1 /*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2014, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file implements the Peer State Machine as defined in RFC 4137. The used
9 * states and state transitions match mostly with the RFC. However, there are
10 * couple of additional transitions for working around small issues noticed
11 * during testing. These exceptions are explained in comments within the
12 * functions in this file. The method functions, m.func(), are similar to the
13 * ones used in RFC 4137, but some small changes have used here to optimize
14 * operations and to add functionality needed for fast re-authentication
15 * (session resumption).
16 */
17
18 #include "includes.h"
19
20 #include "common.h"
21 #include "pcsc_funcs.h"
22 #include "state_machine.h"
23 #include "ext_password.h"
24 #include "crypto/crypto.h"
25 #include "crypto/tls.h"
26 #include "crypto/sha256.h"
27 #include "common/wpa_ctrl.h"
28 #include "eap_common/eap_wsc_common.h"
29 #include "eap_i.h"
30 #include "eap_config.h"
31
32 #define STATE_MACHINE_DATA struct eap_sm
33 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
34
35 #define EAP_MAX_AUTH_ROUNDS 50
36 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
37
38
39 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
40 EapType method);
41 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
42 static void eap_sm_processIdentity(struct eap_sm *sm,
43 const struct wpabuf *req);
44 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
45 static struct wpabuf * eap_sm_buildNotify(int id);
46 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
47 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
48 static const char * eap_sm_method_state_txt(EapMethodState state);
49 static const char * eap_sm_decision_txt(EapDecision decision);
50 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
51 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
52 const char *msg, size_t msglen);
53
54
55
eapol_get_bool(struct eap_sm * sm,enum eapol_bool_var var)56 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
57 {
58 return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
59 }
60
61
eapol_set_bool(struct eap_sm * sm,enum eapol_bool_var var,Boolean value)62 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
63 Boolean value)
64 {
65 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
66 }
67
68
eapol_get_int(struct eap_sm * sm,enum eapol_int_var var)69 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
70 {
71 return sm->eapol_cb->get_int(sm->eapol_ctx, var);
72 }
73
74
eapol_set_int(struct eap_sm * sm,enum eapol_int_var var,unsigned int value)75 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
76 unsigned int value)
77 {
78 sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
79 }
80
81
eapol_get_eapReqData(struct eap_sm * sm)82 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
83 {
84 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
85 }
86
87
eap_notify_status(struct eap_sm * sm,const char * status,const char * parameter)88 static void eap_notify_status(struct eap_sm *sm, const char *status,
89 const char *parameter)
90 {
91 wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
92 status, parameter);
93 if (sm->eapol_cb->notify_status)
94 sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
95 }
96
eap_report_error(struct eap_sm * sm,int error_code)97 static void eap_report_error(struct eap_sm *sm, int error_code)
98 {
99 wpa_printf(MSG_DEBUG, "EAP: Error notification: %d", error_code);
100 if (sm->eapol_cb->notify_eap_error)
101 sm->eapol_cb->notify_eap_error(sm->eapol_ctx, error_code);
102 }
103
eap_sm_free_key(struct eap_sm * sm)104 static void eap_sm_free_key(struct eap_sm *sm)
105 {
106 if (sm->eapKeyData) {
107 bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
108 sm->eapKeyData = NULL;
109 }
110 }
111
112
eap_deinit_prev_method(struct eap_sm * sm,const char * txt)113 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
114 {
115 ext_password_free(sm->ext_pw_buf);
116 sm->ext_pw_buf = NULL;
117
118 if (sm->m == NULL || sm->eap_method_priv == NULL)
119 return;
120
121 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
122 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
123 sm->m->deinit(sm, sm->eap_method_priv);
124 sm->eap_method_priv = NULL;
125 sm->m = NULL;
126 }
127
128
129 /**
130 * eap_config_allowed_method - Check whether EAP method is allowed
131 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
132 * @config: EAP configuration
133 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
134 * @method: EAP type
135 * Returns: 1 = allowed EAP method, 0 = not allowed
136 */
eap_config_allowed_method(struct eap_sm * sm,struct eap_peer_config * config,int vendor,u32 method)137 static int eap_config_allowed_method(struct eap_sm *sm,
138 struct eap_peer_config *config,
139 int vendor, u32 method)
140 {
141 int i;
142 struct eap_method_type *m;
143
144 if (config == NULL || config->eap_methods == NULL)
145 return 1;
146
147 m = config->eap_methods;
148 for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
149 m[i].method != EAP_TYPE_NONE; i++) {
150 if (m[i].vendor == vendor && m[i].method == method)
151 return 1;
152 }
153 return 0;
154 }
155
156
157 /**
158 * eap_allowed_method - Check whether EAP method is allowed
159 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
160 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
161 * @method: EAP type
162 * Returns: 1 = allowed EAP method, 0 = not allowed
163 */
eap_allowed_method(struct eap_sm * sm,int vendor,u32 method)164 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
165 {
166 return eap_config_allowed_method(sm, eap_get_config(sm), vendor,
167 method);
168 }
169
170
171 #if defined(PCSC_FUNCS) || defined(CONFIG_EAP_PROXY)
eap_sm_append_3gpp_realm(struct eap_sm * sm,char * imsi,size_t max_len,size_t * imsi_len,int mnc_len)172 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
173 size_t max_len, size_t *imsi_len,
174 int mnc_len)
175 {
176 char *pos, mnc[4];
177
178 if (*imsi_len + 36 > max_len) {
179 wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
180 return -1;
181 }
182
183 if (mnc_len != 2 && mnc_len != 3)
184 mnc_len = 3;
185
186 if (mnc_len == 2) {
187 mnc[0] = '0';
188 mnc[1] = imsi[3];
189 mnc[2] = imsi[4];
190 } else if (mnc_len == 3) {
191 mnc[0] = imsi[3];
192 mnc[1] = imsi[4];
193 mnc[2] = imsi[5];
194 }
195 mnc[3] = '\0';
196
197 pos = imsi + *imsi_len;
198 pos += os_snprintf(pos, imsi + max_len - pos,
199 "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
200 mnc, imsi[0], imsi[1], imsi[2]);
201 *imsi_len = pos - imsi;
202
203 return 0;
204 }
205 #endif /* PCSC_FUNCS || CONFIG_EAP_PROXY */
206
207
208 /*
209 * This state initializes state machine variables when the machine is
210 * activated (portEnabled = TRUE). This is also used when re-starting
211 * authentication (eapRestart == TRUE).
212 */
SM_STATE(EAP,INITIALIZE)213 SM_STATE(EAP, INITIALIZE)
214 {
215 SM_ENTRY(EAP, INITIALIZE);
216 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
217 sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
218 !sm->prev_failure &&
219 sm->last_config == eap_get_config(sm)) {
220 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
221 "fast reauthentication");
222 sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
223 } else {
224 sm->last_config = eap_get_config(sm);
225 eap_deinit_prev_method(sm, "INITIALIZE");
226 }
227 sm->selectedMethod = EAP_TYPE_NONE;
228 sm->methodState = METHOD_NONE;
229 sm->allowNotifications = TRUE;
230 sm->decision = DECISION_FAIL;
231 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
232 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
233 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
234 eapol_set_bool(sm, EAPOL_eapFail, FALSE);
235 eap_sm_free_key(sm);
236 os_free(sm->eapSessionId);
237 sm->eapSessionId = NULL;
238 sm->eapKeyAvailable = FALSE;
239 eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
240 sm->lastId = -1; /* new session - make sure this does not match with
241 * the first EAP-Packet */
242 /*
243 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
244 * seemed to be able to trigger cases where both were set and if EAPOL
245 * state machine uses eapNoResp first, it may end up not sending a real
246 * reply correctly. This occurred when the workaround in FAIL state set
247 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
248 * something else(?)
249 */
250 eapol_set_bool(sm, EAPOL_eapResp, FALSE);
251 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
252 /*
253 * RFC 4137 does not reset ignore here, but since it is possible for
254 * some method code paths to end up not setting ignore=FALSE, clear the
255 * value here to avoid issues if a previous authentication attempt
256 * failed with ignore=TRUE being left behind in the last
257 * m.check(eapReqData) operation.
258 */
259 sm->ignore = 0;
260 sm->num_rounds = 0;
261 sm->prev_failure = 0;
262 sm->expected_failure = 0;
263 sm->reauthInit = FALSE;
264 sm->erp_seq = (u32) -1;
265 }
266
267
268 /*
269 * This state is reached whenever service from the lower layer is interrupted
270 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
271 * occurs when the port becomes enabled.
272 */
SM_STATE(EAP,DISABLED)273 SM_STATE(EAP, DISABLED)
274 {
275 SM_ENTRY(EAP, DISABLED);
276 sm->num_rounds = 0;
277 /*
278 * RFC 4137 does not describe clearing of idleWhile here, but doing so
279 * allows the timer tick to be stopped more quickly when EAP is not in
280 * use.
281 */
282 eapol_set_int(sm, EAPOL_idleWhile, 0);
283 }
284
285
286 /*
287 * The state machine spends most of its time here, waiting for something to
288 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
289 * SEND_RESPONSE states.
290 */
SM_STATE(EAP,IDLE)291 SM_STATE(EAP, IDLE)
292 {
293 SM_ENTRY(EAP, IDLE);
294 }
295
296
297 /*
298 * This state is entered when an EAP packet is received (eapReq == TRUE) to
299 * parse the packet header.
300 */
SM_STATE(EAP,RECEIVED)301 SM_STATE(EAP, RECEIVED)
302 {
303 const struct wpabuf *eapReqData;
304
305 SM_ENTRY(EAP, RECEIVED);
306 eapReqData = eapol_get_eapReqData(sm);
307 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
308 eap_sm_parseEapReq(sm, eapReqData);
309 sm->num_rounds++;
310 }
311
312
313 /*
314 * This state is entered when a request for a new type comes in. Either the
315 * correct method is started, or a Nak response is built.
316 */
SM_STATE(EAP,GET_METHOD)317 SM_STATE(EAP, GET_METHOD)
318 {
319 int reinit;
320 EapType method;
321 const struct eap_method *eap_method;
322
323 SM_ENTRY(EAP, GET_METHOD);
324
325 if (sm->reqMethod == EAP_TYPE_EXPANDED)
326 method = sm->reqVendorMethod;
327 else
328 method = sm->reqMethod;
329
330 eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
331
332 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
333 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
334 sm->reqVendor, method);
335 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
336 "vendor=%u method=%u -> NAK",
337 sm->reqVendor, method);
338 eap_notify_status(sm, "refuse proposed method",
339 eap_method ? eap_method->name : "unknown");
340 goto nak;
341 }
342
343 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
344 "vendor=%u method=%u", sm->reqVendor, method);
345
346 eap_notify_status(sm, "accept proposed method",
347 eap_method ? eap_method->name : "unknown");
348 /*
349 * RFC 4137 does not define specific operation for fast
350 * re-authentication (session resumption). The design here is to allow
351 * the previously used method data to be maintained for
352 * re-authentication if the method support session resumption.
353 * Otherwise, the previously used method data is freed and a new method
354 * is allocated here.
355 */
356 if (sm->fast_reauth &&
357 sm->m && sm->m->vendor == sm->reqVendor &&
358 sm->m->method == method &&
359 sm->m->has_reauth_data &&
360 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
361 wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
362 " for fast re-authentication");
363 reinit = 1;
364 } else {
365 eap_deinit_prev_method(sm, "GET_METHOD");
366 reinit = 0;
367 }
368
369 sm->selectedMethod = sm->reqMethod;
370 if (sm->m == NULL)
371 sm->m = eap_method;
372 if (!sm->m) {
373 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
374 "vendor %d method %d",
375 sm->reqVendor, method);
376 goto nak;
377 }
378
379 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
380
381 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
382 "vendor %u method %u (%s)",
383 sm->reqVendor, method, sm->m->name);
384 if (reinit) {
385 sm->eap_method_priv = sm->m->init_for_reauth(
386 sm, sm->eap_method_priv);
387 } else {
388 sm->waiting_ext_cert_check = 0;
389 sm->ext_cert_check = 0;
390 sm->eap_method_priv = sm->m->init(sm);
391 }
392
393 if (sm->eap_method_priv == NULL) {
394 struct eap_peer_config *config = eap_get_config(sm);
395 wpa_msg(sm->msg_ctx, MSG_INFO,
396 "EAP: Failed to initialize EAP method: vendor %u "
397 "method %u (%s)",
398 sm->reqVendor, method, sm->m->name);
399 sm->m = NULL;
400 sm->methodState = METHOD_NONE;
401 sm->selectedMethod = EAP_TYPE_NONE;
402 if (sm->reqMethod == EAP_TYPE_TLS && config &&
403 (config->pending_req_pin ||
404 config->pending_req_passphrase)) {
405 /*
406 * Return without generating Nak in order to allow
407 * entering of PIN code or passphrase to retry the
408 * current EAP packet.
409 */
410 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
411 "request - skip Nak");
412 return;
413 }
414
415 goto nak;
416 }
417
418 sm->methodState = METHOD_INIT;
419 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
420 "EAP vendor %u method %u (%s) selected",
421 sm->reqVendor, method, sm->m->name);
422 return;
423
424 nak:
425 wpabuf_free(sm->eapRespData);
426 sm->eapRespData = NULL;
427 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
428 }
429
430
431 #ifdef CONFIG_ERP
432
eap_get_realm(struct eap_sm * sm,struct eap_peer_config * config)433 static char * eap_get_realm(struct eap_sm *sm, struct eap_peer_config *config)
434 {
435 char *realm;
436 size_t i, realm_len;
437
438 if (!config)
439 return NULL;
440
441 if (config->identity) {
442 for (i = 0; i < config->identity_len; i++) {
443 if (config->identity[i] == '@')
444 break;
445 }
446 if (i < config->identity_len) {
447 realm_len = config->identity_len - i - 1;
448 realm = os_malloc(realm_len + 1);
449 if (realm == NULL)
450 return NULL;
451 os_memcpy(realm, &config->identity[i + 1], realm_len);
452 realm[realm_len] = '\0';
453 return realm;
454 }
455 }
456
457 if (config->anonymous_identity) {
458 for (i = 0; i < config->anonymous_identity_len; i++) {
459 if (config->anonymous_identity[i] == '@')
460 break;
461 }
462 if (i < config->anonymous_identity_len) {
463 realm_len = config->anonymous_identity_len - i - 1;
464 realm = os_malloc(realm_len + 1);
465 if (realm == NULL)
466 return NULL;
467 os_memcpy(realm, &config->anonymous_identity[i + 1],
468 realm_len);
469 realm[realm_len] = '\0';
470 return realm;
471 }
472 }
473
474 #ifdef CONFIG_EAP_PROXY
475 /* When identity is not provided in the config, build the realm from
476 * IMSI for eap_proxy based methods.
477 */
478 if (!config->identity && !config->anonymous_identity &&
479 sm->eapol_cb->get_imsi &&
480 (eap_config_allowed_method(sm, config, EAP_VENDOR_IETF,
481 EAP_TYPE_SIM) ||
482 eap_config_allowed_method(sm, config, EAP_VENDOR_IETF,
483 EAP_TYPE_AKA) ||
484 eap_config_allowed_method(sm, config, EAP_VENDOR_IETF,
485 EAP_TYPE_AKA_PRIME))) {
486 char imsi[100];
487 size_t imsi_len;
488 int mnc_len, pos;
489
490 wpa_printf(MSG_DEBUG, "EAP: Build realm from IMSI (eap_proxy)");
491 mnc_len = sm->eapol_cb->get_imsi(sm->eapol_ctx, config->sim_num,
492 imsi, &imsi_len);
493 if (mnc_len < 0)
494 return NULL;
495
496 pos = imsi_len + 1; /* points to the beginning of the realm */
497 if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len,
498 mnc_len) < 0) {
499 wpa_printf(MSG_WARNING, "Could not append realm");
500 return NULL;
501 }
502
503 realm = os_strdup(&imsi[pos]);
504 if (!realm)
505 return NULL;
506
507 wpa_printf(MSG_DEBUG, "EAP: Generated realm '%s'", realm);
508 return realm;
509 }
510 #endif /* CONFIG_EAP_PROXY */
511
512 return NULL;
513 }
514
515
eap_home_realm(struct eap_sm * sm)516 static char * eap_home_realm(struct eap_sm *sm)
517 {
518 return eap_get_realm(sm, eap_get_config(sm));
519 }
520
521
522 static struct eap_erp_key *
eap_erp_get_key(struct eap_sm * sm,const char * realm)523 eap_erp_get_key(struct eap_sm *sm, const char *realm)
524 {
525 struct eap_erp_key *erp;
526
527 dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
528 char *pos;
529
530 pos = os_strchr(erp->keyname_nai, '@');
531 if (!pos)
532 continue;
533 pos++;
534 if (os_strcmp(pos, realm) == 0)
535 return erp;
536 }
537
538 return NULL;
539 }
540
541
542 static struct eap_erp_key *
eap_erp_get_key_nai(struct eap_sm * sm,const char * nai)543 eap_erp_get_key_nai(struct eap_sm *sm, const char *nai)
544 {
545 struct eap_erp_key *erp;
546
547 dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
548 if (os_strcmp(erp->keyname_nai, nai) == 0)
549 return erp;
550 }
551
552 return NULL;
553 }
554
555
eap_peer_erp_free_key(struct eap_erp_key * erp)556 static void eap_peer_erp_free_key(struct eap_erp_key *erp)
557 {
558 dl_list_del(&erp->list);
559 bin_clear_free(erp, sizeof(*erp));
560 }
561
562
eap_erp_remove_keys_realm(struct eap_sm * sm,const char * realm)563 static void eap_erp_remove_keys_realm(struct eap_sm *sm, const char *realm)
564 {
565 struct eap_erp_key *erp;
566
567 while ((erp = eap_erp_get_key(sm, realm)) != NULL) {
568 wpa_printf(MSG_DEBUG, "EAP: Delete old ERP key %s",
569 erp->keyname_nai);
570 eap_peer_erp_free_key(erp);
571 }
572 }
573
574
eap_peer_update_erp_next_seq_num(struct eap_sm * sm,u16 next_seq_num)575 int eap_peer_update_erp_next_seq_num(struct eap_sm *sm, u16 next_seq_num)
576 {
577 struct eap_erp_key *erp;
578 char *home_realm;
579
580 home_realm = eap_home_realm(sm);
581 if (!home_realm || os_strlen(home_realm) == 0) {
582 os_free(home_realm);
583 return -1;
584 }
585
586 erp = eap_erp_get_key(sm, home_realm);
587 if (!erp) {
588 wpa_printf(MSG_DEBUG,
589 "EAP: Failed to find ERP key for realm: %s",
590 home_realm);
591 os_free(home_realm);
592 return -1;
593 }
594
595 if ((u32) next_seq_num < erp->next_seq) {
596 /* Sequence number has wrapped around, clear this ERP
597 * info and do a full auth next time.
598 */
599 eap_peer_erp_free_key(erp);
600 } else {
601 erp->next_seq = (u32) next_seq_num;
602 }
603
604 os_free(home_realm);
605 return 0;
606 }
607
608
eap_peer_get_erp_info(struct eap_sm * sm,struct eap_peer_config * config,const u8 ** username,size_t * username_len,const u8 ** realm,size_t * realm_len,u16 * erp_next_seq_num,const u8 ** rrk,size_t * rrk_len)609 int eap_peer_get_erp_info(struct eap_sm *sm, struct eap_peer_config *config,
610 const u8 **username, size_t *username_len,
611 const u8 **realm, size_t *realm_len,
612 u16 *erp_next_seq_num, const u8 **rrk,
613 size_t *rrk_len)
614 {
615 struct eap_erp_key *erp;
616 char *home_realm;
617 char *pos;
618
619 if (config)
620 home_realm = eap_get_realm(sm, config);
621 else
622 home_realm = eap_home_realm(sm);
623 if (!home_realm || os_strlen(home_realm) == 0) {
624 os_free(home_realm);
625 return -1;
626 }
627
628 erp = eap_erp_get_key(sm, home_realm);
629 os_free(home_realm);
630 if (!erp)
631 return -1;
632
633 if (erp->next_seq >= 65536)
634 return -1; /* SEQ has range of 0..65535 */
635
636 pos = os_strchr(erp->keyname_nai, '@');
637 if (!pos)
638 return -1; /* this cannot really happen */
639 *username_len = pos - erp->keyname_nai;
640 *username = (u8 *) erp->keyname_nai;
641
642 pos++;
643 *realm_len = os_strlen(pos);
644 *realm = (u8 *) pos;
645
646 *erp_next_seq_num = (u16) erp->next_seq;
647
648 *rrk_len = erp->rRK_len;
649 *rrk = erp->rRK;
650
651 if (*username_len == 0 || *realm_len == 0 || *rrk_len == 0)
652 return -1;
653
654 return 0;
655 }
656
657 #endif /* CONFIG_ERP */
658
659
eap_peer_erp_free_keys(struct eap_sm * sm)660 void eap_peer_erp_free_keys(struct eap_sm *sm)
661 {
662 #ifdef CONFIG_ERP
663 struct eap_erp_key *erp, *tmp;
664
665 dl_list_for_each_safe(erp, tmp, &sm->erp_keys, struct eap_erp_key, list)
666 eap_peer_erp_free_key(erp);
667 #endif /* CONFIG_ERP */
668 }
669
670
eap_peer_erp_init(struct eap_sm * sm,u8 * ext_session_id,size_t ext_session_id_len,u8 * ext_emsk,size_t ext_emsk_len)671 void eap_peer_erp_init(struct eap_sm *sm, u8 *ext_session_id,
672 size_t ext_session_id_len, u8 *ext_emsk,
673 size_t ext_emsk_len)
674 {
675 #ifdef CONFIG_ERP
676 u8 *emsk = NULL;
677 size_t emsk_len = 0;
678 u8 *session_id = NULL;
679 size_t session_id_len = 0;
680 u8 EMSKname[EAP_EMSK_NAME_LEN];
681 u8 len[2], ctx[3];
682 char *realm;
683 size_t realm_len, nai_buf_len;
684 struct eap_erp_key *erp = NULL;
685 int pos;
686
687 realm = eap_home_realm(sm);
688 if (!realm)
689 return;
690 realm_len = os_strlen(realm);
691 wpa_printf(MSG_DEBUG, "EAP: Realm for ERP keyName-NAI: %s", realm);
692 eap_erp_remove_keys_realm(sm, realm);
693
694 nai_buf_len = 2 * EAP_EMSK_NAME_LEN + 1 + realm_len;
695 if (nai_buf_len > 253) {
696 /*
697 * keyName-NAI has a maximum length of 253 octet to fit in
698 * RADIUS attributes.
699 */
700 wpa_printf(MSG_DEBUG,
701 "EAP: Too long realm for ERP keyName-NAI maximum length");
702 goto fail;
703 }
704 nai_buf_len++; /* null termination */
705 erp = os_zalloc(sizeof(*erp) + nai_buf_len);
706 if (erp == NULL)
707 goto fail;
708
709 if (ext_emsk) {
710 emsk = ext_emsk;
711 emsk_len = ext_emsk_len;
712 } else {
713 emsk = sm->m->get_emsk(sm, sm->eap_method_priv, &emsk_len);
714 }
715
716 if (!emsk || emsk_len == 0 || emsk_len > ERP_MAX_KEY_LEN) {
717 wpa_printf(MSG_DEBUG,
718 "EAP: No suitable EMSK available for ERP");
719 goto fail;
720 }
721
722 wpa_hexdump_key(MSG_DEBUG, "EAP: EMSK", emsk, emsk_len);
723
724 if (ext_session_id) {
725 session_id = ext_session_id;
726 session_id_len = ext_session_id_len;
727 } else {
728 session_id = sm->eapSessionId;
729 session_id_len = sm->eapSessionIdLen;
730 }
731
732 if (!session_id || session_id_len == 0) {
733 wpa_printf(MSG_DEBUG,
734 "EAP: No suitable session id available for ERP");
735 goto fail;
736 }
737
738 WPA_PUT_BE16(len, EAP_EMSK_NAME_LEN);
739 if (hmac_sha256_kdf(session_id, session_id_len, "EMSK", len,
740 sizeof(len), EMSKname, EAP_EMSK_NAME_LEN) < 0) {
741 wpa_printf(MSG_DEBUG, "EAP: Could not derive EMSKname");
742 goto fail;
743 }
744 wpa_hexdump(MSG_DEBUG, "EAP: EMSKname", EMSKname, EAP_EMSK_NAME_LEN);
745
746 pos = wpa_snprintf_hex(erp->keyname_nai, nai_buf_len,
747 EMSKname, EAP_EMSK_NAME_LEN);
748 erp->keyname_nai[pos] = '@';
749 os_memcpy(&erp->keyname_nai[pos + 1], realm, realm_len);
750
751 WPA_PUT_BE16(len, emsk_len);
752 if (hmac_sha256_kdf(emsk, emsk_len,
753 "EAP Re-authentication Root Key@ietf.org",
754 len, sizeof(len), erp->rRK, emsk_len) < 0) {
755 wpa_printf(MSG_DEBUG, "EAP: Could not derive rRK for ERP");
756 goto fail;
757 }
758 erp->rRK_len = emsk_len;
759 wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rRK", erp->rRK, erp->rRK_len);
760
761 ctx[0] = EAP_ERP_CS_HMAC_SHA256_128;
762 WPA_PUT_BE16(&ctx[1], erp->rRK_len);
763 if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
764 "Re-authentication Integrity Key@ietf.org",
765 ctx, sizeof(ctx), erp->rIK, erp->rRK_len) < 0) {
766 wpa_printf(MSG_DEBUG, "EAP: Could not derive rIK for ERP");
767 goto fail;
768 }
769 erp->rIK_len = erp->rRK_len;
770 wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rIK", erp->rIK, erp->rIK_len);
771
772 wpa_printf(MSG_DEBUG, "EAP: Stored ERP keys %s", erp->keyname_nai);
773 dl_list_add(&sm->erp_keys, &erp->list);
774 erp = NULL;
775 fail:
776 bin_clear_free(emsk, emsk_len);
777 bin_clear_free(ext_session_id, ext_session_id_len);
778 bin_clear_free(erp, sizeof(*erp));
779 os_free(realm);
780 #endif /* CONFIG_ERP */
781 }
782
783
784 #ifdef CONFIG_ERP
eap_peer_build_erp_reauth_start(struct eap_sm * sm,u8 eap_id)785 struct wpabuf * eap_peer_build_erp_reauth_start(struct eap_sm *sm, u8 eap_id)
786 {
787 char *realm;
788 struct eap_erp_key *erp;
789 struct wpabuf *msg;
790 u8 hash[SHA256_MAC_LEN];
791
792 realm = eap_home_realm(sm);
793 if (!realm)
794 return NULL;
795
796 erp = eap_erp_get_key(sm, realm);
797 os_free(realm);
798 realm = NULL;
799 if (!erp)
800 return NULL;
801
802 if (erp->next_seq >= 65536)
803 return NULL; /* SEQ has range of 0..65535 */
804
805 /* TODO: check rRK lifetime expiration */
806
807 wpa_printf(MSG_DEBUG, "EAP: Valid ERP key found %s (SEQ=%u)",
808 erp->keyname_nai, erp->next_seq);
809
810 msg = eap_msg_alloc(EAP_VENDOR_IETF, (EapType) EAP_ERP_TYPE_REAUTH,
811 1 + 2 + 2 + os_strlen(erp->keyname_nai) + 1 + 16,
812 EAP_CODE_INITIATE, eap_id);
813 if (msg == NULL)
814 return NULL;
815
816 wpabuf_put_u8(msg, 0x20); /* Flags: R=0 B=0 L=1 */
817 wpabuf_put_be16(msg, erp->next_seq);
818
819 wpabuf_put_u8(msg, EAP_ERP_TLV_KEYNAME_NAI);
820 wpabuf_put_u8(msg, os_strlen(erp->keyname_nai));
821 wpabuf_put_str(msg, erp->keyname_nai);
822
823 wpabuf_put_u8(msg, EAP_ERP_CS_HMAC_SHA256_128); /* Cryptosuite */
824
825 if (hmac_sha256(erp->rIK, erp->rIK_len,
826 wpabuf_head(msg), wpabuf_len(msg), hash) < 0) {
827 wpabuf_free(msg);
828 return NULL;
829 }
830 wpabuf_put_data(msg, hash, 16);
831
832 sm->erp_seq = erp->next_seq;
833 erp->next_seq++;
834
835 wpa_hexdump_buf(MSG_DEBUG, "ERP: EAP-Initiate/Re-auth", msg);
836
837 return msg;
838 }
839
840
eap_peer_erp_reauth_start(struct eap_sm * sm,u8 eap_id)841 static int eap_peer_erp_reauth_start(struct eap_sm *sm, u8 eap_id)
842 {
843 struct wpabuf *msg;
844
845 msg = eap_peer_build_erp_reauth_start(sm, eap_id);
846 if (!msg)
847 return -1;
848
849 wpa_printf(MSG_DEBUG, "EAP: Sending EAP-Initiate/Re-auth");
850 wpabuf_free(sm->eapRespData);
851 sm->eapRespData = msg;
852 sm->reauthInit = TRUE;
853 return 0;
854 }
855 #endif /* CONFIG_ERP */
856
857
858 /*
859 * The method processing happens here. The request from the authenticator is
860 * processed, and an appropriate response packet is built.
861 */
SM_STATE(EAP,METHOD)862 SM_STATE(EAP, METHOD)
863 {
864 struct wpabuf *eapReqData;
865 struct eap_method_ret ret;
866 int min_len = 1;
867
868 SM_ENTRY(EAP, METHOD);
869 if (sm->m == NULL) {
870 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
871 return;
872 }
873
874 eapReqData = eapol_get_eapReqData(sm);
875 if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
876 min_len = 0; /* LEAP uses EAP-Success without payload */
877 if (!eap_hdr_len_valid(eapReqData, min_len))
878 return;
879
880 /*
881 * Get ignore, methodState, decision, allowNotifications, and
882 * eapRespData. RFC 4137 uses three separate method procedure (check,
883 * process, and buildResp) in this state. These have been combined into
884 * a single function call to m->process() in order to optimize EAP
885 * method implementation interface a bit. These procedures are only
886 * used from within this METHOD state, so there is no need to keep
887 * these as separate C functions.
888 *
889 * The RFC 4137 procedures return values as follows:
890 * ignore = m.check(eapReqData)
891 * (methodState, decision, allowNotifications) = m.process(eapReqData)
892 * eapRespData = m.buildResp(reqId)
893 */
894 os_memset(&ret, 0, sizeof(ret));
895 ret.ignore = sm->ignore;
896 ret.methodState = sm->methodState;
897 ret.decision = sm->decision;
898 ret.allowNotifications = sm->allowNotifications;
899 wpabuf_free(sm->eapRespData);
900 sm->eapRespData = NULL;
901 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
902 eapReqData);
903 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
904 "methodState=%s decision=%s eapRespData=%p",
905 ret.ignore ? "TRUE" : "FALSE",
906 eap_sm_method_state_txt(ret.methodState),
907 eap_sm_decision_txt(ret.decision),
908 sm->eapRespData);
909
910 sm->ignore = ret.ignore;
911 if (sm->ignore)
912 return;
913 sm->methodState = ret.methodState;
914 sm->decision = ret.decision;
915 sm->allowNotifications = ret.allowNotifications;
916
917 if (sm->m->isKeyAvailable && sm->m->getKey &&
918 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
919 eap_sm_free_key(sm);
920 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
921 &sm->eapKeyDataLen);
922 os_free(sm->eapSessionId);
923 sm->eapSessionId = NULL;
924 if (sm->m->getSessionId) {
925 sm->eapSessionId = sm->m->getSessionId(
926 sm, sm->eap_method_priv,
927 &sm->eapSessionIdLen);
928 wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
929 sm->eapSessionId, sm->eapSessionIdLen);
930 }
931 }
932 }
933
934
935 /*
936 * This state signals the lower layer that a response packet is ready to be
937 * sent.
938 */
SM_STATE(EAP,SEND_RESPONSE)939 SM_STATE(EAP, SEND_RESPONSE)
940 {
941 SM_ENTRY(EAP, SEND_RESPONSE);
942 wpabuf_free(sm->lastRespData);
943 if (sm->eapRespData) {
944 if (sm->workaround)
945 os_memcpy(sm->last_sha1, sm->req_sha1, 20);
946 sm->lastId = sm->reqId;
947 sm->lastRespData = wpabuf_dup(sm->eapRespData);
948 eapol_set_bool(sm, EAPOL_eapResp, TRUE);
949 } else {
950 wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
951 sm->lastRespData = NULL;
952 }
953 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
954 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
955 sm->reauthInit = FALSE;
956 }
957
958
959 /*
960 * This state signals the lower layer that the request was discarded, and no
961 * response packet will be sent at this time.
962 */
SM_STATE(EAP,DISCARD)963 SM_STATE(EAP, DISCARD)
964 {
965 SM_ENTRY(EAP, DISCARD);
966 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
967 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
968 }
969
970
971 /*
972 * Handles requests for Identity method and builds a response.
973 */
SM_STATE(EAP,IDENTITY)974 SM_STATE(EAP, IDENTITY)
975 {
976 const struct wpabuf *eapReqData;
977
978 SM_ENTRY(EAP, IDENTITY);
979 eapReqData = eapol_get_eapReqData(sm);
980 if (!eap_hdr_len_valid(eapReqData, 1))
981 return;
982 eap_sm_processIdentity(sm, eapReqData);
983 wpabuf_free(sm->eapRespData);
984 sm->eapRespData = NULL;
985 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
986 }
987
988
989 /*
990 * Handles requests for Notification method and builds a response.
991 */
SM_STATE(EAP,NOTIFICATION)992 SM_STATE(EAP, NOTIFICATION)
993 {
994 const struct wpabuf *eapReqData;
995
996 SM_ENTRY(EAP, NOTIFICATION);
997 eapReqData = eapol_get_eapReqData(sm);
998 if (!eap_hdr_len_valid(eapReqData, 1))
999 return;
1000 eap_sm_processNotify(sm, eapReqData);
1001 wpabuf_free(sm->eapRespData);
1002 sm->eapRespData = NULL;
1003 sm->eapRespData = eap_sm_buildNotify(sm->reqId);
1004 }
1005
1006
1007 /*
1008 * This state retransmits the previous response packet.
1009 */
SM_STATE(EAP,RETRANSMIT)1010 SM_STATE(EAP, RETRANSMIT)
1011 {
1012 SM_ENTRY(EAP, RETRANSMIT);
1013 wpabuf_free(sm->eapRespData);
1014 if (sm->lastRespData)
1015 sm->eapRespData = wpabuf_dup(sm->lastRespData);
1016 else
1017 sm->eapRespData = NULL;
1018 }
1019
1020
1021 /*
1022 * This state is entered in case of a successful completion of authentication
1023 * and state machine waits here until port is disabled or EAP authentication is
1024 * restarted.
1025 */
SM_STATE(EAP,SUCCESS)1026 SM_STATE(EAP, SUCCESS)
1027 {
1028 struct eap_peer_config *config = eap_get_config(sm);
1029
1030 SM_ENTRY(EAP, SUCCESS);
1031 if (sm->eapKeyData != NULL)
1032 sm->eapKeyAvailable = TRUE;
1033 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1034
1035 /*
1036 * RFC 4137 does not clear eapReq here, but this seems to be required
1037 * to avoid processing the same request twice when state machine is
1038 * initialized.
1039 */
1040 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1041
1042 /*
1043 * RFC 4137 does not set eapNoResp here, but this seems to be required
1044 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
1045 * addition, either eapResp or eapNoResp is required to be set after
1046 * processing the received EAP frame.
1047 */
1048 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1049
1050 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1051 "EAP authentication completed successfully");
1052
1053 if (config->erp && sm->m->get_emsk && sm->eapSessionId &&
1054 sm->m->isKeyAvailable &&
1055 sm->m->isKeyAvailable(sm, sm->eap_method_priv))
1056 eap_peer_erp_init(sm, NULL, 0, NULL, 0);
1057 }
1058
1059
1060 /*
1061 * This state is entered in case of a failure and state machine waits here
1062 * until port is disabled or EAP authentication is restarted.
1063 */
SM_STATE(EAP,FAILURE)1064 SM_STATE(EAP, FAILURE)
1065 {
1066 SM_ENTRY(EAP, FAILURE);
1067 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
1068
1069 /*
1070 * RFC 4137 does not clear eapReq here, but this seems to be required
1071 * to avoid processing the same request twice when state machine is
1072 * initialized.
1073 */
1074 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1075
1076 /*
1077 * RFC 4137 does not set eapNoResp here. However, either eapResp or
1078 * eapNoResp is required to be set after processing the received EAP
1079 * frame.
1080 */
1081 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1082
1083 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
1084 "EAP authentication failed");
1085
1086 sm->prev_failure = 1;
1087 }
1088
1089
eap_success_workaround(struct eap_sm * sm,int reqId,int lastId)1090 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
1091 {
1092 /*
1093 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
1094 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
1095 * RFC 4137 require that reqId == lastId. In addition, it looks like
1096 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
1097 *
1098 * Accept this kind of Id if EAP workarounds are enabled. These are
1099 * unauthenticated plaintext messages, so this should have minimal
1100 * security implications (bit easier to fake EAP-Success/Failure).
1101 */
1102 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
1103 reqId == ((lastId + 2) & 0xff))) {
1104 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
1105 "identifier field in EAP Success: "
1106 "reqId=%d lastId=%d (these are supposed to be "
1107 "same)", reqId, lastId);
1108 return 1;
1109 }
1110 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
1111 "lastId=%d", reqId, lastId);
1112 return 0;
1113 }
1114
1115
1116 /*
1117 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
1118 */
1119
eap_peer_sm_step_idle(struct eap_sm * sm)1120 static void eap_peer_sm_step_idle(struct eap_sm *sm)
1121 {
1122 /*
1123 * The first three transitions are from RFC 4137. The last two are
1124 * local additions to handle special cases with LEAP and PEAP server
1125 * not sending EAP-Success in some cases.
1126 */
1127 if (eapol_get_bool(sm, EAPOL_eapReq))
1128 SM_ENTER(EAP, RECEIVED);
1129 else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
1130 sm->decision != DECISION_FAIL) ||
1131 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
1132 sm->decision == DECISION_UNCOND_SUCC))
1133 SM_ENTER(EAP, SUCCESS);
1134 else if (eapol_get_bool(sm, EAPOL_altReject) ||
1135 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
1136 sm->decision != DECISION_UNCOND_SUCC) ||
1137 (eapol_get_bool(sm, EAPOL_altAccept) &&
1138 sm->methodState != METHOD_CONT &&
1139 sm->decision == DECISION_FAIL))
1140 SM_ENTER(EAP, FAILURE);
1141 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
1142 sm->leap_done && sm->decision != DECISION_FAIL &&
1143 sm->methodState == METHOD_DONE)
1144 SM_ENTER(EAP, SUCCESS);
1145 else if (sm->selectedMethod == EAP_TYPE_PEAP &&
1146 sm->peap_done && sm->decision != DECISION_FAIL &&
1147 sm->methodState == METHOD_DONE)
1148 SM_ENTER(EAP, SUCCESS);
1149 }
1150
1151
eap_peer_req_is_duplicate(struct eap_sm * sm)1152 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
1153 {
1154 int duplicate;
1155
1156 duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
1157 if (sm->workaround && duplicate &&
1158 os_memcmp(sm->req_sha1, sm->last_sha1, 20) != 0) {
1159 /*
1160 * RFC 4137 uses (reqId == lastId) as the only verification for
1161 * duplicate EAP requests. However, this misses cases where the
1162 * AS is incorrectly using the same id again; and
1163 * unfortunately, such implementations exist. Use SHA1 hash as
1164 * an extra verification for the packets being duplicate to
1165 * workaround these issues.
1166 */
1167 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
1168 "EAP packets were not identical");
1169 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
1170 "duplicate packet");
1171 duplicate = 0;
1172 }
1173
1174 return duplicate;
1175 }
1176
1177
eap_peer_sm_allow_canned(struct eap_sm * sm)1178 static int eap_peer_sm_allow_canned(struct eap_sm *sm)
1179 {
1180 struct eap_peer_config *config = eap_get_config(sm);
1181
1182 return config && config->phase1 &&
1183 os_strstr(config->phase1, "allow_canned_success=1");
1184 }
1185
1186
eap_peer_sm_step_received(struct eap_sm * sm)1187 static void eap_peer_sm_step_received(struct eap_sm *sm)
1188 {
1189 int duplicate = eap_peer_req_is_duplicate(sm);
1190
1191 /*
1192 * Two special cases below for LEAP are local additions to work around
1193 * odd LEAP behavior (EAP-Success in the middle of authentication and
1194 * then swapped roles). Other transitions are based on RFC 4137.
1195 */
1196 if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
1197 (sm->reqId == sm->lastId ||
1198 eap_success_workaround(sm, sm->reqId, sm->lastId)))
1199 SM_ENTER(EAP, SUCCESS);
1200 else if (sm->workaround && sm->lastId == -1 && sm->rxSuccess &&
1201 !sm->rxFailure && !sm->rxReq && eap_peer_sm_allow_canned(sm))
1202 SM_ENTER(EAP, SUCCESS); /* EAP-Success prior any EAP method */
1203 else if (sm->workaround && sm->lastId == -1 && sm->rxFailure &&
1204 !sm->rxReq && sm->methodState != METHOD_CONT &&
1205 eap_peer_sm_allow_canned(sm))
1206 SM_ENTER(EAP, FAILURE); /* EAP-Failure prior any EAP method */
1207 else if (sm->workaround && sm->rxSuccess && !sm->rxFailure &&
1208 !sm->rxReq && sm->methodState != METHOD_CONT &&
1209 eap_peer_sm_allow_canned(sm))
1210 SM_ENTER(EAP, SUCCESS); /* EAP-Success after Identity */
1211 else if (sm->methodState != METHOD_CONT &&
1212 ((sm->rxFailure &&
1213 sm->decision != DECISION_UNCOND_SUCC) ||
1214 (sm->rxSuccess && sm->decision == DECISION_FAIL &&
1215 (sm->selectedMethod != EAP_TYPE_LEAP ||
1216 sm->methodState != METHOD_MAY_CONT))) &&
1217 (sm->reqId == sm->lastId ||
1218 eap_success_workaround(sm, sm->reqId, sm->lastId)))
1219 SM_ENTER(EAP, FAILURE);
1220 else if (sm->rxReq && duplicate)
1221 SM_ENTER(EAP, RETRANSMIT);
1222 else if (sm->rxReq && !duplicate &&
1223 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
1224 sm->allowNotifications)
1225 SM_ENTER(EAP, NOTIFICATION);
1226 else if (sm->rxReq && !duplicate &&
1227 sm->selectedMethod == EAP_TYPE_NONE &&
1228 sm->reqMethod == EAP_TYPE_IDENTITY)
1229 SM_ENTER(EAP, IDENTITY);
1230 else if (sm->rxReq && !duplicate &&
1231 sm->selectedMethod == EAP_TYPE_NONE &&
1232 sm->reqMethod != EAP_TYPE_IDENTITY &&
1233 sm->reqMethod != EAP_TYPE_NOTIFICATION)
1234 SM_ENTER(EAP, GET_METHOD);
1235 else if (sm->rxReq && !duplicate &&
1236 sm->reqMethod == sm->selectedMethod &&
1237 sm->methodState != METHOD_DONE)
1238 SM_ENTER(EAP, METHOD);
1239 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
1240 (sm->rxSuccess || sm->rxResp))
1241 SM_ENTER(EAP, METHOD);
1242 else if (sm->reauthInit)
1243 SM_ENTER(EAP, SEND_RESPONSE);
1244 else
1245 SM_ENTER(EAP, DISCARD);
1246 }
1247
1248
eap_peer_sm_step_local(struct eap_sm * sm)1249 static void eap_peer_sm_step_local(struct eap_sm *sm)
1250 {
1251 switch (sm->EAP_state) {
1252 case EAP_INITIALIZE:
1253 SM_ENTER(EAP, IDLE);
1254 break;
1255 case EAP_DISABLED:
1256 if (eapol_get_bool(sm, EAPOL_portEnabled) &&
1257 !sm->force_disabled)
1258 SM_ENTER(EAP, INITIALIZE);
1259 break;
1260 case EAP_IDLE:
1261 eap_peer_sm_step_idle(sm);
1262 break;
1263 case EAP_RECEIVED:
1264 eap_peer_sm_step_received(sm);
1265 break;
1266 case EAP_GET_METHOD:
1267 if (sm->selectedMethod == sm->reqMethod)
1268 SM_ENTER(EAP, METHOD);
1269 else
1270 SM_ENTER(EAP, SEND_RESPONSE);
1271 break;
1272 case EAP_METHOD:
1273 /*
1274 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
1275 * as the condition. eapRespData == NULL here is used to allow
1276 * final EAP method response to be sent without having to change
1277 * all methods to either use methodState MAY_CONT or leaving
1278 * decision to something else than FAIL in cases where the only
1279 * expected response is EAP-Failure.
1280 */
1281 if (sm->ignore)
1282 SM_ENTER(EAP, DISCARD);
1283 else if (sm->methodState == METHOD_DONE &&
1284 sm->decision == DECISION_FAIL && !sm->eapRespData)
1285 SM_ENTER(EAP, FAILURE);
1286 else
1287 SM_ENTER(EAP, SEND_RESPONSE);
1288 break;
1289 case EAP_SEND_RESPONSE:
1290 SM_ENTER(EAP, IDLE);
1291 break;
1292 case EAP_DISCARD:
1293 SM_ENTER(EAP, IDLE);
1294 break;
1295 case EAP_IDENTITY:
1296 SM_ENTER(EAP, SEND_RESPONSE);
1297 break;
1298 case EAP_NOTIFICATION:
1299 SM_ENTER(EAP, SEND_RESPONSE);
1300 break;
1301 case EAP_RETRANSMIT:
1302 SM_ENTER(EAP, SEND_RESPONSE);
1303 break;
1304 case EAP_SUCCESS:
1305 break;
1306 case EAP_FAILURE:
1307 break;
1308 }
1309 }
1310
1311
SM_STEP(EAP)1312 SM_STEP(EAP)
1313 {
1314 /* Global transitions */
1315 if (eapol_get_bool(sm, EAPOL_eapRestart) &&
1316 eapol_get_bool(sm, EAPOL_portEnabled))
1317 SM_ENTER_GLOBAL(EAP, INITIALIZE);
1318 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
1319 SM_ENTER_GLOBAL(EAP, DISABLED);
1320 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
1321 /* RFC 4137 does not place any limit on number of EAP messages
1322 * in an authentication session. However, some error cases have
1323 * ended up in a state were EAP messages were sent between the
1324 * peer and server in a loop (e.g., TLS ACK frame in both
1325 * direction). Since this is quite undesired outcome, limit the
1326 * total number of EAP round-trips and abort authentication if
1327 * this limit is exceeded.
1328 */
1329 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
1330 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
1331 "authentication rounds - abort",
1332 EAP_MAX_AUTH_ROUNDS);
1333 sm->num_rounds++;
1334 SM_ENTER_GLOBAL(EAP, FAILURE);
1335 }
1336 } else {
1337 /* Local transitions */
1338 eap_peer_sm_step_local(sm);
1339 }
1340 }
1341
1342
eap_sm_allowMethod(struct eap_sm * sm,int vendor,EapType method)1343 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
1344 EapType method)
1345 {
1346 if (!eap_allowed_method(sm, vendor, method)) {
1347 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
1348 "vendor %u method %u", vendor, method);
1349 return FALSE;
1350 }
1351 if (eap_peer_get_eap_method(vendor, method))
1352 return TRUE;
1353 wpa_printf(MSG_DEBUG, "EAP: not included in build: "
1354 "vendor %u method %u", vendor, method);
1355 return FALSE;
1356 }
1357
1358
eap_sm_build_expanded_nak(struct eap_sm * sm,int id,const struct eap_method * methods,size_t count)1359 static struct wpabuf * eap_sm_build_expanded_nak(
1360 struct eap_sm *sm, int id, const struct eap_method *methods,
1361 size_t count)
1362 {
1363 struct wpabuf *resp;
1364 int found = 0;
1365 const struct eap_method *m;
1366
1367 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
1368
1369 /* RFC 3748 - 5.3.2: Expanded Nak */
1370 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
1371 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
1372 if (resp == NULL)
1373 return NULL;
1374
1375 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1376 wpabuf_put_be32(resp, EAP_TYPE_NAK);
1377
1378 for (m = methods; m; m = m->next) {
1379 if (sm->reqVendor == m->vendor &&
1380 sm->reqVendorMethod == m->method)
1381 continue; /* do not allow the current method again */
1382 if (eap_allowed_method(sm, m->vendor, m->method)) {
1383 wpa_printf(MSG_DEBUG, "EAP: allowed type: "
1384 "vendor=%u method=%u",
1385 m->vendor, m->method);
1386 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1387 wpabuf_put_be24(resp, m->vendor);
1388 wpabuf_put_be32(resp, m->method);
1389
1390 found++;
1391 }
1392 }
1393 if (!found) {
1394 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
1395 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1396 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1397 wpabuf_put_be32(resp, EAP_TYPE_NONE);
1398 }
1399
1400 eap_update_len(resp);
1401
1402 return resp;
1403 }
1404
1405
eap_sm_buildNak(struct eap_sm * sm,int id)1406 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
1407 {
1408 struct wpabuf *resp;
1409 u8 *start;
1410 int found = 0, expanded_found = 0;
1411 size_t count;
1412 const struct eap_method *methods, *m;
1413
1414 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
1415 "vendor=%u method=%u not allowed)", sm->reqMethod,
1416 sm->reqVendor, sm->reqVendorMethod);
1417 methods = eap_peer_get_methods(&count);
1418 if (methods == NULL)
1419 return NULL;
1420 if (sm->reqMethod == EAP_TYPE_EXPANDED)
1421 return eap_sm_build_expanded_nak(sm, id, methods, count);
1422
1423 /* RFC 3748 - 5.3.1: Legacy Nak */
1424 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
1425 sizeof(struct eap_hdr) + 1 + count + 1,
1426 EAP_CODE_RESPONSE, id);
1427 if (resp == NULL)
1428 return NULL;
1429
1430 start = wpabuf_put(resp, 0);
1431 for (m = methods; m; m = m->next) {
1432 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
1433 continue; /* do not allow the current method again */
1434 if (eap_allowed_method(sm, m->vendor, m->method)) {
1435 if (m->vendor != EAP_VENDOR_IETF) {
1436 if (expanded_found)
1437 continue;
1438 expanded_found = 1;
1439 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1440 } else
1441 wpabuf_put_u8(resp, m->method);
1442 found++;
1443 }
1444 }
1445 if (!found)
1446 wpabuf_put_u8(resp, EAP_TYPE_NONE);
1447 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
1448
1449 eap_update_len(resp);
1450
1451 return resp;
1452 }
1453
1454
eap_sm_processIdentity(struct eap_sm * sm,const struct wpabuf * req)1455 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
1456 {
1457 const u8 *pos;
1458 size_t msg_len;
1459
1460 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
1461 "EAP authentication started");
1462 eap_notify_status(sm, "started", "");
1463
1464 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
1465 &msg_len);
1466 if (pos == NULL)
1467 return;
1468
1469 /*
1470 * RFC 3748 - 5.1: Identity
1471 * Data field may contain a displayable message in UTF-8. If this
1472 * includes NUL-character, only the data before that should be
1473 * displayed. Some EAP implementasitons may piggy-back additional
1474 * options after the NUL.
1475 */
1476 /* TODO: could save displayable message so that it can be shown to the
1477 * user in case of interaction is required */
1478 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
1479 pos, msg_len);
1480 }
1481
1482
1483 #ifdef PCSC_FUNCS
1484
1485 /*
1486 * Rules for figuring out MNC length based on IMSI for SIM cards that do not
1487 * include MNC length field.
1488 */
mnc_len_from_imsi(const char * imsi)1489 static int mnc_len_from_imsi(const char *imsi)
1490 {
1491 char mcc_str[4];
1492 unsigned int mcc;
1493
1494 os_memcpy(mcc_str, imsi, 3);
1495 mcc_str[3] = '\0';
1496 mcc = atoi(mcc_str);
1497
1498 if (mcc == 228)
1499 return 2; /* Networks in Switzerland use 2-digit MNC */
1500 if (mcc == 244)
1501 return 2; /* Networks in Finland use 2-digit MNC */
1502
1503 return -1;
1504 }
1505
1506
eap_sm_imsi_identity(struct eap_sm * sm,struct eap_peer_config * conf)1507 static int eap_sm_imsi_identity(struct eap_sm *sm,
1508 struct eap_peer_config *conf)
1509 {
1510 enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
1511 char imsi[100];
1512 size_t imsi_len;
1513 struct eap_method_type *m = conf->eap_methods;
1514 int i, mnc_len;
1515
1516 imsi_len = sizeof(imsi);
1517 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1518 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1519 return -1;
1520 }
1521
1522 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1523
1524 if (imsi_len < 7) {
1525 wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1526 return -1;
1527 }
1528
1529 /* MNC (2 or 3 digits) */
1530 mnc_len = scard_get_mnc_len(sm->scard_ctx);
1531 if (mnc_len < 0)
1532 mnc_len = mnc_len_from_imsi(imsi);
1533 if (mnc_len < 0) {
1534 wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
1535 "assuming 3");
1536 mnc_len = 3;
1537 }
1538
1539 if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len,
1540 mnc_len) < 0) {
1541 wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1542 return -1;
1543 }
1544 wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1545
1546 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1547 m[i].method != EAP_TYPE_NONE); i++) {
1548 if (m[i].vendor == EAP_VENDOR_IETF &&
1549 m[i].method == EAP_TYPE_AKA_PRIME) {
1550 method = EAP_SM_AKA_PRIME;
1551 break;
1552 }
1553
1554 if (m[i].vendor == EAP_VENDOR_IETF &&
1555 m[i].method == EAP_TYPE_AKA) {
1556 method = EAP_SM_AKA;
1557 break;
1558 }
1559 }
1560
1561 os_free(conf->identity);
1562 conf->identity = os_malloc(1 + imsi_len);
1563 if (conf->identity == NULL) {
1564 wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1565 "IMSI-based identity");
1566 return -1;
1567 }
1568
1569 switch (method) {
1570 case EAP_SM_SIM:
1571 conf->identity[0] = '1';
1572 break;
1573 case EAP_SM_AKA:
1574 conf->identity[0] = '0';
1575 break;
1576 case EAP_SM_AKA_PRIME:
1577 conf->identity[0] = '6';
1578 break;
1579 }
1580 os_memcpy(conf->identity + 1, imsi, imsi_len);
1581 conf->identity_len = 1 + imsi_len;
1582
1583 return 0;
1584 }
1585
1586
eap_sm_set_scard_pin(struct eap_sm * sm,struct eap_peer_config * conf)1587 static int eap_sm_set_scard_pin(struct eap_sm *sm,
1588 struct eap_peer_config *conf)
1589 {
1590 if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1591 /*
1592 * Make sure the same PIN is not tried again in order to avoid
1593 * blocking SIM.
1594 */
1595 os_free(conf->pin);
1596 conf->pin = NULL;
1597
1598 wpa_printf(MSG_WARNING, "PIN validation failed");
1599 eap_sm_request_pin(sm);
1600 return -1;
1601 }
1602 return 0;
1603 }
1604
1605
eap_sm_get_scard_identity(struct eap_sm * sm,struct eap_peer_config * conf)1606 static int eap_sm_get_scard_identity(struct eap_sm *sm,
1607 struct eap_peer_config *conf)
1608 {
1609 if (eap_sm_set_scard_pin(sm, conf))
1610 return -1;
1611
1612 return eap_sm_imsi_identity(sm, conf);
1613 }
1614
1615 #endif /* PCSC_FUNCS */
1616
1617
1618 /**
1619 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1620 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1621 * @id: EAP identifier for the packet
1622 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1623 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1624 * failure
1625 *
1626 * This function allocates and builds an EAP-Identity/Response packet for the
1627 * current network. The caller is responsible for freeing the returned data.
1628 */
eap_sm_buildIdentity(struct eap_sm * sm,int id,int encrypted)1629 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1630 {
1631 struct eap_peer_config *config = eap_get_config(sm);
1632 struct wpabuf *resp;
1633 const u8 *identity;
1634 size_t identity_len;
1635
1636 if (config == NULL) {
1637 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1638 "was not available");
1639 return NULL;
1640 }
1641
1642 if (sm->m && sm->m->get_identity &&
1643 (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1644 &identity_len)) != NULL) {
1645 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1646 "identity", identity, identity_len);
1647 } else if (!encrypted && config->anonymous_identity) {
1648 identity = config->anonymous_identity;
1649 identity_len = config->anonymous_identity_len;
1650 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1651 identity, identity_len);
1652 } else {
1653 identity = config->identity;
1654 identity_len = config->identity_len;
1655 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1656 identity, identity_len);
1657 }
1658
1659 if (config->pcsc) {
1660 #ifdef PCSC_FUNCS
1661 if (!identity) {
1662 if (eap_sm_get_scard_identity(sm, config) < 0)
1663 return NULL;
1664 identity = config->identity;
1665 identity_len = config->identity_len;
1666 wpa_hexdump_ascii(MSG_DEBUG,
1667 "permanent identity from IMSI",
1668 identity, identity_len);
1669 } else if (eap_sm_set_scard_pin(sm, config) < 0) {
1670 return NULL;
1671 }
1672 #else /* PCSC_FUNCS */
1673 return NULL;
1674 #endif /* PCSC_FUNCS */
1675 } else if (!identity) {
1676 wpa_printf(MSG_WARNING,
1677 "EAP: buildIdentity: identity configuration was not available");
1678 eap_sm_request_identity(sm);
1679 return NULL;
1680 }
1681
1682 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1683 EAP_CODE_RESPONSE, id);
1684 if (resp == NULL)
1685 return NULL;
1686
1687 wpabuf_put_data(resp, identity, identity_len);
1688
1689 return resp;
1690 }
1691
1692
eap_sm_processNotify(struct eap_sm * sm,const struct wpabuf * req)1693 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1694 {
1695 const u8 *pos;
1696 char *msg;
1697 size_t i, msg_len;
1698
1699 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1700 &msg_len);
1701 if (pos == NULL)
1702 return;
1703 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1704 pos, msg_len);
1705
1706 msg = os_malloc(msg_len + 1);
1707 if (msg == NULL)
1708 return;
1709 for (i = 0; i < msg_len; i++)
1710 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1711 msg[msg_len] = '\0';
1712 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1713 WPA_EVENT_EAP_NOTIFICATION, msg);
1714 os_free(msg);
1715 }
1716
1717
eap_sm_buildNotify(int id)1718 static struct wpabuf * eap_sm_buildNotify(int id)
1719 {
1720 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1721 return eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1722 EAP_CODE_RESPONSE, id);
1723 }
1724
1725
eap_peer_initiate(struct eap_sm * sm,const struct eap_hdr * hdr,size_t len)1726 static void eap_peer_initiate(struct eap_sm *sm, const struct eap_hdr *hdr,
1727 size_t len)
1728 {
1729 #ifdef CONFIG_ERP
1730 const u8 *pos = (const u8 *) (hdr + 1);
1731 const u8 *end = ((const u8 *) hdr) + len;
1732 struct erp_tlvs parse;
1733
1734 if (len < sizeof(*hdr) + 1) {
1735 wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Initiate");
1736 return;
1737 }
1738
1739 if (*pos != EAP_ERP_TYPE_REAUTH_START) {
1740 wpa_printf(MSG_DEBUG,
1741 "EAP: Ignored unexpected EAP-Initiate Type=%u",
1742 *pos);
1743 return;
1744 }
1745
1746 pos++;
1747 if (pos >= end) {
1748 wpa_printf(MSG_DEBUG,
1749 "EAP: Too short EAP-Initiate/Re-auth-Start");
1750 return;
1751 }
1752 pos++; /* Reserved */
1753 wpa_hexdump(MSG_DEBUG, "EAP: EAP-Initiate/Re-auth-Start TVs/TLVs",
1754 pos, end - pos);
1755
1756 if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1757 goto invalid;
1758
1759 if (parse.domain) {
1760 wpa_hexdump_ascii(MSG_DEBUG,
1761 "EAP: EAP-Initiate/Re-auth-Start - Domain name",
1762 parse.domain, parse.domain_len);
1763 /* TODO: Derivation of domain specific keys for local ER */
1764 }
1765
1766 if (eap_peer_erp_reauth_start(sm, hdr->identifier) == 0)
1767 return;
1768
1769 invalid:
1770 #endif /* CONFIG_ERP */
1771 wpa_printf(MSG_DEBUG,
1772 "EAP: EAP-Initiate/Re-auth-Start - No suitable ERP keys available - try to start full EAP authentication");
1773 eapol_set_bool(sm, EAPOL_eapTriggerStart, TRUE);
1774 }
1775
1776
eap_peer_finish(struct eap_sm * sm,const struct eap_hdr * hdr,size_t len)1777 void eap_peer_finish(struct eap_sm *sm, const struct eap_hdr *hdr, size_t len)
1778 {
1779 #ifdef CONFIG_ERP
1780 const u8 *pos = (const u8 *) (hdr + 1);
1781 const u8 *end = ((const u8 *) hdr) + len;
1782 const u8 *start;
1783 struct erp_tlvs parse;
1784 u8 flags;
1785 u16 seq;
1786 u8 hash[SHA256_MAC_LEN];
1787 size_t hash_len;
1788 struct eap_erp_key *erp;
1789 int max_len;
1790 char nai[254];
1791 u8 seed[4];
1792 int auth_tag_ok = 0;
1793
1794 if (len < sizeof(*hdr) + 1) {
1795 wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Finish");
1796 return;
1797 }
1798
1799 if (*pos != EAP_ERP_TYPE_REAUTH) {
1800 wpa_printf(MSG_DEBUG,
1801 "EAP: Ignored unexpected EAP-Finish Type=%u", *pos);
1802 return;
1803 }
1804
1805 if (len < sizeof(*hdr) + 4) {
1806 wpa_printf(MSG_DEBUG,
1807 "EAP: Ignored too short EAP-Finish/Re-auth");
1808 return;
1809 }
1810
1811 pos++;
1812 flags = *pos++;
1813 seq = WPA_GET_BE16(pos);
1814 pos += 2;
1815 wpa_printf(MSG_DEBUG, "EAP: Flags=0x%x SEQ=%u", flags, seq);
1816
1817 if (seq != sm->erp_seq) {
1818 wpa_printf(MSG_DEBUG,
1819 "EAP: Unexpected EAP-Finish/Re-auth SEQ=%u", seq);
1820 return;
1821 }
1822
1823 /*
1824 * Parse TVs/TLVs. Since we do not yet know the length of the
1825 * Authentication Tag, stop parsing if an unknown TV/TLV is seen and
1826 * just try to find the keyName-NAI first so that we can check the
1827 * Authentication Tag.
1828 */
1829 if (erp_parse_tlvs(pos, end, &parse, 1) < 0)
1830 return;
1831
1832 if (!parse.keyname) {
1833 wpa_printf(MSG_DEBUG,
1834 "EAP: No keyName-NAI in EAP-Finish/Re-auth Packet");
1835 return;
1836 }
1837
1838 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Finish/Re-auth - keyName-NAI",
1839 parse.keyname, parse.keyname_len);
1840 if (parse.keyname_len > 253) {
1841 wpa_printf(MSG_DEBUG,
1842 "EAP: Too long keyName-NAI in EAP-Finish/Re-auth");
1843 return;
1844 }
1845 os_memcpy(nai, parse.keyname, parse.keyname_len);
1846 nai[parse.keyname_len] = '\0';
1847
1848 erp = eap_erp_get_key_nai(sm, nai);
1849 if (!erp) {
1850 wpa_printf(MSG_DEBUG, "EAP: No matching ERP key found for %s",
1851 nai);
1852 return;
1853 }
1854
1855 /* Is there enough room for Cryptosuite and Authentication Tag? */
1856 start = parse.keyname + parse.keyname_len;
1857 max_len = end - start;
1858 hash_len = 16;
1859 if (max_len < 1 + (int) hash_len) {
1860 wpa_printf(MSG_DEBUG,
1861 "EAP: Not enough room for Authentication Tag");
1862 if (flags & 0x80)
1863 goto no_auth_tag;
1864 return;
1865 }
1866 if (end[-17] != EAP_ERP_CS_HMAC_SHA256_128) {
1867 wpa_printf(MSG_DEBUG, "EAP: Different Cryptosuite used");
1868 if (flags & 0x80)
1869 goto no_auth_tag;
1870 return;
1871 }
1872
1873 if (hmac_sha256(erp->rIK, erp->rIK_len, (const u8 *) hdr,
1874 end - ((const u8 *) hdr) - hash_len, hash) < 0)
1875 return;
1876 if (os_memcmp(end - hash_len, hash, hash_len) != 0) {
1877 wpa_printf(MSG_DEBUG,
1878 "EAP: Authentication Tag mismatch");
1879 return;
1880 }
1881 auth_tag_ok = 1;
1882 end -= 1 + hash_len;
1883
1884 no_auth_tag:
1885 /*
1886 * Parse TVs/TLVs again now that we know the exact part of the buffer
1887 * that contains them.
1888 */
1889 wpa_hexdump(MSG_DEBUG, "EAP: EAP-Finish/Re-Auth TVs/TLVs",
1890 pos, end - pos);
1891 if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1892 return;
1893
1894 if (flags & 0x80 || !auth_tag_ok) {
1895 wpa_printf(MSG_DEBUG,
1896 "EAP: EAP-Finish/Re-auth indicated failure");
1897 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
1898 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1899 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1900 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
1901 "EAP authentication failed");
1902 sm->prev_failure = 1;
1903 wpa_printf(MSG_DEBUG,
1904 "EAP: Drop ERP key to try full authentication on next attempt");
1905 eap_peer_erp_free_key(erp);
1906 return;
1907 }
1908
1909 eap_sm_free_key(sm);
1910 sm->eapKeyDataLen = 0;
1911 sm->eapKeyData = os_malloc(erp->rRK_len);
1912 if (!sm->eapKeyData)
1913 return;
1914 sm->eapKeyDataLen = erp->rRK_len;
1915
1916 WPA_PUT_BE16(seed, seq);
1917 WPA_PUT_BE16(&seed[2], erp->rRK_len);
1918 if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
1919 "Re-authentication Master Session Key@ietf.org",
1920 seed, sizeof(seed),
1921 sm->eapKeyData, erp->rRK_len) < 0) {
1922 wpa_printf(MSG_DEBUG, "EAP: Could not derive rMSK for ERP");
1923 eap_sm_free_key(sm);
1924 return;
1925 }
1926 wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rMSK",
1927 sm->eapKeyData, sm->eapKeyDataLen);
1928 sm->eapKeyAvailable = TRUE;
1929 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1930 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1931 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1932 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1933 "EAP re-authentication completed successfully");
1934 #endif /* CONFIG_ERP */
1935 }
1936
1937
eap_sm_parseEapReq(struct eap_sm * sm,const struct wpabuf * req)1938 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1939 {
1940 const struct eap_hdr *hdr;
1941 size_t plen;
1942 const u8 *pos;
1943 int error_code;
1944
1945 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1946 sm->reqId = 0;
1947 sm->reqMethod = EAP_TYPE_NONE;
1948 sm->reqVendor = EAP_VENDOR_IETF;
1949 sm->reqVendorMethod = EAP_TYPE_NONE;
1950
1951 if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1952 return;
1953
1954 hdr = wpabuf_head(req);
1955 plen = be_to_host16(hdr->length);
1956 if (plen > wpabuf_len(req)) {
1957 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1958 "(len=%lu plen=%lu)",
1959 (unsigned long) wpabuf_len(req),
1960 (unsigned long) plen);
1961 return;
1962 }
1963
1964 sm->reqId = hdr->identifier;
1965
1966 if (sm->workaround) {
1967 const u8 *addr[1];
1968 addr[0] = wpabuf_head(req);
1969 sha1_vector(1, addr, &plen, sm->req_sha1);
1970 }
1971
1972 switch (hdr->code) {
1973 case EAP_CODE_REQUEST:
1974 if (plen < sizeof(*hdr) + 1) {
1975 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1976 "no Type field");
1977 return;
1978 }
1979 sm->rxReq = TRUE;
1980 pos = (const u8 *) (hdr + 1);
1981 sm->reqMethod = *pos++;
1982 if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1983 if (plen < sizeof(*hdr) + 8) {
1984 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1985 "expanded EAP-Packet (plen=%lu)",
1986 (unsigned long) plen);
1987 return;
1988 }
1989 sm->reqVendor = WPA_GET_BE24(pos);
1990 pos += 3;
1991 sm->reqVendorMethod = WPA_GET_BE32(pos);
1992 }
1993 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1994 "method=%u vendor=%u vendorMethod=%u",
1995 sm->reqId, sm->reqMethod, sm->reqVendor,
1996 sm->reqVendorMethod);
1997 break;
1998 case EAP_CODE_RESPONSE:
1999 if (sm->selectedMethod == EAP_TYPE_LEAP) {
2000 /*
2001 * LEAP differs from RFC 4137 by using reversed roles
2002 * for mutual authentication and because of this, we
2003 * need to accept EAP-Response frames if LEAP is used.
2004 */
2005 if (plen < sizeof(*hdr) + 1) {
2006 wpa_printf(MSG_DEBUG, "EAP: Too short "
2007 "EAP-Response - no Type field");
2008 return;
2009 }
2010 sm->rxResp = TRUE;
2011 pos = (const u8 *) (hdr + 1);
2012 sm->reqMethod = *pos;
2013 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
2014 "LEAP method=%d id=%d",
2015 sm->reqMethod, sm->reqId);
2016 break;
2017 }
2018 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
2019 break;
2020 case EAP_CODE_SUCCESS:
2021 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
2022 eap_notify_status(sm, "completion", "success");
2023 sm->rxSuccess = TRUE;
2024 break;
2025 case EAP_CODE_FAILURE:
2026 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
2027 eap_notify_status(sm, "completion", "failure");
2028
2029 /* Get the error code from method */
2030 if (sm->m && sm->m->get_error_code) {
2031 error_code = sm->m->get_error_code(sm->eap_method_priv);
2032 if (error_code != NO_EAP_METHOD_ERROR)
2033 eap_report_error(sm, error_code);
2034 }
2035 sm->rxFailure = TRUE;
2036 break;
2037 case EAP_CODE_INITIATE:
2038 eap_peer_initiate(sm, hdr, plen);
2039 break;
2040 case EAP_CODE_FINISH:
2041 eap_peer_finish(sm, hdr, plen);
2042 break;
2043 default:
2044 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
2045 "code %d", hdr->code);
2046 break;
2047 }
2048 }
2049
2050
eap_peer_sm_tls_event(void * ctx,enum tls_event ev,union tls_event_data * data)2051 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
2052 union tls_event_data *data)
2053 {
2054 struct eap_sm *sm = ctx;
2055 char *hash_hex = NULL;
2056
2057 switch (ev) {
2058 case TLS_CERT_CHAIN_SUCCESS:
2059 eap_notify_status(sm, "remote certificate verification",
2060 "success");
2061 if (sm->ext_cert_check) {
2062 sm->waiting_ext_cert_check = 1;
2063 eap_sm_request(sm, WPA_CTRL_REQ_EXT_CERT_CHECK,
2064 NULL, 0);
2065 }
2066 break;
2067 case TLS_CERT_CHAIN_FAILURE:
2068 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
2069 "reason=%d depth=%d subject='%s' err='%s'",
2070 data->cert_fail.reason,
2071 data->cert_fail.depth,
2072 data->cert_fail.subject,
2073 data->cert_fail.reason_txt);
2074 eap_notify_status(sm, "remote certificate verification",
2075 data->cert_fail.reason_txt);
2076 break;
2077 case TLS_PEER_CERTIFICATE:
2078 if (!sm->eapol_cb->notify_cert)
2079 break;
2080
2081 if (data->peer_cert.hash) {
2082 size_t len = data->peer_cert.hash_len * 2 + 1;
2083 hash_hex = os_malloc(len);
2084 if (hash_hex) {
2085 wpa_snprintf_hex(hash_hex, len,
2086 data->peer_cert.hash,
2087 data->peer_cert.hash_len);
2088 }
2089 }
2090
2091 sm->eapol_cb->notify_cert(sm->eapol_ctx,
2092 data->peer_cert.depth,
2093 data->peer_cert.subject,
2094 data->peer_cert.altsubject,
2095 data->peer_cert.num_altsubject,
2096 hash_hex, data->peer_cert.cert);
2097 break;
2098 case TLS_ALERT:
2099 if (data->alert.is_local)
2100 eap_notify_status(sm, "local TLS alert",
2101 data->alert.description);
2102 else
2103 eap_notify_status(sm, "remote TLS alert",
2104 data->alert.description);
2105 break;
2106 }
2107
2108 os_free(hash_hex);
2109 }
2110
2111
2112 /**
2113 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
2114 * @eapol_ctx: Context data to be used with eapol_cb calls
2115 * @eapol_cb: Pointer to EAPOL callback functions
2116 * @msg_ctx: Context data for wpa_msg() calls
2117 * @conf: EAP configuration
2118 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
2119 *
2120 * This function allocates and initializes an EAP state machine. In addition,
2121 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
2122 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
2123 * state machine. Consequently, the caller must make sure that this data
2124 * structure remains alive while the EAP state machine is active.
2125 */
eap_peer_sm_init(void * eapol_ctx,const struct eapol_callbacks * eapol_cb,void * msg_ctx,struct eap_config * conf)2126 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
2127 const struct eapol_callbacks *eapol_cb,
2128 void *msg_ctx, struct eap_config *conf)
2129 {
2130 struct eap_sm *sm;
2131 struct tls_config tlsconf;
2132
2133 sm = os_zalloc(sizeof(*sm));
2134 if (sm == NULL)
2135 return NULL;
2136 sm->eapol_ctx = eapol_ctx;
2137 sm->eapol_cb = eapol_cb;
2138 sm->msg_ctx = msg_ctx;
2139 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
2140 sm->wps = conf->wps;
2141 dl_list_init(&sm->erp_keys);
2142
2143 os_memset(&tlsconf, 0, sizeof(tlsconf));
2144 tlsconf.opensc_engine_path = conf->opensc_engine_path;
2145 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
2146 tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
2147 tlsconf.openssl_ciphers = conf->openssl_ciphers;
2148 #ifdef CONFIG_FIPS
2149 tlsconf.fips_mode = 1;
2150 #endif /* CONFIG_FIPS */
2151 tlsconf.event_cb = eap_peer_sm_tls_event;
2152 tlsconf.cb_ctx = sm;
2153 tlsconf.cert_in_cb = conf->cert_in_cb;
2154 sm->ssl_ctx = tls_init(&tlsconf);
2155 if (sm->ssl_ctx == NULL) {
2156 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
2157 "context.");
2158 os_free(sm);
2159 return NULL;
2160 }
2161
2162 sm->ssl_ctx2 = tls_init(&tlsconf);
2163 if (sm->ssl_ctx2 == NULL) {
2164 wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
2165 "context (2).");
2166 /* Run without separate TLS context within TLS tunnel */
2167 }
2168
2169 return sm;
2170 }
2171
2172
2173 /**
2174 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
2175 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2176 *
2177 * This function deinitializes EAP state machine and frees all allocated
2178 * resources.
2179 */
eap_peer_sm_deinit(struct eap_sm * sm)2180 void eap_peer_sm_deinit(struct eap_sm *sm)
2181 {
2182 if (sm == NULL)
2183 return;
2184 eap_deinit_prev_method(sm, "EAP deinit");
2185 eap_sm_abort(sm);
2186 if (sm->ssl_ctx2)
2187 tls_deinit(sm->ssl_ctx2);
2188 tls_deinit(sm->ssl_ctx);
2189 eap_peer_erp_free_keys(sm);
2190 os_free(sm);
2191 }
2192
2193
2194 /**
2195 * eap_peer_sm_step - Step EAP peer state machine
2196 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2197 * Returns: 1 if EAP state was changed or 0 if not
2198 *
2199 * This function advances EAP state machine to a new state to match with the
2200 * current variables. This should be called whenever variables used by the EAP
2201 * state machine have changed.
2202 */
eap_peer_sm_step(struct eap_sm * sm)2203 int eap_peer_sm_step(struct eap_sm *sm)
2204 {
2205 int res = 0;
2206 do {
2207 sm->changed = FALSE;
2208 SM_STEP_RUN(EAP);
2209 if (sm->changed)
2210 res = 1;
2211 } while (sm->changed);
2212 return res;
2213 }
2214
2215
2216 /**
2217 * eap_sm_abort - Abort EAP authentication
2218 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2219 *
2220 * Release system resources that have been allocated for the authentication
2221 * session without fully deinitializing the EAP state machine.
2222 */
eap_sm_abort(struct eap_sm * sm)2223 void eap_sm_abort(struct eap_sm *sm)
2224 {
2225 wpabuf_free(sm->lastRespData);
2226 sm->lastRespData = NULL;
2227 wpabuf_free(sm->eapRespData);
2228 sm->eapRespData = NULL;
2229 eap_sm_free_key(sm);
2230 os_free(sm->eapSessionId);
2231 sm->eapSessionId = NULL;
2232
2233 /* This is not clearly specified in the EAP statemachines draft, but
2234 * it seems necessary to make sure that some of the EAPOL variables get
2235 * cleared for the next authentication. */
2236 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
2237 }
2238
2239
2240 #ifdef CONFIG_CTRL_IFACE
eap_sm_state_txt(int state)2241 static const char * eap_sm_state_txt(int state)
2242 {
2243 switch (state) {
2244 case EAP_INITIALIZE:
2245 return "INITIALIZE";
2246 case EAP_DISABLED:
2247 return "DISABLED";
2248 case EAP_IDLE:
2249 return "IDLE";
2250 case EAP_RECEIVED:
2251 return "RECEIVED";
2252 case EAP_GET_METHOD:
2253 return "GET_METHOD";
2254 case EAP_METHOD:
2255 return "METHOD";
2256 case EAP_SEND_RESPONSE:
2257 return "SEND_RESPONSE";
2258 case EAP_DISCARD:
2259 return "DISCARD";
2260 case EAP_IDENTITY:
2261 return "IDENTITY";
2262 case EAP_NOTIFICATION:
2263 return "NOTIFICATION";
2264 case EAP_RETRANSMIT:
2265 return "RETRANSMIT";
2266 case EAP_SUCCESS:
2267 return "SUCCESS";
2268 case EAP_FAILURE:
2269 return "FAILURE";
2270 default:
2271 return "UNKNOWN";
2272 }
2273 }
2274 #endif /* CONFIG_CTRL_IFACE */
2275
2276
2277 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_method_state_txt(EapMethodState state)2278 static const char * eap_sm_method_state_txt(EapMethodState state)
2279 {
2280 switch (state) {
2281 case METHOD_NONE:
2282 return "NONE";
2283 case METHOD_INIT:
2284 return "INIT";
2285 case METHOD_CONT:
2286 return "CONT";
2287 case METHOD_MAY_CONT:
2288 return "MAY_CONT";
2289 case METHOD_DONE:
2290 return "DONE";
2291 default:
2292 return "UNKNOWN";
2293 }
2294 }
2295
2296
eap_sm_decision_txt(EapDecision decision)2297 static const char * eap_sm_decision_txt(EapDecision decision)
2298 {
2299 switch (decision) {
2300 case DECISION_FAIL:
2301 return "FAIL";
2302 case DECISION_COND_SUCC:
2303 return "COND_SUCC";
2304 case DECISION_UNCOND_SUCC:
2305 return "UNCOND_SUCC";
2306 default:
2307 return "UNKNOWN";
2308 }
2309 }
2310 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2311
2312
2313 #ifdef CONFIG_CTRL_IFACE
2314
2315 /**
2316 * eap_sm_get_status - Get EAP state machine status
2317 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2318 * @buf: Buffer for status information
2319 * @buflen: Maximum buffer length
2320 * @verbose: Whether to include verbose status information
2321 * Returns: Number of bytes written to buf.
2322 *
2323 * Query EAP state machine for status information. This function fills in a
2324 * text area with current status information from the EAPOL state machine. If
2325 * the buffer (buf) is not large enough, status information will be truncated
2326 * to fit the buffer.
2327 */
eap_sm_get_status(struct eap_sm * sm,char * buf,size_t buflen,int verbose)2328 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
2329 {
2330 int len, ret;
2331
2332 if (sm == NULL)
2333 return 0;
2334
2335 len = os_snprintf(buf, buflen,
2336 "EAP state=%s\n",
2337 eap_sm_state_txt(sm->EAP_state));
2338 if (os_snprintf_error(buflen, len))
2339 return 0;
2340
2341 if (sm->selectedMethod != EAP_TYPE_NONE) {
2342 const char *name;
2343 if (sm->m) {
2344 name = sm->m->name;
2345 } else {
2346 const struct eap_method *m =
2347 eap_peer_get_eap_method(EAP_VENDOR_IETF,
2348 sm->selectedMethod);
2349 if (m)
2350 name = m->name;
2351 else
2352 name = "?";
2353 }
2354 ret = os_snprintf(buf + len, buflen - len,
2355 "selectedMethod=%d (EAP-%s)\n",
2356 sm->selectedMethod, name);
2357 if (os_snprintf_error(buflen - len, ret))
2358 return len;
2359 len += ret;
2360
2361 if (sm->m && sm->m->get_status) {
2362 len += sm->m->get_status(sm, sm->eap_method_priv,
2363 buf + len, buflen - len,
2364 verbose);
2365 }
2366 }
2367
2368 if (verbose) {
2369 ret = os_snprintf(buf + len, buflen - len,
2370 "reqMethod=%d\n"
2371 "methodState=%s\n"
2372 "decision=%s\n"
2373 "ClientTimeout=%d\n",
2374 sm->reqMethod,
2375 eap_sm_method_state_txt(sm->methodState),
2376 eap_sm_decision_txt(sm->decision),
2377 sm->ClientTimeout);
2378 if (os_snprintf_error(buflen - len, ret))
2379 return len;
2380 len += ret;
2381 }
2382
2383 return len;
2384 }
2385 #endif /* CONFIG_CTRL_IFACE */
2386
2387
eap_sm_request(struct eap_sm * sm,enum wpa_ctrl_req_type field,const char * msg,size_t msglen)2388 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
2389 const char *msg, size_t msglen)
2390 {
2391 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
2392 struct eap_peer_config *config;
2393 const char *txt = NULL;
2394 char *tmp;
2395
2396 if (sm == NULL)
2397 return;
2398 config = eap_get_config(sm);
2399 if (config == NULL)
2400 return;
2401
2402 switch (field) {
2403 case WPA_CTRL_REQ_EAP_IDENTITY:
2404 config->pending_req_identity++;
2405 break;
2406 case WPA_CTRL_REQ_EAP_PASSWORD:
2407 config->pending_req_password++;
2408 break;
2409 case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
2410 config->pending_req_new_password++;
2411 break;
2412 case WPA_CTRL_REQ_EAP_PIN:
2413 config->pending_req_pin++;
2414 break;
2415 case WPA_CTRL_REQ_EAP_OTP:
2416 if (msg) {
2417 tmp = os_malloc(msglen + 3);
2418 if (tmp == NULL)
2419 return;
2420 tmp[0] = '[';
2421 os_memcpy(tmp + 1, msg, msglen);
2422 tmp[msglen + 1] = ']';
2423 tmp[msglen + 2] = '\0';
2424 txt = tmp;
2425 os_free(config->pending_req_otp);
2426 config->pending_req_otp = tmp;
2427 config->pending_req_otp_len = msglen + 3;
2428 } else {
2429 if (config->pending_req_otp == NULL)
2430 return;
2431 txt = config->pending_req_otp;
2432 }
2433 break;
2434 case WPA_CTRL_REQ_EAP_PASSPHRASE:
2435 config->pending_req_passphrase++;
2436 break;
2437 case WPA_CTRL_REQ_SIM:
2438 config->pending_req_sim++;
2439 txt = msg;
2440 break;
2441 case WPA_CTRL_REQ_EXT_CERT_CHECK:
2442 break;
2443 default:
2444 return;
2445 }
2446
2447 if (sm->eapol_cb->eap_param_needed)
2448 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
2449 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2450 }
2451
2452
eap_sm_get_method_name(struct eap_sm * sm)2453 const char * eap_sm_get_method_name(struct eap_sm *sm)
2454 {
2455 if (sm->m == NULL)
2456 return "UNKNOWN";
2457 return sm->m->name;
2458 }
2459
2460
2461 /**
2462 * eap_sm_request_identity - Request identity from user (ctrl_iface)
2463 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2464 *
2465 * EAP methods can call this function to request identity information for the
2466 * current network. This is normally called when the identity is not included
2467 * in the network configuration. The request will be sent to monitor programs
2468 * through the control interface.
2469 */
eap_sm_request_identity(struct eap_sm * sm)2470 void eap_sm_request_identity(struct eap_sm *sm)
2471 {
2472 eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
2473 }
2474
2475
2476 /**
2477 * eap_sm_request_password - Request password from user (ctrl_iface)
2478 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2479 *
2480 * EAP methods can call this function to request password information for the
2481 * current network. This is normally called when the password is not included
2482 * in the network configuration. The request will be sent to monitor programs
2483 * through the control interface.
2484 */
eap_sm_request_password(struct eap_sm * sm)2485 void eap_sm_request_password(struct eap_sm *sm)
2486 {
2487 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
2488 }
2489
2490
2491 /**
2492 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
2493 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2494 *
2495 * EAP methods can call this function to request new password information for
2496 * the current network. This is normally called when the EAP method indicates
2497 * that the current password has expired and password change is required. The
2498 * request will be sent to monitor programs through the control interface.
2499 */
eap_sm_request_new_password(struct eap_sm * sm)2500 void eap_sm_request_new_password(struct eap_sm *sm)
2501 {
2502 eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
2503 }
2504
2505
2506 /**
2507 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
2508 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2509 *
2510 * EAP methods can call this function to request SIM or smart card PIN
2511 * information for the current network. This is normally called when the PIN is
2512 * not included in the network configuration. The request will be sent to
2513 * monitor programs through the control interface.
2514 */
eap_sm_request_pin(struct eap_sm * sm)2515 void eap_sm_request_pin(struct eap_sm *sm)
2516 {
2517 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
2518 }
2519
2520
2521 /**
2522 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
2523 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2524 * @msg: Message to be displayed to the user when asking for OTP
2525 * @msg_len: Length of the user displayable message
2526 *
2527 * EAP methods can call this function to request open time password (OTP) for
2528 * the current network. The request will be sent to monitor programs through
2529 * the control interface.
2530 */
eap_sm_request_otp(struct eap_sm * sm,const char * msg,size_t msg_len)2531 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
2532 {
2533 eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
2534 }
2535
2536
2537 /**
2538 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
2539 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2540 *
2541 * EAP methods can call this function to request passphrase for a private key
2542 * for the current network. This is normally called when the passphrase is not
2543 * included in the network configuration. The request will be sent to monitor
2544 * programs through the control interface.
2545 */
eap_sm_request_passphrase(struct eap_sm * sm)2546 void eap_sm_request_passphrase(struct eap_sm *sm)
2547 {
2548 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
2549 }
2550
2551
2552 /**
2553 * eap_sm_request_sim - Request external SIM processing
2554 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2555 * @req: EAP method specific request
2556 */
eap_sm_request_sim(struct eap_sm * sm,const char * req)2557 void eap_sm_request_sim(struct eap_sm *sm, const char *req)
2558 {
2559 eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
2560 }
2561
2562
2563 /**
2564 * eap_sm_notify_ctrl_attached - Notification of attached monitor
2565 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2566 *
2567 * Notify EAP state machines that a monitor was attached to the control
2568 * interface to trigger re-sending of pending requests for user input.
2569 */
eap_sm_notify_ctrl_attached(struct eap_sm * sm)2570 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
2571 {
2572 struct eap_peer_config *config = eap_get_config(sm);
2573
2574 if (config == NULL)
2575 return;
2576
2577 /* Re-send any pending requests for user data since a new control
2578 * interface was added. This handles cases where the EAP authentication
2579 * starts immediately after system startup when the user interface is
2580 * not yet running. */
2581 if (config->pending_req_identity)
2582 eap_sm_request_identity(sm);
2583 if (config->pending_req_password)
2584 eap_sm_request_password(sm);
2585 if (config->pending_req_new_password)
2586 eap_sm_request_new_password(sm);
2587 if (config->pending_req_otp)
2588 eap_sm_request_otp(sm, NULL, 0);
2589 if (config->pending_req_pin)
2590 eap_sm_request_pin(sm);
2591 if (config->pending_req_passphrase)
2592 eap_sm_request_passphrase(sm);
2593 }
2594
2595
eap_allowed_phase2_type(int vendor,int type)2596 static int eap_allowed_phase2_type(int vendor, int type)
2597 {
2598 if (vendor != EAP_VENDOR_IETF)
2599 return 0;
2600 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
2601 type != EAP_TYPE_FAST;
2602 }
2603
2604
2605 /**
2606 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
2607 * @name: EAP method name, e.g., MD5
2608 * @vendor: Buffer for returning EAP Vendor-Id
2609 * Returns: EAP method type or %EAP_TYPE_NONE if not found
2610 *
2611 * This function maps EAP type names into EAP type numbers that are allowed for
2612 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
2613 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
2614 */
eap_get_phase2_type(const char * name,int * vendor)2615 u32 eap_get_phase2_type(const char *name, int *vendor)
2616 {
2617 int v;
2618 u32 type = eap_peer_get_type(name, &v);
2619 if (eap_allowed_phase2_type(v, type)) {
2620 *vendor = v;
2621 return type;
2622 }
2623 *vendor = EAP_VENDOR_IETF;
2624 return EAP_TYPE_NONE;
2625 }
2626
2627
2628 /**
2629 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
2630 * @config: Pointer to a network configuration
2631 * @count: Pointer to a variable to be filled with number of returned EAP types
2632 * Returns: Pointer to allocated type list or %NULL on failure
2633 *
2634 * This function generates an array of allowed EAP phase 2 (tunneled) types for
2635 * the given network configuration.
2636 */
eap_get_phase2_types(struct eap_peer_config * config,size_t * count)2637 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
2638 size_t *count)
2639 {
2640 struct eap_method_type *buf;
2641 u32 method;
2642 int vendor;
2643 size_t mcount;
2644 const struct eap_method *methods, *m;
2645
2646 methods = eap_peer_get_methods(&mcount);
2647 if (methods == NULL)
2648 return NULL;
2649 *count = 0;
2650 buf = os_malloc(mcount * sizeof(struct eap_method_type));
2651 if (buf == NULL)
2652 return NULL;
2653
2654 for (m = methods; m; m = m->next) {
2655 vendor = m->vendor;
2656 method = m->method;
2657 if (eap_allowed_phase2_type(vendor, method)) {
2658 if (vendor == EAP_VENDOR_IETF &&
2659 method == EAP_TYPE_TLS && config &&
2660 config->private_key2 == NULL)
2661 continue;
2662 buf[*count].vendor = vendor;
2663 buf[*count].method = method;
2664 (*count)++;
2665 }
2666 }
2667
2668 return buf;
2669 }
2670
2671
2672 /**
2673 * eap_set_fast_reauth - Update fast_reauth setting
2674 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2675 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
2676 */
eap_set_fast_reauth(struct eap_sm * sm,int enabled)2677 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
2678 {
2679 sm->fast_reauth = enabled;
2680 }
2681
2682
2683 /**
2684 * eap_set_workaround - Update EAP workarounds setting
2685 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2686 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
2687 */
eap_set_workaround(struct eap_sm * sm,unsigned int workaround)2688 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
2689 {
2690 sm->workaround = workaround;
2691 }
2692
2693
2694 /**
2695 * eap_get_config - Get current network configuration
2696 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2697 * Returns: Pointer to the current network configuration or %NULL if not found
2698 *
2699 * EAP peer methods should avoid using this function if they can use other
2700 * access functions, like eap_get_config_identity() and
2701 * eap_get_config_password(), that do not require direct access to
2702 * struct eap_peer_config.
2703 */
eap_get_config(struct eap_sm * sm)2704 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
2705 {
2706 return sm->eapol_cb->get_config(sm->eapol_ctx);
2707 }
2708
2709
2710 /**
2711 * eap_get_config_identity - Get identity from the network configuration
2712 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2713 * @len: Buffer for the length of the identity
2714 * Returns: Pointer to the identity or %NULL if not found
2715 */
eap_get_config_identity(struct eap_sm * sm,size_t * len)2716 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
2717 {
2718 struct eap_peer_config *config = eap_get_config(sm);
2719 if (config == NULL)
2720 return NULL;
2721 *len = config->identity_len;
2722 return config->identity;
2723 }
2724
2725
eap_get_ext_password(struct eap_sm * sm,struct eap_peer_config * config)2726 static int eap_get_ext_password(struct eap_sm *sm,
2727 struct eap_peer_config *config)
2728 {
2729 char *name;
2730
2731 if (config->password == NULL)
2732 return -1;
2733
2734 name = os_zalloc(config->password_len + 1);
2735 if (name == NULL)
2736 return -1;
2737 os_memcpy(name, config->password, config->password_len);
2738
2739 ext_password_free(sm->ext_pw_buf);
2740 sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
2741 os_free(name);
2742
2743 return sm->ext_pw_buf == NULL ? -1 : 0;
2744 }
2745
2746
2747 /**
2748 * eap_get_config_password - Get password from the network configuration
2749 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2750 * @len: Buffer for the length of the password
2751 * Returns: Pointer to the password or %NULL if not found
2752 */
eap_get_config_password(struct eap_sm * sm,size_t * len)2753 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
2754 {
2755 struct eap_peer_config *config = eap_get_config(sm);
2756 if (config == NULL)
2757 return NULL;
2758
2759 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2760 if (eap_get_ext_password(sm, config) < 0)
2761 return NULL;
2762 *len = wpabuf_len(sm->ext_pw_buf);
2763 return wpabuf_head(sm->ext_pw_buf);
2764 }
2765
2766 *len = config->password_len;
2767 return config->password;
2768 }
2769
2770
2771 /**
2772 * eap_get_config_password2 - Get password from the network configuration
2773 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2774 * @len: Buffer for the length of the password
2775 * @hash: Buffer for returning whether the password is stored as a
2776 * NtPasswordHash instead of plaintext password; can be %NULL if this
2777 * information is not needed
2778 * Returns: Pointer to the password or %NULL if not found
2779 */
eap_get_config_password2(struct eap_sm * sm,size_t * len,int * hash)2780 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2781 {
2782 struct eap_peer_config *config = eap_get_config(sm);
2783 if (config == NULL)
2784 return NULL;
2785
2786 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2787 if (eap_get_ext_password(sm, config) < 0)
2788 return NULL;
2789 if (hash)
2790 *hash = 0;
2791 *len = wpabuf_len(sm->ext_pw_buf);
2792 return wpabuf_head(sm->ext_pw_buf);
2793 }
2794
2795 *len = config->password_len;
2796 if (hash)
2797 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2798 return config->password;
2799 }
2800
2801
2802 /**
2803 * eap_get_config_new_password - Get new password from network configuration
2804 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2805 * @len: Buffer for the length of the new password
2806 * Returns: Pointer to the new password or %NULL if not found
2807 */
eap_get_config_new_password(struct eap_sm * sm,size_t * len)2808 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2809 {
2810 struct eap_peer_config *config = eap_get_config(sm);
2811 if (config == NULL)
2812 return NULL;
2813 *len = config->new_password_len;
2814 return config->new_password;
2815 }
2816
2817
2818 /**
2819 * eap_get_config_otp - Get one-time password from the network configuration
2820 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2821 * @len: Buffer for the length of the one-time password
2822 * Returns: Pointer to the one-time password or %NULL if not found
2823 */
eap_get_config_otp(struct eap_sm * sm,size_t * len)2824 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2825 {
2826 struct eap_peer_config *config = eap_get_config(sm);
2827 if (config == NULL)
2828 return NULL;
2829 *len = config->otp_len;
2830 return config->otp;
2831 }
2832
2833
2834 /**
2835 * eap_clear_config_otp - Clear used one-time password
2836 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2837 *
2838 * This function clears a used one-time password (OTP) from the current network
2839 * configuration. This should be called when the OTP has been used and is not
2840 * needed anymore.
2841 */
eap_clear_config_otp(struct eap_sm * sm)2842 void eap_clear_config_otp(struct eap_sm *sm)
2843 {
2844 struct eap_peer_config *config = eap_get_config(sm);
2845 if (config == NULL)
2846 return;
2847 os_memset(config->otp, 0, config->otp_len);
2848 os_free(config->otp);
2849 config->otp = NULL;
2850 config->otp_len = 0;
2851 }
2852
2853
2854 /**
2855 * eap_get_config_phase1 - Get phase1 data from the network configuration
2856 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2857 * Returns: Pointer to the phase1 data or %NULL if not found
2858 */
eap_get_config_phase1(struct eap_sm * sm)2859 const char * eap_get_config_phase1(struct eap_sm *sm)
2860 {
2861 struct eap_peer_config *config = eap_get_config(sm);
2862 if (config == NULL)
2863 return NULL;
2864 return config->phase1;
2865 }
2866
2867
2868 /**
2869 * eap_get_config_phase2 - Get phase2 data from the network configuration
2870 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2871 * Returns: Pointer to the phase1 data or %NULL if not found
2872 */
eap_get_config_phase2(struct eap_sm * sm)2873 const char * eap_get_config_phase2(struct eap_sm *sm)
2874 {
2875 struct eap_peer_config *config = eap_get_config(sm);
2876 if (config == NULL)
2877 return NULL;
2878 return config->phase2;
2879 }
2880
2881
eap_get_config_fragment_size(struct eap_sm * sm)2882 int eap_get_config_fragment_size(struct eap_sm *sm)
2883 {
2884 struct eap_peer_config *config = eap_get_config(sm);
2885 if (config == NULL)
2886 return -1;
2887 return config->fragment_size;
2888 }
2889
2890
2891 /**
2892 * eap_key_available - Get key availability (eapKeyAvailable variable)
2893 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2894 * Returns: 1 if EAP keying material is available, 0 if not
2895 */
eap_key_available(struct eap_sm * sm)2896 int eap_key_available(struct eap_sm *sm)
2897 {
2898 return sm ? sm->eapKeyAvailable : 0;
2899 }
2900
2901
2902 /**
2903 * eap_notify_success - Notify EAP state machine about external success trigger
2904 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2905 *
2906 * This function is called when external event, e.g., successful completion of
2907 * WPA-PSK key handshake, is indicating that EAP state machine should move to
2908 * success state. This is mainly used with security modes that do not use EAP
2909 * state machine (e.g., WPA-PSK).
2910 */
eap_notify_success(struct eap_sm * sm)2911 void eap_notify_success(struct eap_sm *sm)
2912 {
2913 if (sm) {
2914 sm->decision = DECISION_COND_SUCC;
2915 sm->EAP_state = EAP_SUCCESS;
2916 }
2917 }
2918
2919
2920 /**
2921 * eap_notify_lower_layer_success - Notification of lower layer success
2922 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2923 *
2924 * Notify EAP state machines that a lower layer has detected a successful
2925 * authentication. This is used to recover from dropped EAP-Success messages.
2926 */
eap_notify_lower_layer_success(struct eap_sm * sm)2927 void eap_notify_lower_layer_success(struct eap_sm *sm)
2928 {
2929 if (sm == NULL)
2930 return;
2931
2932 if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2933 sm->decision == DECISION_FAIL ||
2934 (sm->methodState != METHOD_MAY_CONT &&
2935 sm->methodState != METHOD_DONE))
2936 return;
2937
2938 if (sm->eapKeyData != NULL)
2939 sm->eapKeyAvailable = TRUE;
2940 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2941 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2942 "EAP authentication completed successfully (based on lower "
2943 "layer success)");
2944 }
2945
2946
2947 /**
2948 * eap_get_eapSessionId - Get Session-Id from EAP state machine
2949 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2950 * @len: Pointer to variable that will be set to number of bytes in the session
2951 * Returns: Pointer to the EAP Session-Id or %NULL on failure
2952 *
2953 * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2954 * only after a successful authentication. EAP state machine continues to manage
2955 * the Session-Id and the caller must not change or free the returned data.
2956 */
eap_get_eapSessionId(struct eap_sm * sm,size_t * len)2957 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2958 {
2959 if (sm == NULL || sm->eapSessionId == NULL) {
2960 *len = 0;
2961 return NULL;
2962 }
2963
2964 *len = sm->eapSessionIdLen;
2965 return sm->eapSessionId;
2966 }
2967
2968
2969 /**
2970 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2971 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2972 * @len: Pointer to variable that will be set to number of bytes in the key
2973 * Returns: Pointer to the EAP keying data or %NULL on failure
2974 *
2975 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2976 * key is available only after a successful authentication. EAP state machine
2977 * continues to manage the key data and the caller must not change or free the
2978 * returned data.
2979 */
eap_get_eapKeyData(struct eap_sm * sm,size_t * len)2980 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2981 {
2982 if (sm == NULL || sm->eapKeyData == NULL) {
2983 *len = 0;
2984 return NULL;
2985 }
2986
2987 *len = sm->eapKeyDataLen;
2988 return sm->eapKeyData;
2989 }
2990
2991
2992 /**
2993 * eap_get_eapKeyData - Get EAP response data
2994 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2995 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2996 *
2997 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2998 * available when EAP state machine has processed an incoming EAP request. The
2999 * EAP state machine does not maintain a reference to the response after this
3000 * function is called and the caller is responsible for freeing the data.
3001 */
eap_get_eapRespData(struct eap_sm * sm)3002 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
3003 {
3004 struct wpabuf *resp;
3005
3006 if (sm == NULL || sm->eapRespData == NULL)
3007 return NULL;
3008
3009 resp = sm->eapRespData;
3010 sm->eapRespData = NULL;
3011
3012 return resp;
3013 }
3014
3015
3016 /**
3017 * eap_sm_register_scard_ctx - Notification of smart card context
3018 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3019 * @ctx: Context data for smart card operations
3020 *
3021 * Notify EAP state machines of context data for smart card operations. This
3022 * context data will be used as a parameter for scard_*() functions.
3023 */
eap_register_scard_ctx(struct eap_sm * sm,void * ctx)3024 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
3025 {
3026 if (sm)
3027 sm->scard_ctx = ctx;
3028 }
3029
3030
3031 /**
3032 * eap_set_config_blob - Set or add a named configuration blob
3033 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3034 * @blob: New value for the blob
3035 *
3036 * Adds a new configuration blob or replaces the current value of an existing
3037 * blob.
3038 */
eap_set_config_blob(struct eap_sm * sm,struct wpa_config_blob * blob)3039 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
3040 {
3041 #ifndef CONFIG_NO_CONFIG_BLOBS
3042 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
3043 #endif /* CONFIG_NO_CONFIG_BLOBS */
3044 }
3045
3046
3047 /**
3048 * eap_get_config_blob - Get a named configuration blob
3049 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3050 * @name: Name of the blob
3051 * Returns: Pointer to blob data or %NULL if not found
3052 */
eap_get_config_blob(struct eap_sm * sm,const char * name)3053 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
3054 const char *name)
3055 {
3056 #ifndef CONFIG_NO_CONFIG_BLOBS
3057 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
3058 #else /* CONFIG_NO_CONFIG_BLOBS */
3059 return NULL;
3060 #endif /* CONFIG_NO_CONFIG_BLOBS */
3061 }
3062
3063
3064 /**
3065 * eap_set_force_disabled - Set force_disabled flag
3066 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3067 * @disabled: 1 = EAP disabled, 0 = EAP enabled
3068 *
3069 * This function is used to force EAP state machine to be disabled when it is
3070 * not in use (e.g., with WPA-PSK or plaintext connections).
3071 */
eap_set_force_disabled(struct eap_sm * sm,int disabled)3072 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
3073 {
3074 sm->force_disabled = disabled;
3075 }
3076
3077
3078 /**
3079 * eap_set_external_sim - Set external_sim flag
3080 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3081 * @external_sim: Whether external SIM/USIM processing is used
3082 */
eap_set_external_sim(struct eap_sm * sm,int external_sim)3083 void eap_set_external_sim(struct eap_sm *sm, int external_sim)
3084 {
3085 sm->external_sim = external_sim;
3086 }
3087
3088
3089 /**
3090 * eap_notify_pending - Notify that EAP method is ready to re-process a request
3091 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3092 *
3093 * An EAP method can perform a pending operation (e.g., to get a response from
3094 * an external process). Once the response is available, this function can be
3095 * used to request EAPOL state machine to retry delivering the previously
3096 * received (and still unanswered) EAP request to EAP state machine.
3097 */
eap_notify_pending(struct eap_sm * sm)3098 void eap_notify_pending(struct eap_sm *sm)
3099 {
3100 sm->eapol_cb->notify_pending(sm->eapol_ctx);
3101 }
3102
3103
3104 /**
3105 * eap_invalidate_cached_session - Mark cached session data invalid
3106 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3107 */
eap_invalidate_cached_session(struct eap_sm * sm)3108 void eap_invalidate_cached_session(struct eap_sm *sm)
3109 {
3110 if (sm)
3111 eap_deinit_prev_method(sm, "invalidate");
3112 }
3113
3114
eap_is_wps_pbc_enrollee(struct eap_peer_config * conf)3115 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
3116 {
3117 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
3118 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
3119 return 0; /* Not a WPS Enrollee */
3120
3121 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
3122 return 0; /* Not using PBC */
3123
3124 return 1;
3125 }
3126
3127
eap_is_wps_pin_enrollee(struct eap_peer_config * conf)3128 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
3129 {
3130 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
3131 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
3132 return 0; /* Not a WPS Enrollee */
3133
3134 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
3135 return 0; /* Not using PIN */
3136
3137 return 1;
3138 }
3139
3140
eap_sm_set_ext_pw_ctx(struct eap_sm * sm,struct ext_password_data * ext)3141 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
3142 {
3143 ext_password_free(sm->ext_pw_buf);
3144 sm->ext_pw_buf = NULL;
3145 sm->ext_pw = ext;
3146 }
3147
3148
3149 /**
3150 * eap_set_anon_id - Set or add anonymous identity
3151 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
3152 * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
3153 * @len: Length of anonymous identity in octets
3154 */
eap_set_anon_id(struct eap_sm * sm,const u8 * id,size_t len)3155 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
3156 {
3157 if (sm->eapol_cb->set_anon_id)
3158 sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
3159 }
3160
3161
eap_peer_was_failure_expected(struct eap_sm * sm)3162 int eap_peer_was_failure_expected(struct eap_sm *sm)
3163 {
3164 return sm->expected_failure;
3165 }
3166