<keymaster_cert_chain_t, CertificateChainDelete> CertChainPtr;
402 
403 keymaster_error_t EcKeySizeToCurve(uint32_t key_size_bits, keymaster_ec_curve_t* curve);
404 keymaster_error_t EcCurveToKeySize(keymaster_ec_curve_t curve, uint32_t* key_size_bits);
405 
406 template<typename T> struct remove_reference      {typedef T type;};
407 template<typename T> struct remove_reference<T&>  {typedef T type;};
408 template<typename T> struct remove_reference<T&&> {typedef T type;};
409 template<typename T>
410 using remove_reference_t = typename remove_reference<T>::type;
411 template<typename T>
412 remove_reference_t<T>&& move(T&& x) {
413     return static_cast<remove_reference_t<T>&&>(x);
414 }
415 
416 template<typename T>
417 constexpr T&& forward(remove_reference_t<T>& x) {
418     return static_cast<T&&>(x);
419 }
420 template<typename T>
421 constexpr T&& forward(remove_reference_t<T>&& x) {
422     return static_cast<T&&>(x);
423 }
424 
425 template <class F> class final_action {
426   public:
427     explicit final_action(F f) : f_(move(f)) {}
428     ~final_action() { f_(); }
429 
430   private:
431     F f_;
432 };
433 
434 template <class F> inline final_action<F> finally(const F& f) {
435     return final_action<F>(f);
436 }
437 
438 }  // namespace keymaster
439 
440 #endif  // SYSTEM_KEYMASTER_ANDROID_KEYMASTER_UTILS_H_
441