• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Originally written by Bodo Moeller for the OpenSSL project.
2  * ====================================================================
3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 /* ====================================================================
56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57  *
58  * Portions of the attached software ("Contribution") are developed by
59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60  *
61  * The Contribution is licensed pursuant to the OpenSSL open source
62  * license provided above.
63  *
64  * The elliptic curve binary polynomial software is originally written by
65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66  * Laboratories. */
67 
68 #include <openssl/ec.h>
69 
70 #include <string.h>
71 
72 #include <openssl/bn.h>
73 #include <openssl/err.h>
74 #include <openssl/mem.h>
75 
76 #include "internal.h"
77 #include "../../internal.h"
78 
79 
80 // Most method functions in this file are designed to work with non-trivial
81 // representations of field elements if necessary (see ecp_mont.c): while
82 // standard modular addition and subtraction are used, the field_mul and
83 // field_sqr methods will be used for multiplication, and field_encode and
84 // field_decode (if defined) will be used for converting between
85 // representations.
86 //
87 // Functions here specifically assume that if a non-trivial representation is
88 // used, it is a Montgomery representation (i.e. 'encoding' means multiplying
89 // by some factor R).
90 
ec_GFp_simple_group_init(EC_GROUP * group)91 int ec_GFp_simple_group_init(EC_GROUP *group) {
92   BN_init(&group->field);
93   BN_init(&group->a);
94   BN_init(&group->b);
95   BN_init(&group->one);
96   group->a_is_minus3 = 0;
97   return 1;
98 }
99 
ec_GFp_simple_group_finish(EC_GROUP * group)100 void ec_GFp_simple_group_finish(EC_GROUP *group) {
101   BN_free(&group->field);
102   BN_free(&group->a);
103   BN_free(&group->b);
104   BN_free(&group->one);
105 }
106 
ec_GFp_simple_group_set_curve(EC_GROUP * group,const BIGNUM * p,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)107 int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p,
108                                   const BIGNUM *a, const BIGNUM *b,
109                                   BN_CTX *ctx) {
110   int ret = 0;
111   BN_CTX *new_ctx = NULL;
112   BIGNUM *tmp_a;
113 
114   // p must be a prime > 3
115   if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
116     OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
117     return 0;
118   }
119 
120   if (ctx == NULL) {
121     ctx = new_ctx = BN_CTX_new();
122     if (ctx == NULL) {
123       return 0;
124     }
125   }
126 
127   BN_CTX_start(ctx);
128   tmp_a = BN_CTX_get(ctx);
129   if (tmp_a == NULL) {
130     goto err;
131   }
132 
133   // group->field
134   if (!BN_copy(&group->field, p)) {
135     goto err;
136   }
137   BN_set_negative(&group->field, 0);
138 
139   // group->a
140   if (!BN_nnmod(tmp_a, a, p, ctx)) {
141     goto err;
142   }
143   if (group->meth->field_encode) {
144     if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) {
145       goto err;
146     }
147   } else if (!BN_copy(&group->a, tmp_a)) {
148     goto err;
149   }
150 
151   // group->b
152   if (!BN_nnmod(&group->b, b, p, ctx)) {
153     goto err;
154   }
155   if (group->meth->field_encode &&
156       !group->meth->field_encode(group, &group->b, &group->b, ctx)) {
157     goto err;
158   }
159 
160   // group->a_is_minus3
161   if (!BN_add_word(tmp_a, 3)) {
162     goto err;
163   }
164   group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field));
165 
166   if (group->meth->field_encode != NULL) {
167     if (!group->meth->field_encode(group, &group->one, BN_value_one(), ctx)) {
168       goto err;
169     }
170   } else if (!BN_copy(&group->one, BN_value_one())) {
171     goto err;
172   }
173 
174   ret = 1;
175 
176 err:
177   BN_CTX_end(ctx);
178   BN_CTX_free(new_ctx);
179   return ret;
180 }
181 
ec_GFp_simple_group_get_curve(const EC_GROUP * group,BIGNUM * p,BIGNUM * a,BIGNUM * b,BN_CTX * ctx)182 int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
183                                   BIGNUM *b, BN_CTX *ctx) {
184   int ret = 0;
185   BN_CTX *new_ctx = NULL;
186 
187   if (p != NULL && !BN_copy(p, &group->field)) {
188     return 0;
189   }
190 
191   if (a != NULL || b != NULL) {
192     if (group->meth->field_decode) {
193       if (ctx == NULL) {
194         ctx = new_ctx = BN_CTX_new();
195         if (ctx == NULL) {
196           return 0;
197         }
198       }
199       if (a != NULL && !group->meth->field_decode(group, a, &group->a, ctx)) {
200         goto err;
201       }
202       if (b != NULL && !group->meth->field_decode(group, b, &group->b, ctx)) {
203         goto err;
204       }
205     } else {
206       if (a != NULL && !BN_copy(a, &group->a)) {
207         goto err;
208       }
209       if (b != NULL && !BN_copy(b, &group->b)) {
210         goto err;
211       }
212     }
213   }
214 
215   ret = 1;
216 
217 err:
218   BN_CTX_free(new_ctx);
219   return ret;
220 }
221 
ec_GFp_simple_group_get_degree(const EC_GROUP * group)222 unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *group) {
223   return BN_num_bits(&group->field);
224 }
225 
ec_GFp_simple_point_init(EC_POINT * point)226 int ec_GFp_simple_point_init(EC_POINT *point) {
227   BN_init(&point->X);
228   BN_init(&point->Y);
229   BN_init(&point->Z);
230 
231   return 1;
232 }
233 
ec_GFp_simple_point_finish(EC_POINT * point)234 void ec_GFp_simple_point_finish(EC_POINT *point) {
235   BN_free(&point->X);
236   BN_free(&point->Y);
237   BN_free(&point->Z);
238 }
239 
ec_GFp_simple_point_copy(EC_POINT * dest,const EC_POINT * src)240 int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) {
241   if (!BN_copy(&dest->X, &src->X) ||
242       !BN_copy(&dest->Y, &src->Y) ||
243       !BN_copy(&dest->Z, &src->Z)) {
244     return 0;
245   }
246 
247   return 1;
248 }
249 
ec_GFp_simple_point_set_to_infinity(const EC_GROUP * group,EC_POINT * point)250 int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
251                                         EC_POINT *point) {
252   BN_zero(&point->Z);
253   return 1;
254 }
255 
set_Jprojective_coordinate_GFp(const EC_GROUP * group,BIGNUM * out,const BIGNUM * in,BN_CTX * ctx)256 static int set_Jprojective_coordinate_GFp(const EC_GROUP *group, BIGNUM *out,
257                                           const BIGNUM *in, BN_CTX *ctx) {
258   if (in == NULL) {
259     return 1;
260   }
261   if (BN_is_negative(in) ||
262       BN_cmp(in, &group->field) >= 0) {
263     OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
264     return 0;
265   }
266   if (group->meth->field_encode) {
267     return group->meth->field_encode(group, out, in, ctx);
268   }
269   return BN_copy(out, in) != NULL;
270 }
271 
ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP * group,EC_POINT * point,const BIGNUM * x,const BIGNUM * y,BN_CTX * ctx)272 int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
273                                                EC_POINT *point, const BIGNUM *x,
274                                                const BIGNUM *y, BN_CTX *ctx) {
275   if (x == NULL || y == NULL) {
276     OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
277     return 0;
278   }
279 
280   BN_CTX *new_ctx = NULL;
281   int ret = 0;
282 
283   if (ctx == NULL) {
284     ctx = new_ctx = BN_CTX_new();
285     if (ctx == NULL) {
286       return 0;
287     }
288   }
289 
290   if (!set_Jprojective_coordinate_GFp(group, &point->X, x, ctx) ||
291       !set_Jprojective_coordinate_GFp(group, &point->Y, y, ctx) ||
292       !BN_copy(&point->Z, &group->one)) {
293     goto err;
294   }
295 
296   ret = 1;
297 
298 err:
299   BN_CTX_free(new_ctx);
300   return ret;
301 }
302 
ec_GFp_simple_add(const EC_GROUP * group,EC_POINT * r,const EC_POINT * a,const EC_POINT * b,BN_CTX * ctx)303 int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
304                       const EC_POINT *b, BN_CTX *ctx) {
305   int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
306                    BN_CTX *);
307   int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
308   const BIGNUM *p;
309   BN_CTX *new_ctx = NULL;
310   BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
311   int ret = 0;
312 
313   if (a == b) {
314     return EC_POINT_dbl(group, r, a, ctx);
315   }
316   if (EC_POINT_is_at_infinity(group, a)) {
317     return EC_POINT_copy(r, b);
318   }
319   if (EC_POINT_is_at_infinity(group, b)) {
320     return EC_POINT_copy(r, a);
321   }
322 
323   field_mul = group->meth->field_mul;
324   field_sqr = group->meth->field_sqr;
325   p = &group->field;
326 
327   if (ctx == NULL) {
328     ctx = new_ctx = BN_CTX_new();
329     if (ctx == NULL) {
330       return 0;
331     }
332   }
333 
334   BN_CTX_start(ctx);
335   n0 = BN_CTX_get(ctx);
336   n1 = BN_CTX_get(ctx);
337   n2 = BN_CTX_get(ctx);
338   n3 = BN_CTX_get(ctx);
339   n4 = BN_CTX_get(ctx);
340   n5 = BN_CTX_get(ctx);
341   n6 = BN_CTX_get(ctx);
342   if (n6 == NULL) {
343     goto end;
344   }
345 
346   // Note that in this function we must not read components of 'a' or 'b'
347   // once we have written the corresponding components of 'r'.
348   // ('r' might be one of 'a' or 'b'.)
349 
350   // n1, n2
351   int b_Z_is_one = BN_cmp(&b->Z, &group->one) == 0;
352 
353   if (b_Z_is_one) {
354     if (!BN_copy(n1, &a->X) || !BN_copy(n2, &a->Y)) {
355       goto end;
356     }
357     // n1 = X_a
358     // n2 = Y_a
359   } else {
360     if (!field_sqr(group, n0, &b->Z, ctx) ||
361         !field_mul(group, n1, &a->X, n0, ctx)) {
362       goto end;
363     }
364     // n1 = X_a * Z_b^2
365 
366     if (!field_mul(group, n0, n0, &b->Z, ctx) ||
367         !field_mul(group, n2, &a->Y, n0, ctx)) {
368       goto end;
369     }
370     // n2 = Y_a * Z_b^3
371   }
372 
373   // n3, n4
374   int a_Z_is_one = BN_cmp(&a->Z, &group->one) == 0;
375   if (a_Z_is_one) {
376     if (!BN_copy(n3, &b->X) || !BN_copy(n4, &b->Y)) {
377       goto end;
378     }
379     // n3 = X_b
380     // n4 = Y_b
381   } else {
382     if (!field_sqr(group, n0, &a->Z, ctx) ||
383         !field_mul(group, n3, &b->X, n0, ctx)) {
384       goto end;
385     }
386     // n3 = X_b * Z_a^2
387 
388     if (!field_mul(group, n0, n0, &a->Z, ctx) ||
389         !field_mul(group, n4, &b->Y, n0, ctx)) {
390       goto end;
391     }
392     // n4 = Y_b * Z_a^3
393   }
394 
395   // n5, n6
396   if (!BN_mod_sub_quick(n5, n1, n3, p) ||
397       !BN_mod_sub_quick(n6, n2, n4, p)) {
398     goto end;
399   }
400   // n5 = n1 - n3
401   // n6 = n2 - n4
402 
403   if (BN_is_zero(n5)) {
404     if (BN_is_zero(n6)) {
405       // a is the same point as b
406       BN_CTX_end(ctx);
407       ret = EC_POINT_dbl(group, r, a, ctx);
408       ctx = NULL;
409       goto end;
410     } else {
411       // a is the inverse of b
412       BN_zero(&r->Z);
413       ret = 1;
414       goto end;
415     }
416   }
417 
418   // 'n7', 'n8'
419   if (!BN_mod_add_quick(n1, n1, n3, p) ||
420       !BN_mod_add_quick(n2, n2, n4, p)) {
421     goto end;
422   }
423   // 'n7' = n1 + n3
424   // 'n8' = n2 + n4
425 
426   // Z_r
427   if (a_Z_is_one && b_Z_is_one) {
428     if (!BN_copy(&r->Z, n5)) {
429       goto end;
430     }
431   } else {
432     if (a_Z_is_one) {
433       if (!BN_copy(n0, &b->Z)) {
434         goto end;
435       }
436     } else if (b_Z_is_one) {
437       if (!BN_copy(n0, &a->Z)) {
438         goto end;
439       }
440     } else if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) {
441       goto end;
442     }
443     if (!field_mul(group, &r->Z, n0, n5, ctx)) {
444       goto end;
445     }
446   }
447 
448   // Z_r = Z_a * Z_b * n5
449 
450   // X_r
451   if (!field_sqr(group, n0, n6, ctx) ||
452       !field_sqr(group, n4, n5, ctx) ||
453       !field_mul(group, n3, n1, n4, ctx) ||
454       !BN_mod_sub_quick(&r->X, n0, n3, p)) {
455     goto end;
456   }
457   // X_r = n6^2 - n5^2 * 'n7'
458 
459   // 'n9'
460   if (!BN_mod_lshift1_quick(n0, &r->X, p) ||
461       !BN_mod_sub_quick(n0, n3, n0, p)) {
462     goto end;
463   }
464   // n9 = n5^2 * 'n7' - 2 * X_r
465 
466   // Y_r
467   if (!field_mul(group, n0, n0, n6, ctx) ||
468       !field_mul(group, n5, n4, n5, ctx)) {
469     goto end;  // now n5 is n5^3
470   }
471   if (!field_mul(group, n1, n2, n5, ctx) ||
472       !BN_mod_sub_quick(n0, n0, n1, p)) {
473     goto end;
474   }
475   if (BN_is_odd(n0) && !BN_add(n0, n0, p)) {
476     goto end;
477   }
478   // now  0 <= n0 < 2*p,  and n0 is even
479   if (!BN_rshift1(&r->Y, n0)) {
480     goto end;
481   }
482   // Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2
483 
484   ret = 1;
485 
486 end:
487   if (ctx) {
488     // otherwise we already called BN_CTX_end
489     BN_CTX_end(ctx);
490   }
491   BN_CTX_free(new_ctx);
492   return ret;
493 }
494 
ec_GFp_simple_dbl(const EC_GROUP * group,EC_POINT * r,const EC_POINT * a,BN_CTX * ctx)495 int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
496                       BN_CTX *ctx) {
497   int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
498                    BN_CTX *);
499   int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
500   const BIGNUM *p;
501   BN_CTX *new_ctx = NULL;
502   BIGNUM *n0, *n1, *n2, *n3;
503   int ret = 0;
504 
505   if (EC_POINT_is_at_infinity(group, a)) {
506     BN_zero(&r->Z);
507     return 1;
508   }
509 
510   field_mul = group->meth->field_mul;
511   field_sqr = group->meth->field_sqr;
512   p = &group->field;
513 
514   if (ctx == NULL) {
515     ctx = new_ctx = BN_CTX_new();
516     if (ctx == NULL) {
517       return 0;
518     }
519   }
520 
521   BN_CTX_start(ctx);
522   n0 = BN_CTX_get(ctx);
523   n1 = BN_CTX_get(ctx);
524   n2 = BN_CTX_get(ctx);
525   n3 = BN_CTX_get(ctx);
526   if (n3 == NULL) {
527     goto err;
528   }
529 
530   // Note that in this function we must not read components of 'a'
531   // once we have written the corresponding components of 'r'.
532   // ('r' might the same as 'a'.)
533 
534   // n1
535   if (BN_cmp(&a->Z, &group->one) == 0) {
536     if (!field_sqr(group, n0, &a->X, ctx) ||
537         !BN_mod_lshift1_quick(n1, n0, p) ||
538         !BN_mod_add_quick(n0, n0, n1, p) ||
539         !BN_mod_add_quick(n1, n0, &group->a, p)) {
540       goto err;
541     }
542     // n1 = 3 * X_a^2 + a_curve
543   } else if (group->a_is_minus3) {
544     if (!field_sqr(group, n1, &a->Z, ctx) ||
545         !BN_mod_add_quick(n0, &a->X, n1, p) ||
546         !BN_mod_sub_quick(n2, &a->X, n1, p) ||
547         !field_mul(group, n1, n0, n2, ctx) ||
548         !BN_mod_lshift1_quick(n0, n1, p) ||
549         !BN_mod_add_quick(n1, n0, n1, p)) {
550       goto err;
551     }
552     // n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
553     //    = 3 * X_a^2 - 3 * Z_a^4
554   } else {
555     if (!field_sqr(group, n0, &a->X, ctx) ||
556         !BN_mod_lshift1_quick(n1, n0, p) ||
557         !BN_mod_add_quick(n0, n0, n1, p) ||
558         !field_sqr(group, n1, &a->Z, ctx) ||
559         !field_sqr(group, n1, n1, ctx) ||
560         !field_mul(group, n1, n1, &group->a, ctx) ||
561         !BN_mod_add_quick(n1, n1, n0, p)) {
562       goto err;
563     }
564     // n1 = 3 * X_a^2 + a_curve * Z_a^4
565   }
566 
567   // Z_r
568   if (BN_cmp(&a->Z, &group->one) == 0) {
569     if (!BN_copy(n0, &a->Y)) {
570       goto err;
571     }
572   } else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) {
573     goto err;
574   }
575   if (!BN_mod_lshift1_quick(&r->Z, n0, p)) {
576     goto err;
577   }
578   // Z_r = 2 * Y_a * Z_a
579 
580   // n2
581   if (!field_sqr(group, n3, &a->Y, ctx) ||
582       !field_mul(group, n2, &a->X, n3, ctx) ||
583       !BN_mod_lshift_quick(n2, n2, 2, p)) {
584     goto err;
585   }
586   // n2 = 4 * X_a * Y_a^2
587 
588   // X_r
589   if (!BN_mod_lshift1_quick(n0, n2, p) ||
590       !field_sqr(group, &r->X, n1, ctx) ||
591       !BN_mod_sub_quick(&r->X, &r->X, n0, p)) {
592     goto err;
593   }
594   // X_r = n1^2 - 2 * n2
595 
596   // n3
597   if (!field_sqr(group, n0, n3, ctx) ||
598       !BN_mod_lshift_quick(n3, n0, 3, p)) {
599     goto err;
600   }
601   // n3 = 8 * Y_a^4
602 
603   // Y_r
604   if (!BN_mod_sub_quick(n0, n2, &r->X, p) ||
605       !field_mul(group, n0, n1, n0, ctx) ||
606       !BN_mod_sub_quick(&r->Y, n0, n3, p)) {
607     goto err;
608   }
609   // Y_r = n1 * (n2 - X_r) - n3
610 
611   ret = 1;
612 
613 err:
614   BN_CTX_end(ctx);
615   BN_CTX_free(new_ctx);
616   return ret;
617 }
618 
ec_GFp_simple_invert(const EC_GROUP * group,EC_POINT * point,BN_CTX * ctx)619 int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) {
620   if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) {
621     // point is its own inverse
622     return 1;
623   }
624 
625   return BN_usub(&point->Y, &group->field, &point->Y);
626 }
627 
ec_GFp_simple_is_at_infinity(const EC_GROUP * group,const EC_POINT * point)628 int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) {
629   return BN_is_zero(&point->Z);
630 }
631 
ec_GFp_simple_is_on_curve(const EC_GROUP * group,const EC_POINT * point,BN_CTX * ctx)632 int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
633                               BN_CTX *ctx) {
634   int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
635                    BN_CTX *);
636   int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
637   const BIGNUM *p;
638   BN_CTX *new_ctx = NULL;
639   BIGNUM *rh, *tmp, *Z4, *Z6;
640   int ret = 0;
641 
642   if (EC_POINT_is_at_infinity(group, point)) {
643     return 1;
644   }
645 
646   field_mul = group->meth->field_mul;
647   field_sqr = group->meth->field_sqr;
648   p = &group->field;
649 
650   if (ctx == NULL) {
651     ctx = new_ctx = BN_CTX_new();
652     if (ctx == NULL) {
653       return 0;
654     }
655   }
656 
657   BN_CTX_start(ctx);
658   rh = BN_CTX_get(ctx);
659   tmp = BN_CTX_get(ctx);
660   Z4 = BN_CTX_get(ctx);
661   Z6 = BN_CTX_get(ctx);
662   if (Z6 == NULL) {
663     goto err;
664   }
665 
666   // We have a curve defined by a Weierstrass equation
667   //      y^2 = x^3 + a*x + b.
668   // The point to consider is given in Jacobian projective coordinates
669   // where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
670   // Substituting this and multiplying by  Z^6  transforms the above equation
671   // into
672   //      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
673   // To test this, we add up the right-hand side in 'rh'.
674 
675   // rh := X^2
676   if (!field_sqr(group, rh, &point->X, ctx)) {
677     goto err;
678   }
679 
680   if (BN_cmp(&point->Z, &group->one) != 0) {
681     if (!field_sqr(group, tmp, &point->Z, ctx) ||
682         !field_sqr(group, Z4, tmp, ctx) ||
683         !field_mul(group, Z6, Z4, tmp, ctx)) {
684       goto err;
685     }
686 
687     // rh := (rh + a*Z^4)*X
688     if (group->a_is_minus3) {
689       if (!BN_mod_lshift1_quick(tmp, Z4, p) ||
690           !BN_mod_add_quick(tmp, tmp, Z4, p) ||
691           !BN_mod_sub_quick(rh, rh, tmp, p) ||
692           !field_mul(group, rh, rh, &point->X, ctx)) {
693         goto err;
694       }
695     } else {
696       if (!field_mul(group, tmp, Z4, &group->a, ctx) ||
697           !BN_mod_add_quick(rh, rh, tmp, p) ||
698           !field_mul(group, rh, rh, &point->X, ctx)) {
699         goto err;
700       }
701     }
702 
703     // rh := rh + b*Z^6
704     if (!field_mul(group, tmp, &group->b, Z6, ctx) ||
705         !BN_mod_add_quick(rh, rh, tmp, p)) {
706       goto err;
707     }
708   } else {
709     // rh := (rh + a)*X
710     if (!BN_mod_add_quick(rh, rh, &group->a, p) ||
711         !field_mul(group, rh, rh, &point->X, ctx)) {
712       goto err;
713     }
714     // rh := rh + b
715     if (!BN_mod_add_quick(rh, rh, &group->b, p)) {
716       goto err;
717     }
718   }
719 
720   // 'lh' := Y^2
721   if (!field_sqr(group, tmp, &point->Y, ctx)) {
722     goto err;
723   }
724 
725   ret = (0 == BN_ucmp(tmp, rh));
726 
727 err:
728   BN_CTX_end(ctx);
729   BN_CTX_free(new_ctx);
730   return ret;
731 }
732 
ec_GFp_simple_cmp(const EC_GROUP * group,const EC_POINT * a,const EC_POINT * b,BN_CTX * ctx)733 int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
734                       const EC_POINT *b, BN_CTX *ctx) {
735   // return values:
736   //  -1   error
737   //   0   equal (in affine coordinates)
738   //   1   not equal
739 
740   int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
741                    BN_CTX *);
742   int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
743   BN_CTX *new_ctx = NULL;
744   BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
745   const BIGNUM *tmp1_, *tmp2_;
746   int ret = -1;
747 
748   if (ec_GFp_simple_is_at_infinity(group, a)) {
749     return ec_GFp_simple_is_at_infinity(group, b) ? 0 : 1;
750   }
751 
752   if (ec_GFp_simple_is_at_infinity(group, b)) {
753     return 1;
754   }
755 
756   int a_Z_is_one = BN_cmp(&a->Z, &group->one) == 0;
757   int b_Z_is_one = BN_cmp(&b->Z, &group->one) == 0;
758 
759   if (a_Z_is_one && b_Z_is_one) {
760     return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
761   }
762 
763   field_mul = group->meth->field_mul;
764   field_sqr = group->meth->field_sqr;
765 
766   if (ctx == NULL) {
767     ctx = new_ctx = BN_CTX_new();
768     if (ctx == NULL) {
769       return -1;
770     }
771   }
772 
773   BN_CTX_start(ctx);
774   tmp1 = BN_CTX_get(ctx);
775   tmp2 = BN_CTX_get(ctx);
776   Za23 = BN_CTX_get(ctx);
777   Zb23 = BN_CTX_get(ctx);
778   if (Zb23 == NULL) {
779     goto end;
780   }
781 
782   // We have to decide whether
783   //     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
784   // or equivalently, whether
785   //     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
786 
787   if (!b_Z_is_one) {
788     if (!field_sqr(group, Zb23, &b->Z, ctx) ||
789         !field_mul(group, tmp1, &a->X, Zb23, ctx)) {
790       goto end;
791     }
792     tmp1_ = tmp1;
793   } else {
794     tmp1_ = &a->X;
795   }
796   if (!a_Z_is_one) {
797     if (!field_sqr(group, Za23, &a->Z, ctx) ||
798         !field_mul(group, tmp2, &b->X, Za23, ctx)) {
799       goto end;
800     }
801     tmp2_ = tmp2;
802   } else {
803     tmp2_ = &b->X;
804   }
805 
806   // compare  X_a*Z_b^2  with  X_b*Z_a^2
807   if (BN_cmp(tmp1_, tmp2_) != 0) {
808     ret = 1;  // points differ
809     goto end;
810   }
811 
812 
813   if (!b_Z_is_one) {
814     if (!field_mul(group, Zb23, Zb23, &b->Z, ctx) ||
815         !field_mul(group, tmp1, &a->Y, Zb23, ctx)) {
816       goto end;
817     }
818     // tmp1_ = tmp1
819   } else {
820     tmp1_ = &a->Y;
821   }
822   if (!a_Z_is_one) {
823     if (!field_mul(group, Za23, Za23, &a->Z, ctx) ||
824         !field_mul(group, tmp2, &b->Y, Za23, ctx)) {
825       goto end;
826     }
827     // tmp2_ = tmp2
828   } else {
829     tmp2_ = &b->Y;
830   }
831 
832   // compare  Y_a*Z_b^3  with  Y_b*Z_a^3
833   if (BN_cmp(tmp1_, tmp2_) != 0) {
834     ret = 1;  // points differ
835     goto end;
836   }
837 
838   // points are equal
839   ret = 0;
840 
841 end:
842   BN_CTX_end(ctx);
843   BN_CTX_free(new_ctx);
844   return ret;
845 }
846 
ec_GFp_simple_make_affine(const EC_GROUP * group,EC_POINT * point,BN_CTX * ctx)847 int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
848                               BN_CTX *ctx) {
849   BN_CTX *new_ctx = NULL;
850   BIGNUM *x, *y;
851   int ret = 0;
852 
853   if (BN_cmp(&point->Z, &group->one) == 0 ||
854       EC_POINT_is_at_infinity(group, point)) {
855     return 1;
856   }
857 
858   if (ctx == NULL) {
859     ctx = new_ctx = BN_CTX_new();
860     if (ctx == NULL) {
861       return 0;
862     }
863   }
864 
865   BN_CTX_start(ctx);
866   x = BN_CTX_get(ctx);
867   y = BN_CTX_get(ctx);
868   if (y == NULL) {
869     goto err;
870   }
871 
872   if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx) ||
873       !EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) {
874     goto err;
875   }
876   if (BN_cmp(&point->Z, &group->one) != 0) {
877     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
878     goto err;
879   }
880 
881   ret = 1;
882 
883 err:
884   BN_CTX_end(ctx);
885   BN_CTX_free(new_ctx);
886   return ret;
887 }
888 
ec_GFp_simple_points_make_affine(const EC_GROUP * group,size_t num,EC_POINT * points[],BN_CTX * ctx)889 int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
890                                      EC_POINT *points[], BN_CTX *ctx) {
891   BN_CTX *new_ctx = NULL;
892   BIGNUM *tmp, *tmp_Z;
893   BIGNUM **prod_Z = NULL;
894   int ret = 0;
895 
896   if (num == 0) {
897     return 1;
898   }
899 
900   if (ctx == NULL) {
901     ctx = new_ctx = BN_CTX_new();
902     if (ctx == NULL) {
903       return 0;
904     }
905   }
906 
907   BN_CTX_start(ctx);
908   tmp = BN_CTX_get(ctx);
909   tmp_Z = BN_CTX_get(ctx);
910   if (tmp == NULL || tmp_Z == NULL) {
911     goto err;
912   }
913 
914   prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
915   if (prod_Z == NULL) {
916     goto err;
917   }
918   OPENSSL_memset(prod_Z, 0, num * sizeof(prod_Z[0]));
919   for (size_t i = 0; i < num; i++) {
920     prod_Z[i] = BN_new();
921     if (prod_Z[i] == NULL) {
922       goto err;
923     }
924   }
925 
926   // Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
927   // skipping any zero-valued inputs (pretend that they're 1).
928 
929   if (!BN_is_zero(&points[0]->Z)) {
930     if (!BN_copy(prod_Z[0], &points[0]->Z)) {
931       goto err;
932     }
933   } else {
934     if (BN_copy(prod_Z[0], &group->one) == NULL) {
935       goto err;
936     }
937   }
938 
939   for (size_t i = 1; i < num; i++) {
940     if (!BN_is_zero(&points[i]->Z)) {
941       if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1],
942                                   &points[i]->Z, ctx)) {
943         goto err;
944       }
945     } else {
946       if (!BN_copy(prod_Z[i], prod_Z[i - 1])) {
947         goto err;
948       }
949     }
950   }
951 
952   // Now use a single explicit inversion to replace every non-zero points[i]->Z
953   // by its inverse. We use |BN_mod_inverse_odd| instead of doing a constant-
954   // time inversion using Fermat's Little Theorem because this function is
955   // usually only used for converting multiples of a public key point to
956   // affine, and a public key point isn't secret. If we were to use Fermat's
957   // Little Theorem then the cost of the inversion would usually be so high
958   // that converting the multiples to affine would be counterproductive.
959   int no_inverse;
960   if (!BN_mod_inverse_odd(tmp, &no_inverse, prod_Z[num - 1], &group->field,
961                           ctx)) {
962     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
963     goto err;
964   }
965 
966   if (group->meth->field_encode != NULL) {
967     // In the Montgomery case, we just turned R*H (representing H)
968     // into 1/(R*H), but we need R*(1/H) (representing 1/H);
969     // i.e. we need to multiply by the Montgomery factor twice.
970     if (!group->meth->field_encode(group, tmp, tmp, ctx) ||
971         !group->meth->field_encode(group, tmp, tmp, ctx)) {
972       goto err;
973     }
974   }
975 
976   for (size_t i = num - 1; i > 0; --i) {
977     // Loop invariant: tmp is the product of the inverses of
978     // points[0]->Z .. points[i]->Z (zero-valued inputs skipped).
979     if (BN_is_zero(&points[i]->Z)) {
980       continue;
981     }
982 
983     // Set tmp_Z to the inverse of points[i]->Z (as product
984     // of Z inverses 0 .. i, Z values 0 .. i - 1).
985     if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx) ||
986         // Update tmp to satisfy the loop invariant for i - 1.
987         !group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx) ||
988         // Replace points[i]->Z by its inverse.
989         !BN_copy(&points[i]->Z, tmp_Z)) {
990       goto err;
991     }
992   }
993 
994   // Replace points[0]->Z by its inverse.
995   if (!BN_is_zero(&points[0]->Z) && !BN_copy(&points[0]->Z, tmp)) {
996     goto err;
997   }
998 
999   // Finally, fix up the X and Y coordinates for all points.
1000   for (size_t i = 0; i < num; i++) {
1001     EC_POINT *p = points[i];
1002 
1003     if (!BN_is_zero(&p->Z)) {
1004       // turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1).
1005       if (!group->meth->field_sqr(group, tmp, &p->Z, ctx) ||
1006           !group->meth->field_mul(group, &p->X, &p->X, tmp, ctx) ||
1007           !group->meth->field_mul(group, tmp, tmp, &p->Z, ctx) ||
1008           !group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) {
1009         goto err;
1010       }
1011 
1012       if (BN_copy(&p->Z, &group->one) == NULL) {
1013         goto err;
1014       }
1015     }
1016   }
1017 
1018   ret = 1;
1019 
1020 err:
1021   BN_CTX_end(ctx);
1022   BN_CTX_free(new_ctx);
1023   if (prod_Z != NULL) {
1024     for (size_t i = 0; i < num; i++) {
1025       if (prod_Z[i] == NULL) {
1026         break;
1027       }
1028       BN_clear_free(prod_Z[i]);
1029     }
1030     OPENSSL_free(prod_Z);
1031   }
1032 
1033   return ret;
1034 }
1035 
ec_GFp_simple_field_mul(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)1036 int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1037                             const BIGNUM *b, BN_CTX *ctx) {
1038   return BN_mod_mul(r, a, b, &group->field, ctx);
1039 }
1040 
ec_GFp_simple_field_sqr(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)1041 int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1042                             BN_CTX *ctx) {
1043   return BN_mod_sqr(r, a, &group->field, ctx);
1044 }
1045