1 /*
2 * Copyright 2014 Google Inc. All rights reserved.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "flatbuffers/flatbuffers.h"
18 #include "flatbuffers/idl.h"
19 #include "flatbuffers/util.h"
20 #include "flatbuffers/registry.h"
21 #include "flatbuffers/minireflect.h"
22
23 #include "monster_test_generated.h"
24 #include "namespace_test/namespace_test1_generated.h"
25 #include "namespace_test/namespace_test2_generated.h"
26 #include "union_vector/union_vector_generated.h"
27
28 #ifndef FLATBUFFERS_CPP98_STL
29 #include <random>
30 #endif
31
32 #include "flatbuffers/flexbuffers.h"
33
34 using namespace MyGame::Example;
35
36 #ifdef __ANDROID__
37 #include <android/log.h>
38 #define TEST_OUTPUT_LINE(...) \
39 __android_log_print(ANDROID_LOG_INFO, "FlatBuffers", __VA_ARGS__)
40 #define FLATBUFFERS_NO_FILE_TESTS
41 #else
42 #define TEST_OUTPUT_LINE(...) \
43 { printf(__VA_ARGS__); printf("\n"); }
44 #endif
45
46 int testing_fails = 0;
47
TestFail(const char * expval,const char * val,const char * exp,const char * file,int line)48 void TestFail(const char *expval, const char *val, const char *exp,
49 const char *file, int line) {
50 TEST_OUTPUT_LINE("VALUE: \"%s\"", expval);
51 TEST_OUTPUT_LINE("EXPECTED: \"%s\"", val);
52 TEST_OUTPUT_LINE("TEST FAILED: %s:%d, %s", file, line, exp);
53 assert(0);
54 testing_fails++;
55 }
56
TestEqStr(const char * expval,const char * val,const char * exp,const char * file,int line)57 void TestEqStr(const char *expval, const char *val, const char *exp,
58 const char *file, int line) {
59 if (strcmp(expval, val) != 0) {
60 TestFail(expval, val, exp, file, line);
61 }
62 }
63
64 template<typename T, typename U>
TestEq(T expval,U val,const char * exp,const char * file,int line)65 void TestEq(T expval, U val, const char *exp, const char *file, int line) {
66 if (U(expval) != val) {
67 TestFail(flatbuffers::NumToString(expval).c_str(),
68 flatbuffers::NumToString(val).c_str(),
69 exp, file, line);
70 }
71 }
72
73 #define TEST_EQ(exp, val) TestEq(exp, val, #exp, __FILE__, __LINE__)
74 #define TEST_NOTNULL(exp) TestEq(exp == NULL, false, #exp, __FILE__, __LINE__)
75 #define TEST_EQ_STR(exp, val) TestEqStr(exp, val, #exp, __FILE__, __LINE__)
76
77 // Include simple random number generator to ensure results will be the
78 // same cross platform.
79 // http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator
80 uint32_t lcg_seed = 48271;
lcg_rand()81 uint32_t lcg_rand() {
82 return lcg_seed = ((uint64_t)lcg_seed * 279470273UL) % 4294967291UL;
83 }
lcg_reset()84 void lcg_reset() { lcg_seed = 48271; }
85
86 std::string test_data_path = "tests/";
87
88 // example of how to build up a serialized buffer algorithmically:
CreateFlatBufferTest(std::string & buffer)89 flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) {
90 flatbuffers::FlatBufferBuilder builder;
91
92 auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20));
93
94 auto name = builder.CreateString("MyMonster");
95
96 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
97 auto inventory = builder.CreateVector(inv_data, 10);
98
99 // Alternatively, create the vector first, and fill in data later:
100 // unsigned char *inv_buf = nullptr;
101 // auto inventory = builder.CreateUninitializedVector<unsigned char>(
102 // 10, &inv_buf);
103 // memcpy(inv_buf, inv_data, 10);
104
105 Test tests[] = { Test(10, 20), Test(30, 40) };
106 auto testv = builder.CreateVectorOfStructs(tests, 2);
107
108
109 #ifndef FLATBUFFERS_CPP98_STL
110 // Create a vector of structures from a lambda.
111 auto testv2 = builder.CreateVectorOfStructs<Test>(
112 2, [&](size_t i, Test* s) -> void {
113 *s = tests[i];
114 });
115 #else
116 // Create a vector of structures using a plain old C++ function.
117 auto testv2 = builder.CreateVectorOfStructs<Test>(
118 2, [](size_t i, Test* s, void *state) -> void {
119 *s = (reinterpret_cast<Test*>(state))[i];
120 }, tests);
121 #endif // FLATBUFFERS_CPP98_STL
122
123 // create monster with very few fields set:
124 // (same functionality as CreateMonster below, but sets fields manually)
125 flatbuffers::Offset<Monster> mlocs[3];
126 auto fred = builder.CreateString("Fred");
127 auto barney = builder.CreateString("Barney");
128 auto wilma = builder.CreateString("Wilma");
129 MonsterBuilder mb1(builder);
130 mb1.add_name(fred);
131 mlocs[0] = mb1.Finish();
132 MonsterBuilder mb2(builder);
133 mb2.add_name(barney);
134 mb2.add_hp(1000);
135 mlocs[1] = mb2.Finish();
136 MonsterBuilder mb3(builder);
137 mb3.add_name(wilma);
138 mlocs[2] = mb3.Finish();
139
140 // Create an array of strings. Also test string pooling, and lambdas.
141 auto vecofstrings =
142 builder.CreateVector<flatbuffers::Offset<flatbuffers::String>>(4,
143 [](size_t i, flatbuffers::FlatBufferBuilder *b)
144 -> flatbuffers::Offset<flatbuffers::String> {
145 static const char *names[] = { "bob", "fred", "bob", "fred" };
146 return b->CreateSharedString(names[i]);
147 }, &builder);
148
149 // Creating vectors of strings in one convenient call.
150 std::vector<std::string> names2;
151 names2.push_back("jane");
152 names2.push_back("mary");
153 auto vecofstrings2 = builder.CreateVectorOfStrings(names2);
154
155 // Create an array of sorted tables, can be used with binary search when read:
156 auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3);
157
158 // Create an array of sorted structs,
159 // can be used with binary search when read:
160 std::vector<Ability> abilities;
161 abilities.push_back(Ability(4, 40));
162 abilities.push_back(Ability(3, 30));
163 abilities.push_back(Ability(2, 20));
164 abilities.push_back(Ability(1, 10));
165 auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities);
166
167 // Create a nested FlatBuffer.
168 // Nested FlatBuffers are stored in a ubyte vector, which can be convenient
169 // since they can be memcpy'd around much easier than other FlatBuffer
170 // values. They have little overhead compared to storing the table directly.
171 // As a test, create a mostly empty Monster buffer:
172 flatbuffers::FlatBufferBuilder nested_builder;
173 auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0,
174 nested_builder.CreateString("NestedMonster"));
175 FinishMonsterBuffer(nested_builder, nmloc);
176 // Now we can store the buffer in the parent. Note that by default, vectors
177 // are only aligned to their elements or size field, so in this case if the
178 // buffer contains 64-bit elements, they may not be correctly aligned. We fix
179 // that with:
180 builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t),
181 nested_builder.GetBufferMinAlignment());
182 // If for whatever reason you don't have the nested_builder available, you
183 // can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or
184 // the largest force_align value in your schema if you're using it.
185 auto nested_flatbuffer_vector =
186 builder.CreateVector(nested_builder.GetBufferPointer(),
187 nested_builder.GetSize());
188
189 // Test a nested FlexBuffer:
190 flexbuffers::Builder flexbuild;
191 flexbuild.Int(1234);
192 flexbuild.Finish();
193 auto flex = builder.CreateVector(flexbuild.GetBuffer());
194
195 // shortcut for creating monster with all fields set:
196 auto mloc = CreateMonster(builder, &vec, 150, 80, name, inventory, Color_Blue,
197 Any_Monster, mlocs[1].Union(), // Store a union.
198 testv, vecofstrings, vecoftables, 0,
199 nested_flatbuffer_vector, 0, false,
200 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.14159f, 3.0f, 0.0f,
201 vecofstrings2, vecofstructs, flex, testv2);
202
203 FinishMonsterBuffer(builder, mloc);
204
205 #ifdef FLATBUFFERS_TEST_VERBOSE
206 // print byte data for debugging:
207 auto p = builder.GetBufferPointer();
208 for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++)
209 printf("%d ", p[i]);
210 #endif
211
212 // return the buffer for the caller to use.
213 auto bufferpointer =
214 reinterpret_cast<const char *>(builder.GetBufferPointer());
215 buffer.assign(bufferpointer, bufferpointer + builder.GetSize());
216
217 return builder.ReleaseBufferPointer();
218 }
219
220 // example of accessing a buffer loaded in memory:
AccessFlatBufferTest(const uint8_t * flatbuf,size_t length,bool pooled=true)221 void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length,
222 bool pooled = true) {
223
224 // First, verify the buffers integrity (optional)
225 flatbuffers::Verifier verifier(flatbuf, length);
226 TEST_EQ(VerifyMonsterBuffer(verifier), true);
227
228 std::vector<uint8_t> test_buff;
229 test_buff.resize(length * 2);
230 std::memcpy(&test_buff[0], flatbuf , length);
231 std::memcpy(&test_buff[length], flatbuf , length);
232
233 flatbuffers::Verifier verifier1(&test_buff[0], length);
234 TEST_EQ(VerifyMonsterBuffer(verifier1), true);
235 TEST_EQ(verifier1.GetComputedSize(), length);
236
237 flatbuffers::Verifier verifier2(&test_buff[length], length);
238 TEST_EQ(VerifyMonsterBuffer(verifier2), true);
239 TEST_EQ(verifier2.GetComputedSize(), length);
240
241 TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0);
242 TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true);
243 TEST_EQ(strcmp(MonsterExtension(), "mon"), 0);
244
245 // Access the buffer from the root.
246 auto monster = GetMonster(flatbuf);
247
248 TEST_EQ(monster->hp(), 80);
249 TEST_EQ(monster->mana(), 150); // default
250 TEST_EQ_STR(monster->name()->c_str(), "MyMonster");
251 // Can't access the following field, it is deprecated in the schema,
252 // which means accessors are not generated:
253 // monster.friendly()
254
255 auto pos = monster->pos();
256 TEST_NOTNULL(pos);
257 TEST_EQ(pos->z(), 3);
258 TEST_EQ(pos->test3().a(), 10);
259 TEST_EQ(pos->test3().b(), 20);
260
261 auto inventory = monster->inventory();
262 TEST_EQ(VectorLength(inventory), 10UL); // Works even if inventory is null.
263 TEST_NOTNULL(inventory);
264 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
265 for (auto it = inventory->begin(); it != inventory->end(); ++it)
266 TEST_EQ(*it, inv_data[it - inventory->begin()]);
267
268 TEST_EQ(monster->color(), Color_Blue);
269
270 // Example of accessing a union:
271 TEST_EQ(monster->test_type(), Any_Monster); // First make sure which it is.
272 auto monster2 = reinterpret_cast<const Monster *>(monster->test());
273 TEST_NOTNULL(monster2);
274 TEST_EQ_STR(monster2->name()->c_str(), "Fred");
275
276 // Example of accessing a vector of strings:
277 auto vecofstrings = monster->testarrayofstring();
278 TEST_EQ(vecofstrings->Length(), 4U);
279 TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob");
280 TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred");
281 if (pooled) {
282 // These should have pointer equality because of string pooling.
283 TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str());
284 TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str());
285 }
286
287 auto vecofstrings2 = monster->testarrayofstring2();
288 if (vecofstrings2) {
289 TEST_EQ(vecofstrings2->Length(), 2U);
290 TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane");
291 TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary");
292 }
293
294 // Example of accessing a vector of tables:
295 auto vecoftables = monster->testarrayoftables();
296 TEST_EQ(vecoftables->Length(), 3U);
297 for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it)
298 TEST_EQ(strlen(it->name()->c_str()) >= 4, true);
299 TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney");
300 TEST_EQ(vecoftables->Get(0)->hp(), 1000);
301 TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred");
302 TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma");
303 TEST_NOTNULL(vecoftables->LookupByKey("Barney"));
304 TEST_NOTNULL(vecoftables->LookupByKey("Fred"));
305 TEST_NOTNULL(vecoftables->LookupByKey("Wilma"));
306
307 // Test accessing a vector of sorted structs
308 auto vecofstructs = monster->testarrayofsortedstruct();
309 if (vecofstructs) { // not filled in monster_test.bfbs
310 for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size()-1; i++) {
311 auto left = vecofstructs->Get(i);
312 auto right = vecofstructs->Get(i+1);
313 TEST_EQ(true, (left->KeyCompareLessThan(right)));
314 }
315 TEST_NOTNULL(vecofstructs->LookupByKey(3));
316 TEST_EQ(static_cast<const Ability*>(nullptr), vecofstructs->LookupByKey(5));
317 }
318
319 // Test nested FlatBuffers if available:
320 auto nested_buffer = monster->testnestedflatbuffer();
321 if (nested_buffer) {
322 // nested_buffer is a vector of bytes you can memcpy. However, if you
323 // actually want to access the nested data, this is a convenient
324 // accessor that directly gives you the root table:
325 auto nested_monster = monster->testnestedflatbuffer_nested_root();
326 TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster");
327 }
328
329 // Test flexbuffer if available:
330 auto flex = monster->flex();
331 // flex is a vector of bytes you can memcpy etc.
332 TEST_EQ(flex->size(), 4); // Encoded FlexBuffer bytes.
333 // However, if you actually want to access the nested data, this is a
334 // convenient accessor that directly gives you the root value:
335 TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234);
336
337 // Since Flatbuffers uses explicit mechanisms to override the default
338 // compiler alignment, double check that the compiler indeed obeys them:
339 // (Test consists of a short and byte):
340 TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL);
341 TEST_EQ(sizeof(Test), 4UL);
342
343 const flatbuffers::Vector<const Test *>* tests_array[] = {
344 monster->test4(),
345 monster->test5(),
346 };
347 for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) {
348 auto tests = tests_array[i];
349 TEST_NOTNULL(tests);
350 auto test_0 = tests->Get(0);
351 auto test_1 = tests->Get(1);
352 TEST_EQ(test_0->a(), 10);
353 TEST_EQ(test_0->b(), 20);
354 TEST_EQ(test_1->a(), 30);
355 TEST_EQ(test_1->b(), 40);
356 for (auto it = tests->begin(); it != tests->end(); ++it) {
357 TEST_EQ(it->a() == 10 || it->a() == 30, true); // Just testing iterators.
358 }
359 }
360
361 // Checking for presence of fields:
362 TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true);
363 TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false);
364
365 // Obtaining a buffer from a root:
366 TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf);
367 }
368
369 // Change a FlatBuffer in-place, after it has been constructed.
MutateFlatBuffersTest(uint8_t * flatbuf,std::size_t length)370 void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) {
371 // Get non-const pointer to root.
372 auto monster = GetMutableMonster(flatbuf);
373
374 // Each of these tests mutates, then tests, then set back to the original,
375 // so we can test that the buffer in the end still passes our original test.
376 auto hp_ok = monster->mutate_hp(10);
377 TEST_EQ(hp_ok, true); // Field was present.
378 TEST_EQ(monster->hp(), 10);
379 // Mutate to default value
380 auto hp_ok_default = monster->mutate_hp(100);
381 TEST_EQ(hp_ok_default, true); // Field was present.
382 TEST_EQ(monster->hp(), 100);
383 // Test that mutate to default above keeps field valid for further mutations
384 auto hp_ok_2 = monster->mutate_hp(20);
385 TEST_EQ(hp_ok_2, true);
386 TEST_EQ(monster->hp(), 20);
387 monster->mutate_hp(80);
388
389 // Monster originally at 150 mana (default value)
390 auto mana_default_ok = monster->mutate_mana(150); // Mutate to default value.
391 TEST_EQ(mana_default_ok, true); // Mutation should succeed, because default value.
392 TEST_EQ(monster->mana(), 150);
393 auto mana_ok = monster->mutate_mana(10);
394 TEST_EQ(mana_ok, false); // Field was NOT present, because default value.
395 TEST_EQ(monster->mana(), 150);
396
397 // Mutate structs.
398 auto pos = monster->mutable_pos();
399 auto test3 = pos->mutable_test3(); // Struct inside a struct.
400 test3.mutate_a(50); // Struct fields never fail.
401 TEST_EQ(test3.a(), 50);
402 test3.mutate_a(10);
403
404 // Mutate vectors.
405 auto inventory = monster->mutable_inventory();
406 inventory->Mutate(9, 100);
407 TEST_EQ(inventory->Get(9), 100);
408 inventory->Mutate(9, 9);
409
410 auto tables = monster->mutable_testarrayoftables();
411 auto first = tables->GetMutableObject(0);
412 TEST_EQ(first->hp(), 1000);
413 first->mutate_hp(0);
414 TEST_EQ(first->hp(), 0);
415 first->mutate_hp(1000);
416
417 // Run the verifier and the regular test to make sure we didn't trample on
418 // anything.
419 AccessFlatBufferTest(flatbuf, length);
420 }
421
422 // Unpack a FlatBuffer into objects.
ObjectFlatBuffersTest(uint8_t * flatbuf)423 void ObjectFlatBuffersTest(uint8_t *flatbuf) {
424 // Optional: we can specify resolver and rehasher functions to turn hashed
425 // strings into object pointers and back, to implement remote references
426 // and such.
427 auto resolver = flatbuffers::resolver_function_t(
428 [](void **pointer_adr, flatbuffers::hash_value_t hash) {
429 (void)pointer_adr;
430 (void)hash;
431 // Don't actually do anything, leave variable null.
432 });
433 auto rehasher = flatbuffers::rehasher_function_t(
434 [](void *pointer) -> flatbuffers::hash_value_t {
435 (void)pointer;
436 return 0;
437 });
438
439 // Turn a buffer into C++ objects.
440 auto monster1 = UnPackMonster(flatbuf, &resolver);
441
442 // Re-serialize the data.
443 flatbuffers::FlatBufferBuilder fbb1;
444 fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher),
445 MonsterIdentifier());
446
447 // Unpack again, and re-serialize again.
448 auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver);
449 flatbuffers::FlatBufferBuilder fbb2;
450 fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher),
451 MonsterIdentifier());
452
453 // Now we've gone full round-trip, the two buffers should match.
454 auto len1 = fbb1.GetSize();
455 auto len2 = fbb2.GetSize();
456 TEST_EQ(len1, len2);
457 TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(),
458 len1), 0);
459
460 // Test it with the original buffer test to make sure all data survived.
461 AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false);
462
463 // Test accessing fields, similar to AccessFlatBufferTest above.
464 TEST_EQ(monster2->hp, 80);
465 TEST_EQ(monster2->mana, 150); // default
466 TEST_EQ_STR(monster2->name.c_str(), "MyMonster");
467
468 auto &pos = monster2->pos;
469 TEST_NOTNULL(pos);
470 TEST_EQ(pos->z(), 3);
471 TEST_EQ(pos->test3().a(), 10);
472 TEST_EQ(pos->test3().b(), 20);
473
474 auto &inventory = monster2->inventory;
475 TEST_EQ(inventory.size(), 10UL);
476 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
477 for (auto it = inventory.begin(); it != inventory.end(); ++it)
478 TEST_EQ(*it, inv_data[it - inventory.begin()]);
479
480 TEST_EQ(monster2->color, Color_Blue);
481
482 auto monster3 = monster2->test.AsMonster();
483 TEST_NOTNULL(monster3);
484 TEST_EQ_STR(monster3->name.c_str(), "Fred");
485
486 auto &vecofstrings = monster2->testarrayofstring;
487 TEST_EQ(vecofstrings.size(), 4U);
488 TEST_EQ_STR(vecofstrings[0].c_str(), "bob");
489 TEST_EQ_STR(vecofstrings[1].c_str(), "fred");
490
491 auto &vecofstrings2 = monster2->testarrayofstring2;
492 TEST_EQ(vecofstrings2.size(), 2U);
493 TEST_EQ_STR(vecofstrings2[0].c_str(), "jane");
494 TEST_EQ_STR(vecofstrings2[1].c_str(), "mary");
495
496 auto &vecoftables = monster2->testarrayoftables;
497 TEST_EQ(vecoftables.size(), 3U);
498 TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney");
499 TEST_EQ(vecoftables[0]->hp, 1000);
500 TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred");
501 TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma");
502
503 auto &tests = monster2->test4;
504 TEST_EQ(tests[0].a(), 10);
505 TEST_EQ(tests[0].b(), 20);
506 TEST_EQ(tests[1].a(), 30);
507 TEST_EQ(tests[1].b(), 40);
508 }
509
510 // Prefix a FlatBuffer with a size field.
SizePrefixedTest()511 void SizePrefixedTest() {
512 // Create size prefixed buffer.
513 flatbuffers::FlatBufferBuilder fbb;
514 fbb.FinishSizePrefixed(CreateMonster(fbb, 0, 200, 300,
515 fbb.CreateString("bob")));
516
517 // Verify it.
518 flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
519 TEST_EQ(verifier.VerifySizePrefixedBuffer<Monster>(nullptr), true);
520
521 // Access it.
522 auto m = flatbuffers::GetSizePrefixedRoot<MyGame::Example::Monster>(
523 fbb.GetBufferPointer());
524 TEST_EQ(m->mana(), 200);
525 TEST_EQ(m->hp(), 300);
526 TEST_EQ_STR(m->name()->c_str(), "bob");
527 }
528
529
TriviallyCopyableTest()530 void TriviallyCopyableTest() {
531 #if __GNUG__ && __GNUC__ < 5
532 TEST_EQ(__has_trivial_copy(Vec3), true);
533 #else
534 #if __cplusplus >= 201103L
535 TEST_EQ(std::is_trivially_copyable<Vec3>::value, true);
536 #endif
537 #endif
538 }
539
540
541 // example of parsing text straight into a buffer, and generating
542 // text back from it:
ParseAndGenerateTextTest()543 void ParseAndGenerateTextTest() {
544 // load FlatBuffer schema (.fbs) and JSON from disk
545 std::string schemafile;
546 std::string jsonfile;
547 TEST_EQ(flatbuffers::LoadFile(
548 (test_data_path + "monster_test.fbs").c_str(), false, &schemafile), true);
549 TEST_EQ(flatbuffers::LoadFile(
550 (test_data_path + "monsterdata_test.golden").c_str(), false, &jsonfile),
551 true);
552
553 // parse schema first, so we can use it to parse the data after
554 flatbuffers::Parser parser;
555 auto include_test_path =
556 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
557 const char *include_directories[] = {
558 test_data_path.c_str(), include_test_path.c_str(), nullptr
559 };
560 TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
561 TEST_EQ(parser.Parse(jsonfile.c_str(), include_directories), true);
562
563 // here, parser.builder_ contains a binary buffer that is the parsed data.
564
565 // First, verify it, just in case:
566 flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(),
567 parser.builder_.GetSize());
568 TEST_EQ(VerifyMonsterBuffer(verifier), true);
569
570 AccessFlatBufferTest(parser.builder_.GetBufferPointer(),
571 parser.builder_.GetSize(), false);
572
573 // to ensure it is correct, we now generate text back from the binary,
574 // and compare the two:
575 std::string jsongen;
576 auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
577 TEST_EQ(result, true);
578 TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str());
579
580 // We can also do the above using the convenient Registry that knows about
581 // a set of file_identifiers mapped to schemas.
582 flatbuffers::Registry registry;
583 // Make sure schemas can find their includes.
584 registry.AddIncludeDirectory(test_data_path.c_str());
585 registry.AddIncludeDirectory(include_test_path.c_str());
586 // Call this with many schemas if possible.
587 registry.Register(MonsterIdentifier(),
588 (test_data_path + "monster_test.fbs").c_str());
589 // Now we got this set up, we can parse by just specifying the identifier,
590 // the correct schema will be loaded on the fly:
591 auto buf = registry.TextToFlatBuffer(jsonfile.c_str(),
592 MonsterIdentifier());
593 // If this fails, check registry.lasterror_.
594 TEST_NOTNULL(buf.data());
595 // Test the buffer, to be sure:
596 AccessFlatBufferTest(buf.data(), buf.size(), false);
597 // We can use the registry to turn this back into text, in this case it
598 // will get the file_identifier from the binary:
599 std::string text;
600 auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text);
601 // If this fails, check registry.lasterror_.
602 TEST_EQ(ok, true);
603 TEST_EQ_STR(text.c_str(), jsonfile.c_str());
604 }
605
ReflectionTest(uint8_t * flatbuf,size_t length)606 void ReflectionTest(uint8_t *flatbuf, size_t length) {
607 // Load a binary schema.
608 std::string bfbsfile;
609 TEST_EQ(flatbuffers::LoadFile(
610 (test_data_path + "monster_test.bfbs").c_str(), true, &bfbsfile),
611 true);
612
613 // Verify it, just in case:
614 flatbuffers::Verifier verifier(
615 reinterpret_cast<const uint8_t *>(bfbsfile.c_str()), bfbsfile.length());
616 TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
617
618 // Make sure the schema is what we expect it to be.
619 auto &schema = *reflection::GetSchema(bfbsfile.c_str());
620 auto root_table = schema.root_table();
621 TEST_EQ_STR(root_table->name()->c_str(), "MyGame.Example.Monster");
622 auto fields = root_table->fields();
623 auto hp_field_ptr = fields->LookupByKey("hp");
624 TEST_NOTNULL(hp_field_ptr);
625 auto &hp_field = *hp_field_ptr;
626 TEST_EQ_STR(hp_field.name()->c_str(), "hp");
627 TEST_EQ(hp_field.id(), 2);
628 TEST_EQ(hp_field.type()->base_type(), reflection::Short);
629 auto friendly_field_ptr = fields->LookupByKey("friendly");
630 TEST_NOTNULL(friendly_field_ptr);
631 TEST_NOTNULL(friendly_field_ptr->attributes());
632 TEST_NOTNULL(friendly_field_ptr->attributes()->LookupByKey("priority"));
633
634 // Make sure the table index is what we expect it to be.
635 auto pos_field_ptr = fields->LookupByKey("pos");
636 TEST_NOTNULL(pos_field_ptr);
637 TEST_EQ(pos_field_ptr->type()->base_type(), reflection::Obj);
638 auto pos_table_ptr = schema.objects()->Get(pos_field_ptr->type()->index());
639 TEST_NOTNULL(pos_table_ptr);
640 TEST_EQ_STR(pos_table_ptr->name()->c_str(), "MyGame.Example.Vec3");
641
642 // Now use it to dynamically access a buffer.
643 auto &root = *flatbuffers::GetAnyRoot(flatbuf);
644
645 // Verify the buffer first using reflection based verification
646 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
647 true);
648
649 auto hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
650 TEST_EQ(hp, 80);
651
652 // Rather than needing to know the type, we can also get the value of
653 // any field as an int64_t/double/string, regardless of what it actually is.
654 auto hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
655 TEST_EQ(hp_int64, 80);
656 auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field);
657 TEST_EQ(hp_double, 80.0);
658 auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema);
659 TEST_EQ_STR(hp_string.c_str(), "80");
660
661 // Get struct field through reflection
662 auto pos_struct = flatbuffers::GetFieldStruct(root, *pos_field_ptr);
663 TEST_NOTNULL(pos_struct);
664 TEST_EQ(flatbuffers::GetAnyFieldF(
665 *pos_struct, *pos_table_ptr->fields()->LookupByKey("z")), 3.0f);
666
667 auto test3_field = pos_table_ptr->fields()->LookupByKey("test3");
668 auto test3_struct = flatbuffers::GetFieldStruct(*pos_struct, *test3_field);
669 TEST_NOTNULL(test3_struct);
670 auto test3_object = schema.objects()->Get(test3_field->type()->index());
671
672 TEST_EQ(flatbuffers::GetAnyFieldF(
673 *test3_struct, *test3_object->fields()->LookupByKey("a")), 10);
674
675 // We can also modify it.
676 flatbuffers::SetField<uint16_t>(&root, hp_field, 200);
677 hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
678 TEST_EQ(hp, 200);
679
680 // We can also set fields generically:
681 flatbuffers::SetAnyFieldI(&root, hp_field, 300);
682 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
683 TEST_EQ(hp_int64, 300);
684 flatbuffers::SetAnyFieldF(&root, hp_field, 300.5);
685 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
686 TEST_EQ(hp_int64, 300);
687 flatbuffers::SetAnyFieldS(&root, hp_field, "300");
688 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
689 TEST_EQ(hp_int64, 300);
690
691 // Test buffer is valid after the modifications
692 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
693 true);
694
695 // Reset it, for further tests.
696 flatbuffers::SetField<uint16_t>(&root, hp_field, 80);
697
698 // More advanced functionality: changing the size of items in-line!
699 // First we put the FlatBuffer inside an std::vector.
700 std::vector<uint8_t> resizingbuf(flatbuf, flatbuf + length);
701 // Find the field we want to modify.
702 auto &name_field = *fields->LookupByKey("name");
703 // Get the root.
704 // This time we wrap the result from GetAnyRoot in a smartpointer that
705 // will keep rroot valid as resizingbuf resizes.
706 auto rroot = flatbuffers::piv(flatbuffers::GetAnyRoot(
707 flatbuffers::vector_data(resizingbuf)), resizingbuf);
708 SetString(schema, "totally new string", GetFieldS(**rroot, name_field),
709 &resizingbuf);
710 // Here resizingbuf has changed, but rroot is still valid.
711 TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "totally new string");
712 // Now lets extend a vector by 100 elements (10 -> 110).
713 auto &inventory_field = *fields->LookupByKey("inventory");
714 auto rinventory = flatbuffers::piv(
715 flatbuffers::GetFieldV<uint8_t>(**rroot, inventory_field),
716 resizingbuf);
717 flatbuffers::ResizeVector<uint8_t>(schema, 110, 50, *rinventory,
718 &resizingbuf);
719 // rinventory still valid, so lets read from it.
720 TEST_EQ(rinventory->Get(10), 50);
721
722 // For reflection uses not covered already, there is a more powerful way:
723 // we can simply generate whatever object we want to add/modify in a
724 // FlatBuffer of its own, then add that to an existing FlatBuffer:
725 // As an example, let's add a string to an array of strings.
726 // First, find our field:
727 auto &testarrayofstring_field = *fields->LookupByKey("testarrayofstring");
728 // Find the vector value:
729 auto rtestarrayofstring = flatbuffers::piv(
730 flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::String>>(
731 **rroot, testarrayofstring_field),
732 resizingbuf);
733 // It's a vector of 2 strings, to which we add one more, initialized to
734 // offset 0.
735 flatbuffers::ResizeVector<flatbuffers::Offset<flatbuffers::String>>(
736 schema, 3, 0, *rtestarrayofstring, &resizingbuf);
737 // Here we just create a buffer that contans a single string, but this
738 // could also be any complex set of tables and other values.
739 flatbuffers::FlatBufferBuilder stringfbb;
740 stringfbb.Finish(stringfbb.CreateString("hank"));
741 // Add the contents of it to our existing FlatBuffer.
742 // We do this last, so the pointer doesn't get invalidated (since it is
743 // at the end of the buffer):
744 auto string_ptr = flatbuffers::AddFlatBuffer(resizingbuf,
745 stringfbb.GetBufferPointer(),
746 stringfbb.GetSize());
747 // Finally, set the new value in the vector.
748 rtestarrayofstring->MutateOffset(2, string_ptr);
749 TEST_EQ_STR(rtestarrayofstring->Get(0)->c_str(), "bob");
750 TEST_EQ_STR(rtestarrayofstring->Get(2)->c_str(), "hank");
751 // Test integrity of all resize operations above.
752 flatbuffers::Verifier resize_verifier(
753 reinterpret_cast<const uint8_t *>(
754 flatbuffers::vector_data(resizingbuf)),
755 resizingbuf.size());
756 TEST_EQ(VerifyMonsterBuffer(resize_verifier), true);
757
758 // Test buffer is valid using reflection as well
759 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
760 flatbuffers::vector_data(resizingbuf),
761 resizingbuf.size()), true);
762
763 // As an additional test, also set it on the name field.
764 // Note: unlike the name change above, this just overwrites the offset,
765 // rather than changing the string in-place.
766 SetFieldT(*rroot, name_field, string_ptr);
767 TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "hank");
768
769 // Using reflection, rather than mutating binary FlatBuffers, we can also copy
770 // tables and other things out of other FlatBuffers into a FlatBufferBuilder,
771 // either part or whole.
772 flatbuffers::FlatBufferBuilder fbb;
773 auto root_offset = flatbuffers::CopyTable(fbb, schema, *root_table,
774 *flatbuffers::GetAnyRoot(flatbuf),
775 true);
776 fbb.Finish(root_offset, MonsterIdentifier());
777 // Test that it was copied correctly:
778 AccessFlatBufferTest(fbb.GetBufferPointer(), fbb.GetSize());
779
780 // Test buffer is valid using reflection as well
781 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
782 fbb.GetBufferPointer(), fbb.GetSize()), true);
783 }
784
MiniReflectFlatBuffersTest(uint8_t * flatbuf)785 void MiniReflectFlatBuffersTest(uint8_t *flatbuf) {
786 auto s = flatbuffers::FlatBufferToString(flatbuf, MonsterTypeTable());
787 TEST_EQ_STR(s.c_str(),
788 "{ "
789 "pos: { x: 1.0, y: 2.0, z: 3.0, test1: 0.0, test2: Red, test3: "
790 "{ a: 10, b: 20 } }, "
791 "hp: 80, "
792 "name: \"MyMonster\", "
793 "inventory: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], "
794 "test_type: Monster, "
795 "test: { name: \"Fred\" }, "
796 "test4: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
797 "testarrayofstring: [ \"bob\", \"fred\", \"bob\", \"fred\" ], "
798 "testarrayoftables: [ { hp: 1000, name: \"Barney\" }, { name: \"Fred\" }, "
799 "{ name: \"Wilma\" } ], "
800 // TODO(wvo): should really print this nested buffer correctly.
801 "testnestedflatbuffer: [ 20, 0, 0, 0, 77, 79, 78, 83, 12, 0, 12, 0, 0, 0, "
802 "4, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 0, 78, "
803 "101, 115, 116, 101, 100, 77, 111, 110, 115, 116, 101, 114, 0, 0, 0 ], "
804 "testarrayofstring2: [ \"jane\", \"mary\" ], "
805 "testarrayofsortedstruct: [ { id: 1, distance: 10 }, "
806 "{ id: 2, distance: 20 }, { id: 3, distance: 30 }, "
807 "{ id: 4, distance: 40 } ], "
808 "flex: [ 210, 4, 5, 2 ], "
809 "test5: [ { a: 10, b: 20 }, { a: 30, b: 40 } ] "
810 "}");
811 }
812
813 // Parse a .proto schema, output as .fbs
ParseProtoTest()814 void ParseProtoTest() {
815 // load the .proto and the golden file from disk
816 std::string protofile;
817 std::string goldenfile;
818 TEST_EQ(flatbuffers::LoadFile(
819 (test_data_path + "prototest/test.proto").c_str(), false, &protofile),
820 true);
821 TEST_EQ(flatbuffers::LoadFile(
822 (test_data_path + "prototest/test.golden").c_str(), false, &goldenfile),
823 true);
824
825 flatbuffers::IDLOptions opts;
826 opts.include_dependence_headers = false;
827 opts.proto_mode = true;
828
829 // Parse proto.
830 flatbuffers::Parser parser(opts);
831 auto protopath = test_data_path + "prototest/";
832 const char *include_directories[] = { protopath.c_str(), nullptr };
833 TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true);
834
835 // Generate fbs.
836 auto fbs = flatbuffers::GenerateFBS(parser, "test");
837
838 // Ensure generated file is parsable.
839 flatbuffers::Parser parser2;
840 TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true);
841 TEST_EQ_STR(fbs.c_str(), goldenfile.c_str());
842 }
843
CompareTableFieldValue(flatbuffers::Table * table,flatbuffers::voffset_t voffset,T val)844 template<typename T> void CompareTableFieldValue(flatbuffers::Table *table,
845 flatbuffers::voffset_t voffset,
846 T val) {
847 T read = table->GetField(voffset, static_cast<T>(0));
848 TEST_EQ(read, val);
849 }
850
851 // Low level stress/fuzz test: serialize/deserialize a variety of
852 // different kinds of data in different combinations
FuzzTest1()853 void FuzzTest1() {
854
855 // Values we're testing against: chosen to ensure no bits get chopped
856 // off anywhere, and also be different from eachother.
857 const uint8_t bool_val = true;
858 const int8_t char_val = -127; // 0x81
859 const uint8_t uchar_val = 0xFF;
860 const int16_t short_val = -32222; // 0x8222;
861 const uint16_t ushort_val = 0xFEEE;
862 const int32_t int_val = 0x83333333;
863 const uint32_t uint_val = 0xFDDDDDDD;
864 const int64_t long_val = 0x8444444444444444LL;
865 const uint64_t ulong_val = 0xFCCCCCCCCCCCCCCCULL;
866 const float float_val = 3.14159f;
867 const double double_val = 3.14159265359;
868
869 const int test_values_max = 11;
870 const flatbuffers::voffset_t fields_per_object = 4;
871 const int num_fuzz_objects = 10000; // The higher, the more thorough :)
872
873 flatbuffers::FlatBufferBuilder builder;
874
875 lcg_reset(); // Keep it deterministic.
876
877 flatbuffers::uoffset_t objects[num_fuzz_objects];
878
879 // Generate num_fuzz_objects random objects each consisting of
880 // fields_per_object fields, each of a random type.
881 for (int i = 0; i < num_fuzz_objects; i++) {
882 auto start = builder.StartTable();
883 for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
884 int choice = lcg_rand() % test_values_max;
885 auto off = flatbuffers::FieldIndexToOffset(f);
886 switch (choice) {
887 case 0: builder.AddElement<uint8_t >(off, bool_val, 0); break;
888 case 1: builder.AddElement<int8_t >(off, char_val, 0); break;
889 case 2: builder.AddElement<uint8_t >(off, uchar_val, 0); break;
890 case 3: builder.AddElement<int16_t >(off, short_val, 0); break;
891 case 4: builder.AddElement<uint16_t>(off, ushort_val, 0); break;
892 case 5: builder.AddElement<int32_t >(off, int_val, 0); break;
893 case 6: builder.AddElement<uint32_t>(off, uint_val, 0); break;
894 case 7: builder.AddElement<int64_t >(off, long_val, 0); break;
895 case 8: builder.AddElement<uint64_t>(off, ulong_val, 0); break;
896 case 9: builder.AddElement<float >(off, float_val, 0); break;
897 case 10: builder.AddElement<double >(off, double_val, 0); break;
898 }
899 }
900 objects[i] = builder.EndTable(start);
901 }
902 builder.PreAlign<flatbuffers::largest_scalar_t>(0); // Align whole buffer.
903
904 lcg_reset(); // Reset.
905
906 uint8_t *eob = builder.GetCurrentBufferPointer() + builder.GetSize();
907
908 // Test that all objects we generated are readable and return the
909 // expected values. We generate random objects in the same order
910 // so this is deterministic.
911 for (int i = 0; i < num_fuzz_objects; i++) {
912 auto table = reinterpret_cast<flatbuffers::Table *>(eob - objects[i]);
913 for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
914 int choice = lcg_rand() % test_values_max;
915 flatbuffers::voffset_t off = flatbuffers::FieldIndexToOffset(f);
916 switch (choice) {
917 case 0: CompareTableFieldValue(table, off, bool_val ); break;
918 case 1: CompareTableFieldValue(table, off, char_val ); break;
919 case 2: CompareTableFieldValue(table, off, uchar_val ); break;
920 case 3: CompareTableFieldValue(table, off, short_val ); break;
921 case 4: CompareTableFieldValue(table, off, ushort_val); break;
922 case 5: CompareTableFieldValue(table, off, int_val ); break;
923 case 6: CompareTableFieldValue(table, off, uint_val ); break;
924 case 7: CompareTableFieldValue(table, off, long_val ); break;
925 case 8: CompareTableFieldValue(table, off, ulong_val ); break;
926 case 9: CompareTableFieldValue(table, off, float_val ); break;
927 case 10: CompareTableFieldValue(table, off, double_val); break;
928 }
929 }
930 }
931 }
932
933 // High level stress/fuzz test: generate a big schema and
934 // matching json data in random combinations, then parse both,
935 // generate json back from the binary, and compare with the original.
FuzzTest2()936 void FuzzTest2() {
937 lcg_reset(); // Keep it deterministic.
938
939 const int num_definitions = 30;
940 const int num_struct_definitions = 5; // Subset of num_definitions.
941 const int fields_per_definition = 15;
942 const int instances_per_definition = 5;
943 const int deprecation_rate = 10; // 1 in deprecation_rate fields will
944 // be deprecated.
945
946 std::string schema = "namespace test;\n\n";
947
948 struct RndDef {
949 std::string instances[instances_per_definition];
950
951 // Since we're generating schema and corresponding data in tandem,
952 // this convenience function adds strings to both at once.
953 static void Add(RndDef (&definitions_l)[num_definitions],
954 std::string &schema_l,
955 const int instances_per_definition_l,
956 const char *schema_add, const char *instance_add,
957 int definition) {
958 schema_l += schema_add;
959 for (int i = 0; i < instances_per_definition_l; i++)
960 definitions_l[definition].instances[i] += instance_add;
961 }
962 };
963
964 #define AddToSchemaAndInstances(schema_add, instance_add) \
965 RndDef::Add(definitions, schema, instances_per_definition, \
966 schema_add, instance_add, definition)
967
968 #define Dummy() \
969 RndDef::Add(definitions, schema, instances_per_definition, \
970 "byte", "1", definition)
971
972 RndDef definitions[num_definitions];
973
974 // We are going to generate num_definitions, the first
975 // num_struct_definitions will be structs, the rest tables. For each
976 // generate random fields, some of which may be struct/table types
977 // referring to previously generated structs/tables.
978 // Simultanenously, we generate instances_per_definition JSON data
979 // definitions, which will have identical structure to the schema
980 // being generated. We generate multiple instances such that when creating
981 // hierarchy, we get some variety by picking one randomly.
982 for (int definition = 0; definition < num_definitions; definition++) {
983 std::string definition_name = "D" + flatbuffers::NumToString(definition);
984
985 bool is_struct = definition < num_struct_definitions;
986
987 AddToSchemaAndInstances(
988 ((is_struct ? "struct " : "table ") + definition_name + " {\n").c_str(),
989 "{\n");
990
991 for (int field = 0; field < fields_per_definition; field++) {
992 const bool is_last_field = field == fields_per_definition - 1;
993
994 // Deprecate 1 in deprecation_rate fields. Only table fields can be
995 // deprecated.
996 // Don't deprecate the last field to avoid dangling commas in JSON.
997 const bool deprecated = !is_struct &&
998 !is_last_field &&
999 (lcg_rand() % deprecation_rate == 0);
1000
1001 std::string field_name = "f" + flatbuffers::NumToString(field);
1002 AddToSchemaAndInstances((" " + field_name + ":").c_str(),
1003 deprecated ? "" : (field_name + ": ").c_str());
1004 // Pick random type:
1005 auto base_type = static_cast<flatbuffers::BaseType>(
1006 lcg_rand() % (flatbuffers::BASE_TYPE_UNION + 1));
1007 switch (base_type) {
1008 case flatbuffers::BASE_TYPE_STRING:
1009 if (is_struct) {
1010 Dummy(); // No strings in structs.
1011 } else {
1012 AddToSchemaAndInstances("string", deprecated ? "" : "\"hi\"");
1013 }
1014 break;
1015 case flatbuffers::BASE_TYPE_VECTOR:
1016 if (is_struct) {
1017 Dummy(); // No vectors in structs.
1018 }
1019 else {
1020 AddToSchemaAndInstances("[ubyte]",
1021 deprecated ? "" : "[\n0,\n1,\n255\n]");
1022 }
1023 break;
1024 case flatbuffers::BASE_TYPE_NONE:
1025 case flatbuffers::BASE_TYPE_UTYPE:
1026 case flatbuffers::BASE_TYPE_STRUCT:
1027 case flatbuffers::BASE_TYPE_UNION:
1028 if (definition) {
1029 // Pick a random previous definition and random data instance of
1030 // that definition.
1031 int defref = lcg_rand() % definition;
1032 int instance = lcg_rand() % instances_per_definition;
1033 AddToSchemaAndInstances(
1034 ("D" + flatbuffers::NumToString(defref)).c_str(),
1035 deprecated
1036 ? ""
1037 : definitions[defref].instances[instance].c_str());
1038 } else {
1039 // If this is the first definition, we have no definition we can
1040 // refer to.
1041 Dummy();
1042 }
1043 break;
1044 case flatbuffers::BASE_TYPE_BOOL:
1045 AddToSchemaAndInstances("bool", deprecated
1046 ? ""
1047 : (lcg_rand() % 2 ? "true" : "false"));
1048 break;
1049 default:
1050 // All the scalar types.
1051 schema += flatbuffers::kTypeNames[base_type];
1052
1053 if (!deprecated) {
1054 // We want each instance to use its own random value.
1055 for (int inst = 0; inst < instances_per_definition; inst++)
1056 definitions[definition].instances[inst] +=
1057 flatbuffers::IsFloat(base_type)
1058 ? flatbuffers::NumToString<double>(lcg_rand() % 128).c_str()
1059 : flatbuffers::NumToString<int>(lcg_rand() % 128).c_str();
1060 }
1061 }
1062 AddToSchemaAndInstances(
1063 deprecated ? "(deprecated);\n" : ";\n",
1064 deprecated ? "" : is_last_field ? "\n" : ",\n");
1065 }
1066 AddToSchemaAndInstances("}\n\n", "}");
1067 }
1068
1069 schema += "root_type D" + flatbuffers::NumToString(num_definitions - 1);
1070 schema += ";\n";
1071
1072 flatbuffers::Parser parser;
1073
1074 // Will not compare against the original if we don't write defaults
1075 parser.builder_.ForceDefaults(true);
1076
1077 // Parse the schema, parse the generated data, then generate text back
1078 // from the binary and compare against the original.
1079 TEST_EQ(parser.Parse(schema.c_str()), true);
1080
1081 const std::string &json =
1082 definitions[num_definitions - 1].instances[0] + "\n";
1083
1084 TEST_EQ(parser.Parse(json.c_str()), true);
1085
1086 std::string jsongen;
1087 parser.opts.indent_step = 0;
1088 auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1089 TEST_EQ(result, true);
1090
1091 if (jsongen != json) {
1092 // These strings are larger than a megabyte, so we show the bytes around
1093 // the first bytes that are different rather than the whole string.
1094 size_t len = std::min(json.length(), jsongen.length());
1095 for (size_t i = 0; i < len; i++) {
1096 if (json[i] != jsongen[i]) {
1097 i -= std::min(static_cast<size_t>(10), i); // show some context;
1098 size_t end = std::min(len, i + 20);
1099 for (; i < end; i++)
1100 TEST_OUTPUT_LINE("at %d: found \"%c\", expected \"%c\"\n",
1101 static_cast<int>(i), jsongen[i], json[i]);
1102 break;
1103 }
1104 }
1105 TEST_NOTNULL(NULL);
1106 }
1107
1108 #ifdef FLATBUFFERS_TEST_VERBOSE
1109 TEST_OUTPUT_LINE("%dk schema tested with %dk of json\n",
1110 static_cast<int>(schema.length() / 1024),
1111 static_cast<int>(json.length() / 1024));
1112 #endif
1113 }
1114
1115 // Test that parser errors are actually generated.
TestError(const char * src,const char * error_substr,bool strict_json=false)1116 void TestError(const char *src, const char *error_substr,
1117 bool strict_json = false) {
1118 flatbuffers::IDLOptions opts;
1119 opts.strict_json = strict_json;
1120 flatbuffers::Parser parser(opts);
1121 TEST_EQ(parser.Parse(src), false); // Must signal error
1122 // Must be the error we're expecting
1123 TEST_NOTNULL(strstr(parser.error_.c_str(), error_substr));
1124 }
1125
1126 // Test that parsing errors occur as we'd expect.
1127 // Also useful for coverage, making sure these paths are run.
ErrorTest()1128 void ErrorTest() {
1129 // In order they appear in idl_parser.cpp
1130 TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
1131 TestError(".0", "floating point");
1132 TestError("\"\0", "illegal");
1133 TestError("\"\\q", "escape code");
1134 TestError("table ///", "documentation");
1135 TestError("@", "illegal");
1136 TestError("table 1", "expecting");
1137 TestError("table X { Y:[[int]]; }", "nested vector");
1138 TestError("table X { Y:1; }", "illegal type");
1139 TestError("table X { Y:int; Y:int; }", "field already");
1140 TestError("table Y {} table X { Y:int; }", "same as table");
1141 TestError("struct X { Y:string; }", "only scalar");
1142 TestError("struct X { Y:int (deprecated); }", "deprecate");
1143 TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
1144 "missing type field");
1145 TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
1146 "type id");
1147 TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
1148 TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
1149 TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
1150 true);
1151 TestError("struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
1152 "{ V:{ Y:1 } }", "wrong number");
1153 TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
1154 "unknown enum value");
1155 TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
1156 TestError("enum X:byte { Y } enum X {", "enum already");
1157 TestError("enum X:float {}", "underlying");
1158 TestError("enum X:byte { Y, Y }", "value already");
1159 TestError("enum X:byte { Y=2, Z=1 }", "ascending");
1160 TestError("union X { Y = 256 }", "must fit");
1161 TestError("enum X:byte (bit_flags) { Y=8 }", "bit flag out");
1162 TestError("table X { Y:int; } table X {", "datatype already");
1163 TestError("struct X (force_align: 7) { Y:int; }", "force_align");
1164 TestError("{}", "no root");
1165 TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "one json");
1166 TestError("root_type X;", "unknown root");
1167 TestError("struct X { Y:int; } root_type X;", "a table");
1168 TestError("union X { Y }", "referenced");
1169 TestError("union Z { X } struct X { Y:int; }", "only tables");
1170 TestError("table X { Y:[int]; YLength:int; }", "clash");
1171 TestError("table X { Y:string = 1; }", "scalar");
1172 TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
1173 }
1174
TestValue(const char * json,const char * type_name)1175 template<typename T> T TestValue(const char *json, const char *type_name) {
1176 flatbuffers::Parser parser;
1177
1178 // Simple schema.
1179 TEST_EQ(parser.Parse(std::string("table X { Y:" + std::string(type_name) +
1180 "; } root_type X;").c_str()), true);
1181
1182 TEST_EQ(parser.Parse(json), true);
1183 auto root = flatbuffers::GetRoot<flatbuffers::Table>(
1184 parser.builder_.GetBufferPointer());
1185 return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
1186 }
1187
FloatCompare(float a,float b)1188 bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
1189
1190 // Additional parser testing not covered elsewhere.
ValueTest()1191 void ValueTest() {
1192 // Test scientific notation numbers.
1193 TEST_EQ(FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }","float"),
1194 (float)3.14159), true);
1195
1196 // Test conversion functions.
1197 TEST_EQ(FloatCompare(TestValue<float>("{ Y:cos(rad(180)) }","float"), -1),
1198 true);
1199
1200 // Test negative hex constant.
1201 TEST_EQ(TestValue<int>("{ Y:-0x80 }","int"), -128);
1202
1203 // Make sure we do unsigned 64bit correctly.
1204 TEST_EQ(TestValue<uint64_t>("{ Y:12335089644688340133 }","ulong"),
1205 12335089644688340133ULL);
1206 }
1207
NestedListTest()1208 void NestedListTest() {
1209 flatbuffers::Parser parser1;
1210 TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
1211 "root_type T;"
1212 "{ F:[ [10,20], [30,40]] }"), true);
1213 }
1214
EnumStringsTest()1215 void EnumStringsTest() {
1216 flatbuffers::Parser parser1;
1217 TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
1218 "root_type T;"
1219 "{ F:[ A, B, \"C\", \"A B C\" ] }"), true);
1220 flatbuffers::Parser parser2;
1221 TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
1222 "root_type T;"
1223 "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"), true);
1224 }
1225
IntegerOutOfRangeTest()1226 void IntegerOutOfRangeTest() {
1227 TestError("table T { F:byte; } root_type T; { F:128 }",
1228 "constant does not fit");
1229 TestError("table T { F:byte; } root_type T; { F:-129 }",
1230 "constant does not fit");
1231 TestError("table T { F:ubyte; } root_type T; { F:256 }",
1232 "constant does not fit");
1233 TestError("table T { F:ubyte; } root_type T; { F:-1 }",
1234 "constant does not fit");
1235 TestError("table T { F:short; } root_type T; { F:32768 }",
1236 "constant does not fit");
1237 TestError("table T { F:short; } root_type T; { F:-32769 }",
1238 "constant does not fit");
1239 TestError("table T { F:ushort; } root_type T; { F:65536 }",
1240 "constant does not fit");
1241 TestError("table T { F:ushort; } root_type T; { F:-1 }",
1242 "constant does not fit");
1243 TestError("table T { F:int; } root_type T; { F:2147483648 }",
1244 "constant does not fit");
1245 TestError("table T { F:int; } root_type T; { F:-2147483649 }",
1246 "constant does not fit");
1247 TestError("table T { F:uint; } root_type T; { F:4294967296 }",
1248 "constant does not fit");
1249 TestError("table T { F:uint; } root_type T; { F:-1 }",
1250 "constant does not fit");
1251 }
1252
IntegerBoundaryTest()1253 void IntegerBoundaryTest() {
1254 TEST_EQ(TestValue<int8_t>("{ Y:127 }","byte"), 127);
1255 TEST_EQ(TestValue<int8_t>("{ Y:-128 }","byte"), -128);
1256 TEST_EQ(TestValue<uint8_t>("{ Y:255 }","ubyte"), 255);
1257 TEST_EQ(TestValue<uint8_t>("{ Y:0 }","ubyte"), 0);
1258 TEST_EQ(TestValue<int16_t>("{ Y:32767 }","short"), 32767);
1259 TEST_EQ(TestValue<int16_t>("{ Y:-32768 }","short"), -32768);
1260 TEST_EQ(TestValue<uint16_t>("{ Y:65535 }","ushort"), 65535);
1261 TEST_EQ(TestValue<uint16_t>("{ Y:0 }","ushort"), 0);
1262 TEST_EQ(TestValue<int32_t>("{ Y:2147483647 }","int"), 2147483647);
1263 TEST_EQ(TestValue<int32_t>("{ Y:-2147483648 }","int"), (-2147483647 - 1));
1264 TEST_EQ(TestValue<uint32_t>("{ Y:4294967295 }","uint"), 4294967295);
1265 TEST_EQ(TestValue<uint32_t>("{ Y:0 }","uint"), 0);
1266 TEST_EQ(TestValue<int64_t>("{ Y:9223372036854775807 }","long"), 9223372036854775807);
1267 TEST_EQ(TestValue<int64_t>("{ Y:-9223372036854775808 }","long"), (-9223372036854775807 - 1));
1268 TEST_EQ(TestValue<uint64_t>("{ Y:18446744073709551615 }","ulong"), 18446744073709551615U);
1269 TEST_EQ(TestValue<uint64_t>("{ Y:0 }","ulong"), 0);
1270 }
1271
UnicodeTest()1272 void UnicodeTest() {
1273 flatbuffers::Parser parser;
1274 // Without setting allow_non_utf8 = true, we treat \x sequences as byte sequences
1275 // which are then validated as UTF-8.
1276 TEST_EQ(parser.Parse("table T { F:string; }"
1277 "root_type T;"
1278 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1279 "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD83D\\uDE0E\" }"),
1280 true);
1281 std::string jsongen;
1282 parser.opts.indent_step = -1;
1283 auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1284 TEST_EQ(result, true);
1285 TEST_EQ_STR(jsongen.c_str(),
1286 "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1287 "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
1288 }
1289
UnicodeTestAllowNonUTF8()1290 void UnicodeTestAllowNonUTF8() {
1291 flatbuffers::Parser parser;
1292 parser.opts.allow_non_utf8 = true;
1293 TEST_EQ(parser.Parse("table T { F:string; }"
1294 "root_type T;"
1295 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1296 "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"), true);
1297 std::string jsongen;
1298 parser.opts.indent_step = -1;
1299 auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1300 TEST_EQ(result, true);
1301 TEST_EQ_STR(jsongen.c_str(),
1302 "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1303 "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
1304 }
1305
UnicodeTestGenerateTextFailsOnNonUTF8()1306 void UnicodeTestGenerateTextFailsOnNonUTF8() {
1307 flatbuffers::Parser parser;
1308 // Allow non-UTF-8 initially to model what happens when we load a binary flatbuffer from disk
1309 // which contains non-UTF-8 strings.
1310 parser.opts.allow_non_utf8 = true;
1311 TEST_EQ(parser.Parse("table T { F:string; }"
1312 "root_type T;"
1313 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1314 "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"), true);
1315 std::string jsongen;
1316 parser.opts.indent_step = -1;
1317 // Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates failure.
1318 parser.opts.allow_non_utf8 = false;
1319 auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1320 TEST_EQ(result, false);
1321 }
1322
UnicodeSurrogatesTest()1323 void UnicodeSurrogatesTest() {
1324 flatbuffers::Parser parser;
1325
1326 TEST_EQ(
1327 parser.Parse(
1328 "table T { F:string (id: 0); }"
1329 "root_type T;"
1330 "{ F:\"\\uD83D\\uDCA9\"}"), true);
1331 auto root = flatbuffers::GetRoot<flatbuffers::Table>(
1332 parser.builder_.GetBufferPointer());
1333 auto string = root->GetPointer<flatbuffers::String *>(
1334 flatbuffers::FieldIndexToOffset(0));
1335 TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
1336 }
1337
UnicodeInvalidSurrogatesTest()1338 void UnicodeInvalidSurrogatesTest() {
1339 TestError(
1340 "table T { F:string; }"
1341 "root_type T;"
1342 "{ F:\"\\uD800\"}", "unpaired high surrogate");
1343 TestError(
1344 "table T { F:string; }"
1345 "root_type T;"
1346 "{ F:\"\\uD800abcd\"}", "unpaired high surrogate");
1347 TestError(
1348 "table T { F:string; }"
1349 "root_type T;"
1350 "{ F:\"\\uD800\\n\"}", "unpaired high surrogate");
1351 TestError(
1352 "table T { F:string; }"
1353 "root_type T;"
1354 "{ F:\"\\uD800\\uD800\"}", "multiple high surrogates");
1355 TestError(
1356 "table T { F:string; }"
1357 "root_type T;"
1358 "{ F:\"\\uDC00\"}", "unpaired low surrogate");
1359 }
1360
InvalidUTF8Test()1361 void InvalidUTF8Test() {
1362 // "1 byte" pattern, under min length of 2 bytes
1363 TestError(
1364 "table T { F:string; }"
1365 "root_type T;"
1366 "{ F:\"\x80\"}", "illegal UTF-8 sequence");
1367 // 2 byte pattern, string too short
1368 TestError(
1369 "table T { F:string; }"
1370 "root_type T;"
1371 "{ F:\"\xDF\"}", "illegal UTF-8 sequence");
1372 // 3 byte pattern, string too short
1373 TestError(
1374 "table T { F:string; }"
1375 "root_type T;"
1376 "{ F:\"\xEF\xBF\"}", "illegal UTF-8 sequence");
1377 // 4 byte pattern, string too short
1378 TestError(
1379 "table T { F:string; }"
1380 "root_type T;"
1381 "{ F:\"\xF7\xBF\xBF\"}", "illegal UTF-8 sequence");
1382 // "5 byte" pattern, string too short
1383 TestError(
1384 "table T { F:string; }"
1385 "root_type T;"
1386 "{ F:\"\xFB\xBF\xBF\xBF\"}", "illegal UTF-8 sequence");
1387 // "6 byte" pattern, string too short
1388 TestError(
1389 "table T { F:string; }"
1390 "root_type T;"
1391 "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence");
1392 // "7 byte" pattern, string too short
1393 TestError(
1394 "table T { F:string; }"
1395 "root_type T;"
1396 "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence");
1397 // "5 byte" pattern, over max length of 4 bytes
1398 TestError(
1399 "table T { F:string; }"
1400 "root_type T;"
1401 "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence");
1402 // "6 byte" pattern, over max length of 4 bytes
1403 TestError(
1404 "table T { F:string; }"
1405 "root_type T;"
1406 "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence");
1407 // "7 byte" pattern, over max length of 4 bytes
1408 TestError(
1409 "table T { F:string; }"
1410 "root_type T;"
1411 "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence");
1412
1413 // Three invalid encodings for U+000A (\n, aka NEWLINE)
1414 TestError(
1415 "table T { F:string; }"
1416 "root_type T;"
1417 "{ F:\"\xC0\x8A\"}", "illegal UTF-8 sequence");
1418 TestError(
1419 "table T { F:string; }"
1420 "root_type T;"
1421 "{ F:\"\xE0\x80\x8A\"}", "illegal UTF-8 sequence");
1422 TestError(
1423 "table T { F:string; }"
1424 "root_type T;"
1425 "{ F:\"\xF0\x80\x80\x8A\"}", "illegal UTF-8 sequence");
1426
1427 // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
1428 TestError(
1429 "table T { F:string; }"
1430 "root_type T;"
1431 "{ F:\"\xE0\x81\xA9\"}", "illegal UTF-8 sequence");
1432 TestError(
1433 "table T { F:string; }"
1434 "root_type T;"
1435 "{ F:\"\xF0\x80\x81\xA9\"}", "illegal UTF-8 sequence");
1436
1437 // Invalid encoding for U+20AC (EURO SYMBOL)
1438 TestError(
1439 "table T { F:string; }"
1440 "root_type T;"
1441 "{ F:\"\xF0\x82\x82\xAC\"}", "illegal UTF-8 sequence");
1442
1443 // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in UTF-8
1444 TestError(
1445 "table T { F:string; }"
1446 "root_type T;"
1447 // U+10400 "encoded" as U+D801 U+DC00
1448 "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}", "illegal UTF-8 sequence");
1449 }
1450
UnknownFieldsTest()1451 void UnknownFieldsTest() {
1452 flatbuffers::IDLOptions opts;
1453 opts.skip_unexpected_fields_in_json = true;
1454 flatbuffers::Parser parser(opts);
1455
1456 TEST_EQ(parser.Parse("table T { str:string; i:int;}"
1457 "root_type T;"
1458 "{ str:\"test\","
1459 "unknown_string:\"test\","
1460 "\"unknown_string\":\"test\","
1461 "unknown_int:10,"
1462 "unknown_float:1.0,"
1463 "unknown_array: [ 1, 2, 3, 4],"
1464 "unknown_object: { i: 10 },"
1465 "\"unknown_object\": { \"i\": 10 },"
1466 "i:10}"), true);
1467
1468 std::string jsongen;
1469 parser.opts.indent_step = -1;
1470 auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1471 TEST_EQ(result, true);
1472 TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
1473 }
1474
ParseUnionTest()1475 void ParseUnionTest() {
1476 // Unions must be parseable with the type field following the object.
1477 flatbuffers::Parser parser;
1478 TEST_EQ(parser.Parse("table T { A:int; }"
1479 "union U { T }"
1480 "table V { X:U; }"
1481 "root_type V;"
1482 "{ X:{ A:1 }, X_type: T }"), true);
1483 // Unions must be parsable with prefixed namespace.
1484 flatbuffers::Parser parser2;
1485 TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
1486 "table B { e:U; } root_type B;"
1487 "{ e_type: N_A, e: {} }"), true);
1488 }
1489
UnionVectorTest()1490 void UnionVectorTest() {
1491 // load FlatBuffer fbs schema.
1492 // TODO: load a JSON file with such a vector when JSON support is ready.
1493 std::string schemafile;
1494 TEST_EQ(flatbuffers::LoadFile(
1495 (test_data_path + "union_vector/union_vector.fbs").c_str(), false,
1496 &schemafile), true);
1497
1498 // parse schema.
1499 flatbuffers::IDLOptions idl_opts;
1500 idl_opts.lang_to_generate |= flatbuffers::IDLOptions::kCpp;
1501 flatbuffers::Parser parser(idl_opts);
1502 TEST_EQ(parser.Parse(schemafile.c_str()), true);
1503
1504 flatbuffers::FlatBufferBuilder fbb;
1505
1506 // union types.
1507 std::vector<uint8_t> types;
1508 types.push_back(static_cast<uint8_t>(Character_Belle));
1509 types.push_back(static_cast<uint8_t>(Character_MuLan));
1510 types.push_back(static_cast<uint8_t>(Character_BookFan));
1511 types.push_back(static_cast<uint8_t>(Character_Other));
1512 types.push_back(static_cast<uint8_t>(Character_Unused));
1513
1514 // union values.
1515 std::vector<flatbuffers::Offset<void>> characters;
1516 characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/7)).Union());
1517 characters.push_back(CreateAttacker(fbb, /*sword_attack_damage=*/5).Union());
1518 characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/2)).Union());
1519 characters.push_back(fbb.CreateString("Other").Union());
1520 characters.push_back(fbb.CreateString("Unused").Union());
1521
1522 // create Movie.
1523 const auto movie_offset =
1524 CreateMovie(fbb,
1525 Character_Rapunzel,
1526 fbb.CreateStruct(Rapunzel(/*hair_length=*/6)).Union(),
1527 fbb.CreateVector(types),
1528 fbb.CreateVector(characters));
1529 FinishMovieBuffer(fbb, movie_offset);
1530 auto buf = fbb.GetBufferPointer();
1531
1532 flatbuffers::Verifier verifier(buf, fbb.GetSize());
1533 TEST_EQ(VerifyMovieBuffer(verifier), true);
1534
1535 auto flat_movie = GetMovie(buf);
1536
1537 auto TestMovie = [](const Movie *movie) {
1538 TEST_EQ(movie->main_character_type() == Character_Rapunzel, true);
1539
1540 auto cts = movie->characters_type();
1541 TEST_EQ(movie->characters_type()->size(), 5);
1542 TEST_EQ(cts->GetEnum<Character>(0) == Character_Belle, true);
1543 TEST_EQ(cts->GetEnum<Character>(1) == Character_MuLan, true);
1544 TEST_EQ(cts->GetEnum<Character>(2) == Character_BookFan, true);
1545 TEST_EQ(cts->GetEnum<Character>(3) == Character_Other, true);
1546 TEST_EQ(cts->GetEnum<Character>(4) == Character_Unused, true);
1547
1548 auto rapunzel = movie->main_character_as_Rapunzel();
1549 TEST_EQ(rapunzel->hair_length(), 6);
1550
1551 auto cs = movie->characters();
1552 TEST_EQ(cs->size(), 5);
1553 auto belle = cs->GetAs<BookReader>(0);
1554 TEST_EQ(belle->books_read(), 7);
1555 auto mu_lan = cs->GetAs<Attacker>(1);
1556 TEST_EQ(mu_lan->sword_attack_damage(), 5);
1557 auto book_fan = cs->GetAs<BookReader>(2);
1558 TEST_EQ(book_fan->books_read(), 2);
1559 auto other = cs->GetAsString(3);
1560 TEST_EQ_STR(other->c_str(), "Other");
1561 auto unused = cs->GetAsString(4);
1562 TEST_EQ_STR(unused->c_str(), "Unused");
1563 };
1564
1565 TestMovie(flat_movie);
1566
1567 auto movie_object = flat_movie->UnPack();
1568 TEST_EQ(movie_object->main_character.AsRapunzel()->hair_length(), 6);
1569 TEST_EQ(movie_object->characters[0].AsBelle()->books_read(), 7);
1570 TEST_EQ(movie_object->characters[1].AsMuLan()->sword_attack_damage, 5);
1571 TEST_EQ(movie_object->characters[2].AsBookFan()->books_read(), 2);
1572 TEST_EQ_STR(movie_object->characters[3].AsOther()->c_str(), "Other");
1573 TEST_EQ_STR(movie_object->characters[4].AsUnused()->c_str(), "Unused");
1574
1575 fbb.Clear();
1576 fbb.Finish(Movie::Pack(fbb, movie_object));
1577
1578 delete movie_object;
1579
1580 auto repacked_movie = GetMovie(fbb.GetBufferPointer());
1581
1582 TestMovie(repacked_movie);
1583
1584 auto s = flatbuffers::FlatBufferToString(fbb.GetBufferPointer(),
1585 MovieTypeTable());
1586 TEST_EQ_STR(s.c_str(),
1587 "{ main_character_type: Rapunzel, main_character: { hair_length: 6 }, "
1588 "characters_type: [ Belle, MuLan, BookFan, Other, Unused ], "
1589 "characters: [ { books_read: 7 }, { sword_attack_damage: 5 }, "
1590 "{ books_read: 2 }, \"Other\", \"Unused\" ] }");
1591 }
1592
ConformTest()1593 void ConformTest() {
1594 flatbuffers::Parser parser;
1595 TEST_EQ(parser.Parse("table T { A:int; } enum E:byte { A }"), true);
1596
1597 auto test_conform = [](flatbuffers::Parser &parser1,
1598 const char *test, const char *expected_err) {
1599 flatbuffers::Parser parser2;
1600 TEST_EQ(parser2.Parse(test), true);
1601 auto err = parser2.ConformTo(parser1);
1602 TEST_NOTNULL(strstr(err.c_str(), expected_err));
1603 };
1604
1605 test_conform(parser, "table T { A:byte; }", "types differ for field");
1606 test_conform(parser, "table T { B:int; A:int; }", "offsets differ for field");
1607 test_conform(parser, "table T { A:int = 1; }", "defaults differ for field");
1608 test_conform(parser, "table T { B:float; }",
1609 "field renamed to different type");
1610 test_conform(parser, "enum E:byte { B, A }", "values differ for enum");
1611 }
1612
ParseProtoBufAsciiTest()1613 void ParseProtoBufAsciiTest() {
1614 // We can put the parser in a mode where it will accept JSON that looks more
1615 // like Protobuf ASCII, for users that have data in that format.
1616 // This uses no "" for field names (which we already support by default,
1617 // omits `,`, `:` before `{` and a couple of other features.
1618 flatbuffers::Parser parser;
1619 parser.opts.protobuf_ascii_alike = true;
1620 TEST_EQ(parser.Parse(
1621 "table S { B:int; } table T { A:[int]; C:S; } root_type T;"), true);
1622 TEST_EQ(parser.Parse("{ A [1 2] C { B:2 }}"), true);
1623 // Similarly, in text output, it should omit these.
1624 std::string text;
1625 auto ok = flatbuffers::GenerateText(parser,
1626 parser.builder_.GetBufferPointer(),
1627 &text);
1628 TEST_EQ(ok, true);
1629 TEST_EQ_STR(text.c_str(),
1630 "{\n A [\n 1\n 2\n ]\n C {\n B: 2\n }\n}\n");
1631 }
1632
FlexBuffersTest()1633 void FlexBuffersTest() {
1634 flexbuffers::Builder slb(512,
1635 flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS);
1636
1637 // Write the equivalent of:
1638 // { vec: [ -100, "Fred", 4.0, false ], bar: [ 1, 2, 3 ], bar3: [ 1, 2, 3 ], foo: 100, bool: true, mymap: { foo: "Fred" } }
1639 #ifndef FLATBUFFERS_CPP98_STL
1640 // It's possible to do this without std::function support as well.
1641 slb.Map([&]() {
1642 slb.Vector("vec", [&]() {
1643 slb += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
1644 slb += "Fred";
1645 slb.IndirectFloat(4.0f);
1646 uint8_t blob[] = { 77 };
1647 slb.Blob(blob, 1);
1648 slb += false;
1649 });
1650 int ints[] = { 1, 2, 3 };
1651 slb.Vector("bar", ints, 3);
1652 slb.FixedTypedVector("bar3", ints, 3);
1653 bool bools[] = {true, false, true, false};
1654 slb.Vector("bools", bools, 4);
1655 slb.Bool("bool", true);
1656 slb.Double("foo", 100);
1657 slb.Map("mymap", [&]() {
1658 slb.String("foo", "Fred"); // Testing key and string reuse.
1659 });
1660 });
1661 slb.Finish();
1662 #else
1663 // It's possible to do this without std::function support as well.
1664 slb.Map([](flexbuffers::Builder& slb2) {
1665 slb2.Vector("vec", [](flexbuffers::Builder& slb3) {
1666 slb3 += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
1667 slb3 += "Fred";
1668 slb3.IndirectFloat(4.0f);
1669 uint8_t blob[] = { 77 };
1670 slb3.Blob(blob, 1);
1671 slb3 += false;
1672 }, slb2);
1673 int ints[] = { 1, 2, 3 };
1674 slb2.Vector("bar", ints, 3);
1675 slb2.FixedTypedVector("bar3", ints, 3);
1676 slb2.Bool("bool", true);
1677 slb2.Double("foo", 100);
1678 slb2.Map("mymap", [](flexbuffers::Builder& slb3) {
1679 slb3.String("foo", "Fred"); // Testing key and string reuse.
1680 }, slb2);
1681 }, slb);
1682 slb.Finish();
1683 #endif // FLATBUFFERS_CPP98_STL
1684
1685 #ifdef FLATBUFFERS_TEST_VERBOSE
1686 for (size_t i = 0; i < slb.GetBuffer().size(); i++)
1687 printf("%d ", flatbuffers::vector_data(slb.GetBuffer())[i]);
1688 printf("\n");
1689 #endif
1690
1691 auto map = flexbuffers::GetRoot(slb.GetBuffer()).AsMap();
1692 TEST_EQ(map.size(), 7);
1693 auto vec = map["vec"].AsVector();
1694 TEST_EQ(vec.size(), 5);
1695 TEST_EQ(vec[0].AsInt64(), -100);
1696 TEST_EQ_STR(vec[1].AsString().c_str(), "Fred");
1697 TEST_EQ(vec[1].AsInt64(), 0); // Number parsing failed.
1698 TEST_EQ(vec[2].AsDouble(), 4.0);
1699 TEST_EQ(vec[2].AsString().IsTheEmptyString(), true); // Wrong Type.
1700 TEST_EQ_STR(vec[2].AsString().c_str(), ""); // This still works though.
1701 TEST_EQ_STR(vec[2].ToString().c_str(), "4.0"); // Or have it converted.
1702
1703 // Few tests for templated version of As.
1704 TEST_EQ(vec[0].As<int64_t>(), -100);
1705 TEST_EQ_STR(vec[1].As<std::string>().c_str(), "Fred");
1706 TEST_EQ(vec[1].As<int64_t>(), 0); // Number parsing failed.
1707 TEST_EQ(vec[2].As<double>(), 4.0);
1708
1709 // Test that the blob can be accessed.
1710 TEST_EQ(vec[3].IsBlob(), true);
1711 auto blob = vec[3].AsBlob();
1712 TEST_EQ(blob.size(), 1);
1713 TEST_EQ(blob.data()[0], 77);
1714 TEST_EQ(vec[4].IsBool(), true); // Check if type is a bool
1715 TEST_EQ(vec[4].AsBool(), false); // Check if value is false
1716 auto tvec = map["bar"].AsTypedVector();
1717 TEST_EQ(tvec.size(), 3);
1718 TEST_EQ(tvec[2].AsInt8(), 3);
1719 auto tvec3 = map["bar3"].AsFixedTypedVector();
1720 TEST_EQ(tvec3.size(), 3);
1721 TEST_EQ(tvec3[2].AsInt8(), 3);
1722 TEST_EQ(map["bool"].AsBool(), true);
1723 auto tvecb = map["bools"].AsTypedVector();
1724 TEST_EQ(tvecb.ElementType(), flexbuffers::TYPE_BOOL);
1725 TEST_EQ(map["foo"].AsUInt8(), 100);
1726 TEST_EQ(map["unknown"].IsNull(), true);
1727 auto mymap = map["mymap"].AsMap();
1728 // These should be equal by pointer equality, since key and value are shared.
1729 TEST_EQ(mymap.Keys()[0].AsKey(), map.Keys()[4].AsKey());
1730 TEST_EQ(mymap.Values()[0].AsString().c_str(), vec[1].AsString().c_str());
1731 // We can mutate values in the buffer.
1732 TEST_EQ(vec[0].MutateInt(-99), true);
1733 TEST_EQ(vec[0].AsInt64(), -99);
1734 TEST_EQ(vec[1].MutateString("John"), true); // Size must match.
1735 TEST_EQ_STR(vec[1].AsString().c_str(), "John");
1736 TEST_EQ(vec[1].MutateString("Alfred"), false); // Too long.
1737 TEST_EQ(vec[2].MutateFloat(2.0f), true);
1738 TEST_EQ(vec[2].AsFloat(), 2.0f);
1739 TEST_EQ(vec[2].MutateFloat(3.14159), false); // Double does not fit in float.
1740 TEST_EQ(vec[4].AsBool(), false); // Is false before change
1741 TEST_EQ(vec[4].MutateBool(true), true); // Can change a bool
1742 TEST_EQ(vec[4].AsBool(), true); // Changed bool is now true
1743
1744 // Parse from JSON:
1745 flatbuffers::Parser parser;
1746 slb.Clear();
1747 auto jsontest = "{ a: [ 123, 456.0 ], b: \"hello\", c: true, d: false }";
1748 TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb),
1749 true);
1750 auto jroot = flexbuffers::GetRoot(slb.GetBuffer());
1751 auto jmap = jroot.AsMap();
1752 auto jvec = jmap["a"].AsVector();
1753 TEST_EQ(jvec[0].AsInt64(), 123);
1754 TEST_EQ(jvec[1].AsDouble(), 456.0);
1755 TEST_EQ_STR(jmap["b"].AsString().c_str(), "hello");
1756 TEST_EQ(jmap["c"].IsBool(), true); // Parsed correctly to a bool
1757 TEST_EQ(jmap["c"].AsBool(), true); // Parsed correctly to true
1758 TEST_EQ(jmap["d"].IsBool(), true); // Parsed correctly to a bool
1759 TEST_EQ(jmap["d"].AsBool(), false); // Parsed correctly to false
1760 // And from FlexBuffer back to JSON:
1761 auto jsonback = jroot.ToString();
1762 TEST_EQ_STR(jsontest, jsonback.c_str());
1763 }
1764
TypeAliasesTest()1765 void TypeAliasesTest()
1766 {
1767 flatbuffers::FlatBufferBuilder builder;
1768
1769 builder.Finish(CreateTypeAliases(
1770 builder,
1771 flatbuffers::numeric_limits<int8_t>::min(),
1772 flatbuffers::numeric_limits<uint8_t>::max(),
1773 flatbuffers::numeric_limits<int16_t>::min(),
1774 flatbuffers::numeric_limits<uint16_t>::max(),
1775 flatbuffers::numeric_limits<int32_t>::min(),
1776 flatbuffers::numeric_limits<uint32_t>::max(),
1777 flatbuffers::numeric_limits<int64_t>::min(),
1778 flatbuffers::numeric_limits<uint64_t>::max(),
1779 2.3f, 2.3));
1780
1781 auto p = builder.GetBufferPointer();
1782 auto ta = flatbuffers::GetRoot<TypeAliases>(p);
1783
1784 TEST_EQ(ta->i8(), flatbuffers::numeric_limits<int8_t>::min());
1785 TEST_EQ(ta->u8(), flatbuffers::numeric_limits<uint8_t>::max());
1786 TEST_EQ(ta->i16(), flatbuffers::numeric_limits<int16_t>::min());
1787 TEST_EQ(ta->u16(), flatbuffers::numeric_limits<uint16_t>::max());
1788 TEST_EQ(ta->i32(), flatbuffers::numeric_limits<int32_t>::min());
1789 TEST_EQ(ta->u32(), flatbuffers::numeric_limits<uint32_t>::max());
1790 TEST_EQ(ta->i64(), flatbuffers::numeric_limits<int64_t>::min());
1791 TEST_EQ(ta->u64(), flatbuffers::numeric_limits<uint64_t>::max());
1792 TEST_EQ(ta->f32(), 2.3f);
1793 TEST_EQ(ta->f64(), 2.3);
1794 TEST_EQ(sizeof(ta->i8()), 1);
1795 TEST_EQ(sizeof(ta->i16()), 2);
1796 TEST_EQ(sizeof(ta->i32()), 4);
1797 TEST_EQ(sizeof(ta->i64()), 8);
1798 TEST_EQ(sizeof(ta->u8()), 1);
1799 TEST_EQ(sizeof(ta->u16()), 2);
1800 TEST_EQ(sizeof(ta->u32()), 4);
1801 TEST_EQ(sizeof(ta->u64()), 8);
1802 TEST_EQ(sizeof(ta->f32()), 4);
1803 TEST_EQ(sizeof(ta->f64()), 8);
1804 }
1805
EndianSwapTest()1806 void EndianSwapTest() {
1807 TEST_EQ(flatbuffers::EndianSwap(static_cast<int16_t>(0x1234)),
1808 0x3412);
1809 TEST_EQ(flatbuffers::EndianSwap(static_cast<int32_t>(0x12345678)),
1810 0x78563412);
1811 TEST_EQ(flatbuffers::EndianSwap(static_cast<int64_t>(0x1234567890ABCDEF)),
1812 0xEFCDAB9078563412);
1813 TEST_EQ(flatbuffers::EndianSwap(flatbuffers::EndianSwap(3.14f)), 3.14f);
1814 }
1815
main(int,const char * [])1816 int main(int /*argc*/, const char * /*argv*/[]) {
1817 #if defined(FLATBUFFERS_MEMORY_LEAK_TRACKING) && \
1818 defined(_MSC_VER) && defined(_DEBUG)
1819 _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF
1820 // For more thorough checking:
1821 //| _CRTDBG_CHECK_ALWAYS_DF | _CRTDBG_DELAY_FREE_MEM_DF
1822 );
1823 #endif
1824
1825 // Run our various test suites:
1826
1827 std::string rawbuf;
1828 auto flatbuf1 = CreateFlatBufferTest(rawbuf);
1829 #if !defined(FLATBUFFERS_CPP98_STL)
1830 auto flatbuf = std::move(flatbuf1); // Test move assignment.
1831 #else
1832 auto &flatbuf = flatbuf1;
1833 #endif // !defined(FLATBUFFERS_CPP98_STL)
1834
1835 TriviallyCopyableTest();
1836
1837 AccessFlatBufferTest(reinterpret_cast<const uint8_t *>(rawbuf.c_str()),
1838 rawbuf.length());
1839 AccessFlatBufferTest(flatbuf.data(), flatbuf.size());
1840
1841 MutateFlatBuffersTest(flatbuf.data(), flatbuf.size());
1842
1843 ObjectFlatBuffersTest(flatbuf.data());
1844
1845 MiniReflectFlatBuffersTest(flatbuf.data());
1846
1847 SizePrefixedTest();
1848
1849 #ifndef FLATBUFFERS_NO_FILE_TESTS
1850 #ifdef FLATBUFFERS_TEST_PATH_PREFIX
1851 test_data_path = FLATBUFFERS_STRING(FLATBUFFERS_TEST_PATH_PREFIX) +
1852 test_data_path;
1853 #endif
1854 ParseAndGenerateTextTest();
1855 ReflectionTest(flatbuf.data(), flatbuf.size());
1856 ParseProtoTest();
1857 UnionVectorTest();
1858 #endif
1859
1860 FuzzTest1();
1861 FuzzTest2();
1862
1863 ErrorTest();
1864 ValueTest();
1865 EnumStringsTest();
1866 IntegerOutOfRangeTest();
1867 IntegerBoundaryTest();
1868 UnicodeTest();
1869 UnicodeTestAllowNonUTF8();
1870 UnicodeTestGenerateTextFailsOnNonUTF8();
1871 UnicodeSurrogatesTest();
1872 UnicodeInvalidSurrogatesTest();
1873 InvalidUTF8Test();
1874 UnknownFieldsTest();
1875 ParseUnionTest();
1876 ConformTest();
1877 ParseProtoBufAsciiTest();
1878 TypeAliasesTest();
1879 EndianSwapTest();
1880
1881 FlexBuffersTest();
1882
1883 if (!testing_fails) {
1884 TEST_OUTPUT_LINE("ALL TESTS PASSED");
1885 return 0;
1886 } else {
1887 TEST_OUTPUT_LINE("%d FAILED TESTS", testing_fails);
1888 return 1;
1889 }
1890 }
1891