1 //===-- SIInstrInfo.cpp - SI Instruction Information ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief SI Implementation of TargetInstrInfo.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "SIInstrInfo.h"
16 #include "AMDGPUTargetMachine.h"
17 #include "GCNHazardRecognizer.h"
18 #include "SIDefines.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/ScheduleDAG.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/CodeGen/RegisterScavenging.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/Support/Debug.h"
28
29 using namespace llvm;
30
SIInstrInfo(const SISubtarget & ST)31 SIInstrInfo::SIInstrInfo(const SISubtarget &ST)
32 : AMDGPUInstrInfo(ST), RI(), ST(ST) {}
33
34 //===----------------------------------------------------------------------===//
35 // TargetInstrInfo callbacks
36 //===----------------------------------------------------------------------===//
37
getNumOperandsNoGlue(SDNode * Node)38 static unsigned getNumOperandsNoGlue(SDNode *Node) {
39 unsigned N = Node->getNumOperands();
40 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
41 --N;
42 return N;
43 }
44
findChainOperand(SDNode * Load)45 static SDValue findChainOperand(SDNode *Load) {
46 SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1);
47 assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node");
48 return LastOp;
49 }
50
51 /// \brief Returns true if both nodes have the same value for the given
52 /// operand \p Op, or if both nodes do not have this operand.
nodesHaveSameOperandValue(SDNode * N0,SDNode * N1,unsigned OpName)53 static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) {
54 unsigned Opc0 = N0->getMachineOpcode();
55 unsigned Opc1 = N1->getMachineOpcode();
56
57 int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName);
58 int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName);
59
60 if (Op0Idx == -1 && Op1Idx == -1)
61 return true;
62
63
64 if ((Op0Idx == -1 && Op1Idx != -1) ||
65 (Op1Idx == -1 && Op0Idx != -1))
66 return false;
67
68 // getNamedOperandIdx returns the index for the MachineInstr's operands,
69 // which includes the result as the first operand. We are indexing into the
70 // MachineSDNode's operands, so we need to skip the result operand to get
71 // the real index.
72 --Op0Idx;
73 --Op1Idx;
74
75 return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx);
76 }
77
isReallyTriviallyReMaterializable(const MachineInstr & MI,AliasAnalysis * AA) const78 bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
79 AliasAnalysis *AA) const {
80 // TODO: The generic check fails for VALU instructions that should be
81 // rematerializable due to implicit reads of exec. We really want all of the
82 // generic logic for this except for this.
83 switch (MI.getOpcode()) {
84 case AMDGPU::V_MOV_B32_e32:
85 case AMDGPU::V_MOV_B32_e64:
86 case AMDGPU::V_MOV_B64_PSEUDO:
87 return true;
88 default:
89 return false;
90 }
91 }
92
areLoadsFromSameBasePtr(SDNode * Load0,SDNode * Load1,int64_t & Offset0,int64_t & Offset1) const93 bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1,
94 int64_t &Offset0,
95 int64_t &Offset1) const {
96 if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode())
97 return false;
98
99 unsigned Opc0 = Load0->getMachineOpcode();
100 unsigned Opc1 = Load1->getMachineOpcode();
101
102 // Make sure both are actually loads.
103 if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad())
104 return false;
105
106 if (isDS(Opc0) && isDS(Opc1)) {
107
108 // FIXME: Handle this case:
109 if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1))
110 return false;
111
112 // Check base reg.
113 if (Load0->getOperand(1) != Load1->getOperand(1))
114 return false;
115
116 // Check chain.
117 if (findChainOperand(Load0) != findChainOperand(Load1))
118 return false;
119
120 // Skip read2 / write2 variants for simplicity.
121 // TODO: We should report true if the used offsets are adjacent (excluded
122 // st64 versions).
123 if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::data1) != -1 ||
124 AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::data1) != -1)
125 return false;
126
127 Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue();
128 Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue();
129 return true;
130 }
131
132 if (isSMRD(Opc0) && isSMRD(Opc1)) {
133 assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1));
134
135 // Check base reg.
136 if (Load0->getOperand(0) != Load1->getOperand(0))
137 return false;
138
139 const ConstantSDNode *Load0Offset =
140 dyn_cast<ConstantSDNode>(Load0->getOperand(1));
141 const ConstantSDNode *Load1Offset =
142 dyn_cast<ConstantSDNode>(Load1->getOperand(1));
143
144 if (!Load0Offset || !Load1Offset)
145 return false;
146
147 // Check chain.
148 if (findChainOperand(Load0) != findChainOperand(Load1))
149 return false;
150
151 Offset0 = Load0Offset->getZExtValue();
152 Offset1 = Load1Offset->getZExtValue();
153 return true;
154 }
155
156 // MUBUF and MTBUF can access the same addresses.
157 if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) {
158
159 // MUBUF and MTBUF have vaddr at different indices.
160 if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) ||
161 findChainOperand(Load0) != findChainOperand(Load1) ||
162 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) ||
163 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc))
164 return false;
165
166 int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
167 int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
168
169 if (OffIdx0 == -1 || OffIdx1 == -1)
170 return false;
171
172 // getNamedOperandIdx returns the index for MachineInstrs. Since they
173 // inlcude the output in the operand list, but SDNodes don't, we need to
174 // subtract the index by one.
175 --OffIdx0;
176 --OffIdx1;
177
178 SDValue Off0 = Load0->getOperand(OffIdx0);
179 SDValue Off1 = Load1->getOperand(OffIdx1);
180
181 // The offset might be a FrameIndexSDNode.
182 if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1))
183 return false;
184
185 Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue();
186 Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue();
187 return true;
188 }
189
190 return false;
191 }
192
isStride64(unsigned Opc)193 static bool isStride64(unsigned Opc) {
194 switch (Opc) {
195 case AMDGPU::DS_READ2ST64_B32:
196 case AMDGPU::DS_READ2ST64_B64:
197 case AMDGPU::DS_WRITE2ST64_B32:
198 case AMDGPU::DS_WRITE2ST64_B64:
199 return true;
200 default:
201 return false;
202 }
203 }
204
getMemOpBaseRegImmOfs(MachineInstr & LdSt,unsigned & BaseReg,int64_t & Offset,const TargetRegisterInfo * TRI) const205 bool SIInstrInfo::getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg,
206 int64_t &Offset,
207 const TargetRegisterInfo *TRI) const {
208 unsigned Opc = LdSt.getOpcode();
209
210 if (isDS(LdSt)) {
211 const MachineOperand *OffsetImm =
212 getNamedOperand(LdSt, AMDGPU::OpName::offset);
213 if (OffsetImm) {
214 // Normal, single offset LDS instruction.
215 const MachineOperand *AddrReg =
216 getNamedOperand(LdSt, AMDGPU::OpName::addr);
217
218 BaseReg = AddrReg->getReg();
219 Offset = OffsetImm->getImm();
220 return true;
221 }
222
223 // The 2 offset instructions use offset0 and offset1 instead. We can treat
224 // these as a load with a single offset if the 2 offsets are consecutive. We
225 // will use this for some partially aligned loads.
226 const MachineOperand *Offset0Imm =
227 getNamedOperand(LdSt, AMDGPU::OpName::offset0);
228 const MachineOperand *Offset1Imm =
229 getNamedOperand(LdSt, AMDGPU::OpName::offset1);
230
231 uint8_t Offset0 = Offset0Imm->getImm();
232 uint8_t Offset1 = Offset1Imm->getImm();
233
234 if (Offset1 > Offset0 && Offset1 - Offset0 == 1) {
235 // Each of these offsets is in element sized units, so we need to convert
236 // to bytes of the individual reads.
237
238 unsigned EltSize;
239 if (LdSt.mayLoad())
240 EltSize = getOpRegClass(LdSt, 0)->getSize() / 2;
241 else {
242 assert(LdSt.mayStore());
243 int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
244 EltSize = getOpRegClass(LdSt, Data0Idx)->getSize();
245 }
246
247 if (isStride64(Opc))
248 EltSize *= 64;
249
250 const MachineOperand *AddrReg =
251 getNamedOperand(LdSt, AMDGPU::OpName::addr);
252 BaseReg = AddrReg->getReg();
253 Offset = EltSize * Offset0;
254 return true;
255 }
256
257 return false;
258 }
259
260 if (isMUBUF(LdSt) || isMTBUF(LdSt)) {
261 if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1)
262 return false;
263
264 const MachineOperand *AddrReg =
265 getNamedOperand(LdSt, AMDGPU::OpName::vaddr);
266 if (!AddrReg)
267 return false;
268
269 const MachineOperand *OffsetImm =
270 getNamedOperand(LdSt, AMDGPU::OpName::offset);
271 BaseReg = AddrReg->getReg();
272 Offset = OffsetImm->getImm();
273 return true;
274 }
275
276 if (isSMRD(LdSt)) {
277 const MachineOperand *OffsetImm =
278 getNamedOperand(LdSt, AMDGPU::OpName::offset);
279 if (!OffsetImm)
280 return false;
281
282 const MachineOperand *SBaseReg =
283 getNamedOperand(LdSt, AMDGPU::OpName::sbase);
284 BaseReg = SBaseReg->getReg();
285 Offset = OffsetImm->getImm();
286 return true;
287 }
288
289 if (isFLAT(LdSt)) {
290 const MachineOperand *AddrReg = getNamedOperand(LdSt, AMDGPU::OpName::addr);
291 BaseReg = AddrReg->getReg();
292 Offset = 0;
293 return true;
294 }
295
296 return false;
297 }
298
shouldClusterMemOps(MachineInstr & FirstLdSt,MachineInstr & SecondLdSt,unsigned NumLoads) const299 bool SIInstrInfo::shouldClusterMemOps(MachineInstr &FirstLdSt,
300 MachineInstr &SecondLdSt,
301 unsigned NumLoads) const {
302 const MachineOperand *FirstDst = nullptr;
303 const MachineOperand *SecondDst = nullptr;
304
305 if (isDS(FirstLdSt) && isDS(SecondLdSt)) {
306 FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::vdst);
307 SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::vdst);
308 }
309
310 if (isSMRD(FirstLdSt) && isSMRD(SecondLdSt)) {
311 FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::sdst);
312 SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::sdst);
313 }
314
315 if ((isMUBUF(FirstLdSt) && isMUBUF(SecondLdSt)) ||
316 (isMTBUF(FirstLdSt) && isMTBUF(SecondLdSt))) {
317 FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::vdata);
318 SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::vdata);
319 }
320
321 if (!FirstDst || !SecondDst)
322 return false;
323
324 // Try to limit clustering based on the total number of bytes loaded
325 // rather than the number of instructions. This is done to help reduce
326 // register pressure. The method used is somewhat inexact, though,
327 // because it assumes that all loads in the cluster will load the
328 // same number of bytes as FirstLdSt.
329
330 // The unit of this value is bytes.
331 // FIXME: This needs finer tuning.
332 unsigned LoadClusterThreshold = 16;
333
334 const MachineRegisterInfo &MRI =
335 FirstLdSt.getParent()->getParent()->getRegInfo();
336 const TargetRegisterClass *DstRC = MRI.getRegClass(FirstDst->getReg());
337
338 return (NumLoads * DstRC->getSize()) <= LoadClusterThreshold;
339 }
340
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const341 void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
342 MachineBasicBlock::iterator MI,
343 const DebugLoc &DL, unsigned DestReg,
344 unsigned SrcReg, bool KillSrc) const {
345
346 // If we are trying to copy to or from SCC, there is a bug somewhere else in
347 // the backend. While it may be theoretically possible to do this, it should
348 // never be necessary.
349 assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC);
350
351 static const int16_t Sub0_15[] = {
352 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
353 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
354 AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
355 AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
356 };
357
358 static const int16_t Sub0_15_64[] = {
359 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
360 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
361 AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
362 AMDGPU::sub12_sub13, AMDGPU::sub14_sub15,
363 };
364
365 static const int16_t Sub0_7[] = {
366 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
367 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
368 };
369
370 static const int16_t Sub0_7_64[] = {
371 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
372 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
373 };
374
375 static const int16_t Sub0_3[] = {
376 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
377 };
378
379 static const int16_t Sub0_3_64[] = {
380 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
381 };
382
383 static const int16_t Sub0_2[] = {
384 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2,
385 };
386
387 static const int16_t Sub0_1[] = {
388 AMDGPU::sub0, AMDGPU::sub1,
389 };
390
391 unsigned Opcode;
392 ArrayRef<int16_t> SubIndices;
393 bool Forward;
394
395 if (AMDGPU::SReg_32RegClass.contains(DestReg)) {
396 assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
397 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
398 .addReg(SrcReg, getKillRegState(KillSrc));
399 return;
400
401 } else if (AMDGPU::SReg_64RegClass.contains(DestReg)) {
402 if (DestReg == AMDGPU::VCC) {
403 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
404 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC)
405 .addReg(SrcReg, getKillRegState(KillSrc));
406 } else {
407 // FIXME: Hack until VReg_1 removed.
408 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
409 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_I32_e32))
410 .addImm(0)
411 .addReg(SrcReg, getKillRegState(KillSrc));
412 }
413
414 return;
415 }
416
417 assert(AMDGPU::SReg_64RegClass.contains(SrcReg));
418 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
419 .addReg(SrcReg, getKillRegState(KillSrc));
420 return;
421
422 } else if (AMDGPU::SReg_128RegClass.contains(DestReg)) {
423 assert(AMDGPU::SReg_128RegClass.contains(SrcReg));
424 Opcode = AMDGPU::S_MOV_B64;
425 SubIndices = Sub0_3_64;
426
427 } else if (AMDGPU::SReg_256RegClass.contains(DestReg)) {
428 assert(AMDGPU::SReg_256RegClass.contains(SrcReg));
429 Opcode = AMDGPU::S_MOV_B64;
430 SubIndices = Sub0_7_64;
431
432 } else if (AMDGPU::SReg_512RegClass.contains(DestReg)) {
433 assert(AMDGPU::SReg_512RegClass.contains(SrcReg));
434 Opcode = AMDGPU::S_MOV_B64;
435 SubIndices = Sub0_15_64;
436
437 } else if (AMDGPU::VGPR_32RegClass.contains(DestReg)) {
438 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
439 AMDGPU::SReg_32RegClass.contains(SrcReg));
440 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
441 .addReg(SrcReg, getKillRegState(KillSrc));
442 return;
443
444 } else if (AMDGPU::VReg_64RegClass.contains(DestReg)) {
445 assert(AMDGPU::VReg_64RegClass.contains(SrcReg) ||
446 AMDGPU::SReg_64RegClass.contains(SrcReg));
447 Opcode = AMDGPU::V_MOV_B32_e32;
448 SubIndices = Sub0_1;
449
450 } else if (AMDGPU::VReg_96RegClass.contains(DestReg)) {
451 assert(AMDGPU::VReg_96RegClass.contains(SrcReg));
452 Opcode = AMDGPU::V_MOV_B32_e32;
453 SubIndices = Sub0_2;
454
455 } else if (AMDGPU::VReg_128RegClass.contains(DestReg)) {
456 assert(AMDGPU::VReg_128RegClass.contains(SrcReg) ||
457 AMDGPU::SReg_128RegClass.contains(SrcReg));
458 Opcode = AMDGPU::V_MOV_B32_e32;
459 SubIndices = Sub0_3;
460
461 } else if (AMDGPU::VReg_256RegClass.contains(DestReg)) {
462 assert(AMDGPU::VReg_256RegClass.contains(SrcReg) ||
463 AMDGPU::SReg_256RegClass.contains(SrcReg));
464 Opcode = AMDGPU::V_MOV_B32_e32;
465 SubIndices = Sub0_7;
466
467 } else if (AMDGPU::VReg_512RegClass.contains(DestReg)) {
468 assert(AMDGPU::VReg_512RegClass.contains(SrcReg) ||
469 AMDGPU::SReg_512RegClass.contains(SrcReg));
470 Opcode = AMDGPU::V_MOV_B32_e32;
471 SubIndices = Sub0_15;
472
473 } else {
474 llvm_unreachable("Can't copy register!");
475 }
476
477 if (RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg))
478 Forward = true;
479 else
480 Forward = false;
481
482 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
483 unsigned SubIdx;
484 if (Forward)
485 SubIdx = SubIndices[Idx];
486 else
487 SubIdx = SubIndices[SubIndices.size() - Idx - 1];
488
489 MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
490 get(Opcode), RI.getSubReg(DestReg, SubIdx));
491
492 Builder.addReg(RI.getSubReg(SrcReg, SubIdx));
493
494 if (Idx == SubIndices.size() - 1)
495 Builder.addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit);
496
497 if (Idx == 0)
498 Builder.addReg(DestReg, RegState::Define | RegState::Implicit);
499 }
500 }
501
commuteOpcode(const MachineInstr & MI) const502 int SIInstrInfo::commuteOpcode(const MachineInstr &MI) const {
503 const unsigned Opcode = MI.getOpcode();
504
505 int NewOpc;
506
507 // Try to map original to commuted opcode
508 NewOpc = AMDGPU::getCommuteRev(Opcode);
509 if (NewOpc != -1)
510 // Check if the commuted (REV) opcode exists on the target.
511 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
512
513 // Try to map commuted to original opcode
514 NewOpc = AMDGPU::getCommuteOrig(Opcode);
515 if (NewOpc != -1)
516 // Check if the original (non-REV) opcode exists on the target.
517 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
518
519 return Opcode;
520 }
521
getMovOpcode(const TargetRegisterClass * DstRC) const522 unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const {
523
524 if (DstRC->getSize() == 4) {
525 return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
526 } else if (DstRC->getSize() == 8 && RI.isSGPRClass(DstRC)) {
527 return AMDGPU::S_MOV_B64;
528 } else if (DstRC->getSize() == 8 && !RI.isSGPRClass(DstRC)) {
529 return AMDGPU::V_MOV_B64_PSEUDO;
530 }
531 return AMDGPU::COPY;
532 }
533
getSGPRSpillSaveOpcode(unsigned Size)534 static unsigned getSGPRSpillSaveOpcode(unsigned Size) {
535 switch (Size) {
536 case 4:
537 return AMDGPU::SI_SPILL_S32_SAVE;
538 case 8:
539 return AMDGPU::SI_SPILL_S64_SAVE;
540 case 16:
541 return AMDGPU::SI_SPILL_S128_SAVE;
542 case 32:
543 return AMDGPU::SI_SPILL_S256_SAVE;
544 case 64:
545 return AMDGPU::SI_SPILL_S512_SAVE;
546 default:
547 llvm_unreachable("unknown register size");
548 }
549 }
550
getVGPRSpillSaveOpcode(unsigned Size)551 static unsigned getVGPRSpillSaveOpcode(unsigned Size) {
552 switch (Size) {
553 case 4:
554 return AMDGPU::SI_SPILL_V32_SAVE;
555 case 8:
556 return AMDGPU::SI_SPILL_V64_SAVE;
557 case 12:
558 return AMDGPU::SI_SPILL_V96_SAVE;
559 case 16:
560 return AMDGPU::SI_SPILL_V128_SAVE;
561 case 32:
562 return AMDGPU::SI_SPILL_V256_SAVE;
563 case 64:
564 return AMDGPU::SI_SPILL_V512_SAVE;
565 default:
566 llvm_unreachable("unknown register size");
567 }
568 }
569
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const570 void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
571 MachineBasicBlock::iterator MI,
572 unsigned SrcReg, bool isKill,
573 int FrameIndex,
574 const TargetRegisterClass *RC,
575 const TargetRegisterInfo *TRI) const {
576 MachineFunction *MF = MBB.getParent();
577 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
578 MachineFrameInfo *FrameInfo = MF->getFrameInfo();
579 DebugLoc DL = MBB.findDebugLoc(MI);
580
581 unsigned Size = FrameInfo->getObjectSize(FrameIndex);
582 unsigned Align = FrameInfo->getObjectAlignment(FrameIndex);
583 MachinePointerInfo PtrInfo
584 = MachinePointerInfo::getFixedStack(*MF, FrameIndex);
585 MachineMemOperand *MMO
586 = MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
587 Size, Align);
588
589 if (RI.isSGPRClass(RC)) {
590 MFI->setHasSpilledSGPRs();
591
592 if (TargetRegisterInfo::isVirtualRegister(SrcReg) && RC->getSize() == 4) {
593 // m0 may not be allowed for readlane.
594 MachineRegisterInfo &MRI = MF->getRegInfo();
595 MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0RegClass);
596 }
597
598 // We are only allowed to create one new instruction when spilling
599 // registers, so we need to use pseudo instruction for spilling
600 // SGPRs.
601 unsigned Opcode = getSGPRSpillSaveOpcode(RC->getSize());
602 BuildMI(MBB, MI, DL, get(Opcode))
603 .addReg(SrcReg, getKillRegState(isKill)) // src
604 .addFrameIndex(FrameIndex) // frame_idx
605 .addMemOperand(MMO);
606
607 return;
608 }
609
610 if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) {
611 LLVMContext &Ctx = MF->getFunction()->getContext();
612 Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Do not know how to"
613 " spill register");
614 BuildMI(MBB, MI, DL, get(AMDGPU::KILL))
615 .addReg(SrcReg);
616
617 return;
618 }
619
620 assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected");
621
622 unsigned Opcode = getVGPRSpillSaveOpcode(RC->getSize());
623 MFI->setHasSpilledVGPRs();
624 BuildMI(MBB, MI, DL, get(Opcode))
625 .addReg(SrcReg, getKillRegState(isKill)) // src
626 .addFrameIndex(FrameIndex) // frame_idx
627 .addReg(MFI->getScratchRSrcReg()) // scratch_rsrc
628 .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset
629 .addImm(0) // offset
630 .addMemOperand(MMO);
631 }
632
getSGPRSpillRestoreOpcode(unsigned Size)633 static unsigned getSGPRSpillRestoreOpcode(unsigned Size) {
634 switch (Size) {
635 case 4:
636 return AMDGPU::SI_SPILL_S32_RESTORE;
637 case 8:
638 return AMDGPU::SI_SPILL_S64_RESTORE;
639 case 16:
640 return AMDGPU::SI_SPILL_S128_RESTORE;
641 case 32:
642 return AMDGPU::SI_SPILL_S256_RESTORE;
643 case 64:
644 return AMDGPU::SI_SPILL_S512_RESTORE;
645 default:
646 llvm_unreachable("unknown register size");
647 }
648 }
649
getVGPRSpillRestoreOpcode(unsigned Size)650 static unsigned getVGPRSpillRestoreOpcode(unsigned Size) {
651 switch (Size) {
652 case 4:
653 return AMDGPU::SI_SPILL_V32_RESTORE;
654 case 8:
655 return AMDGPU::SI_SPILL_V64_RESTORE;
656 case 12:
657 return AMDGPU::SI_SPILL_V96_RESTORE;
658 case 16:
659 return AMDGPU::SI_SPILL_V128_RESTORE;
660 case 32:
661 return AMDGPU::SI_SPILL_V256_RESTORE;
662 case 64:
663 return AMDGPU::SI_SPILL_V512_RESTORE;
664 default:
665 llvm_unreachable("unknown register size");
666 }
667 }
668
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const669 void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
670 MachineBasicBlock::iterator MI,
671 unsigned DestReg, int FrameIndex,
672 const TargetRegisterClass *RC,
673 const TargetRegisterInfo *TRI) const {
674 MachineFunction *MF = MBB.getParent();
675 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
676 MachineFrameInfo *FrameInfo = MF->getFrameInfo();
677 DebugLoc DL = MBB.findDebugLoc(MI);
678 unsigned Align = FrameInfo->getObjectAlignment(FrameIndex);
679 unsigned Size = FrameInfo->getObjectSize(FrameIndex);
680
681 MachinePointerInfo PtrInfo
682 = MachinePointerInfo::getFixedStack(*MF, FrameIndex);
683
684 MachineMemOperand *MMO = MF->getMachineMemOperand(
685 PtrInfo, MachineMemOperand::MOLoad, Size, Align);
686
687 if (RI.isSGPRClass(RC)) {
688 // FIXME: Maybe this should not include a memoperand because it will be
689 // lowered to non-memory instructions.
690 unsigned Opcode = getSGPRSpillRestoreOpcode(RC->getSize());
691
692 if (TargetRegisterInfo::isVirtualRegister(DestReg) && RC->getSize() == 4) {
693 // m0 may not be allowed for readlane.
694 MachineRegisterInfo &MRI = MF->getRegInfo();
695 MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0RegClass);
696 }
697
698 BuildMI(MBB, MI, DL, get(Opcode), DestReg)
699 .addFrameIndex(FrameIndex) // frame_idx
700 .addMemOperand(MMO);
701
702 return;
703 }
704
705 if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) {
706 LLVMContext &Ctx = MF->getFunction()->getContext();
707 Ctx.emitError("SIInstrInfo::loadRegFromStackSlot - Do not know how to"
708 " restore register");
709 BuildMI(MBB, MI, DL, get(AMDGPU::IMPLICIT_DEF), DestReg);
710
711 return;
712 }
713
714 assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected");
715
716 unsigned Opcode = getVGPRSpillRestoreOpcode(RC->getSize());
717 BuildMI(MBB, MI, DL, get(Opcode), DestReg)
718 .addFrameIndex(FrameIndex) // frame_idx
719 .addReg(MFI->getScratchRSrcReg()) // scratch_rsrc
720 .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset
721 .addImm(0) // offset
722 .addMemOperand(MMO);
723 }
724
725 /// \param @Offset Offset in bytes of the FrameIndex being spilled
calculateLDSSpillAddress(MachineBasicBlock & MBB,MachineInstr & MI,RegScavenger * RS,unsigned TmpReg,unsigned FrameOffset,unsigned Size) const726 unsigned SIInstrInfo::calculateLDSSpillAddress(
727 MachineBasicBlock &MBB, MachineInstr &MI, RegScavenger *RS, unsigned TmpReg,
728 unsigned FrameOffset, unsigned Size) const {
729 MachineFunction *MF = MBB.getParent();
730 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
731 const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
732 const SIRegisterInfo *TRI = ST.getRegisterInfo();
733 DebugLoc DL = MBB.findDebugLoc(MI);
734 unsigned WorkGroupSize = MFI->getMaximumWorkGroupSize(*MF);
735 unsigned WavefrontSize = ST.getWavefrontSize();
736
737 unsigned TIDReg = MFI->getTIDReg();
738 if (!MFI->hasCalculatedTID()) {
739 MachineBasicBlock &Entry = MBB.getParent()->front();
740 MachineBasicBlock::iterator Insert = Entry.front();
741 DebugLoc DL = Insert->getDebugLoc();
742
743 TIDReg = RI.findUnusedRegister(MF->getRegInfo(), &AMDGPU::VGPR_32RegClass);
744 if (TIDReg == AMDGPU::NoRegister)
745 return TIDReg;
746
747 if (!AMDGPU::isShader(MF->getFunction()->getCallingConv()) &&
748 WorkGroupSize > WavefrontSize) {
749
750 unsigned TIDIGXReg
751 = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_X);
752 unsigned TIDIGYReg
753 = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Y);
754 unsigned TIDIGZReg
755 = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Z);
756 unsigned InputPtrReg =
757 TRI->getPreloadedValue(*MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
758 for (unsigned Reg : {TIDIGXReg, TIDIGYReg, TIDIGZReg}) {
759 if (!Entry.isLiveIn(Reg))
760 Entry.addLiveIn(Reg);
761 }
762
763 RS->enterBasicBlock(Entry);
764 // FIXME: Can we scavenge an SReg_64 and access the subregs?
765 unsigned STmp0 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
766 unsigned STmp1 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
767 BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp0)
768 .addReg(InputPtrReg)
769 .addImm(SI::KernelInputOffsets::NGROUPS_Z);
770 BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp1)
771 .addReg(InputPtrReg)
772 .addImm(SI::KernelInputOffsets::NGROUPS_Y);
773
774 // NGROUPS.X * NGROUPS.Y
775 BuildMI(Entry, Insert, DL, get(AMDGPU::S_MUL_I32), STmp1)
776 .addReg(STmp1)
777 .addReg(STmp0);
778 // (NGROUPS.X * NGROUPS.Y) * TIDIG.X
779 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MUL_U32_U24_e32), TIDReg)
780 .addReg(STmp1)
781 .addReg(TIDIGXReg);
782 // NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)
783 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MAD_U32_U24), TIDReg)
784 .addReg(STmp0)
785 .addReg(TIDIGYReg)
786 .addReg(TIDReg);
787 // (NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)) + TIDIG.Z
788 BuildMI(Entry, Insert, DL, get(AMDGPU::V_ADD_I32_e32), TIDReg)
789 .addReg(TIDReg)
790 .addReg(TIDIGZReg);
791 } else {
792 // Get the wave id
793 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_LO_U32_B32_e64),
794 TIDReg)
795 .addImm(-1)
796 .addImm(0);
797
798 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_HI_U32_B32_e64),
799 TIDReg)
800 .addImm(-1)
801 .addReg(TIDReg);
802 }
803
804 BuildMI(Entry, Insert, DL, get(AMDGPU::V_LSHLREV_B32_e32),
805 TIDReg)
806 .addImm(2)
807 .addReg(TIDReg);
808 MFI->setTIDReg(TIDReg);
809 }
810
811 // Add FrameIndex to LDS offset
812 unsigned LDSOffset = MFI->LDSSize + (FrameOffset * WorkGroupSize);
813 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), TmpReg)
814 .addImm(LDSOffset)
815 .addReg(TIDReg);
816
817 return TmpReg;
818 }
819
insertWaitStates(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,int Count) const820 void SIInstrInfo::insertWaitStates(MachineBasicBlock &MBB,
821 MachineBasicBlock::iterator MI,
822 int Count) const {
823 DebugLoc DL = MBB.findDebugLoc(MI);
824 while (Count > 0) {
825 int Arg;
826 if (Count >= 8)
827 Arg = 7;
828 else
829 Arg = Count - 1;
830 Count -= 8;
831 BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP))
832 .addImm(Arg);
833 }
834 }
835
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const836 void SIInstrInfo::insertNoop(MachineBasicBlock &MBB,
837 MachineBasicBlock::iterator MI) const {
838 insertWaitStates(MBB, MI, 1);
839 }
840
getNumWaitStates(const MachineInstr & MI) const841 unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) const {
842 switch (MI.getOpcode()) {
843 default: return 1; // FIXME: Do wait states equal cycles?
844
845 case AMDGPU::S_NOP:
846 return MI.getOperand(0).getImm() + 1;
847 }
848 }
849
expandPostRAPseudo(MachineInstr & MI) const850 bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
851 MachineBasicBlock &MBB = *MI.getParent();
852 DebugLoc DL = MBB.findDebugLoc(MI);
853 switch (MI.getOpcode()) {
854 default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
855
856 case AMDGPU::V_MOV_B64_PSEUDO: {
857 unsigned Dst = MI.getOperand(0).getReg();
858 unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
859 unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
860
861 const MachineOperand &SrcOp = MI.getOperand(1);
862 // FIXME: Will this work for 64-bit floating point immediates?
863 assert(!SrcOp.isFPImm());
864 if (SrcOp.isImm()) {
865 APInt Imm(64, SrcOp.getImm());
866 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
867 .addImm(Imm.getLoBits(32).getZExtValue())
868 .addReg(Dst, RegState::Implicit | RegState::Define);
869 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
870 .addImm(Imm.getHiBits(32).getZExtValue())
871 .addReg(Dst, RegState::Implicit | RegState::Define);
872 } else {
873 assert(SrcOp.isReg());
874 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
875 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0))
876 .addReg(Dst, RegState::Implicit | RegState::Define);
877 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
878 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1))
879 .addReg(Dst, RegState::Implicit | RegState::Define);
880 }
881 MI.eraseFromParent();
882 break;
883 }
884
885 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
886 unsigned Dst = MI.getOperand(0).getReg();
887 unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
888 unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
889 unsigned Src0 = MI.getOperand(1).getReg();
890 unsigned Src1 = MI.getOperand(2).getReg();
891 const MachineOperand &SrcCond = MI.getOperand(3);
892
893 BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
894 .addReg(RI.getSubReg(Src0, AMDGPU::sub0))
895 .addReg(RI.getSubReg(Src1, AMDGPU::sub0))
896 .addReg(SrcCond.getReg())
897 .addReg(Dst, RegState::Implicit | RegState::Define);
898 BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
899 .addReg(RI.getSubReg(Src0, AMDGPU::sub1))
900 .addReg(RI.getSubReg(Src1, AMDGPU::sub1))
901 .addReg(SrcCond.getReg(), getKillRegState(SrcCond.isKill()))
902 .addReg(Dst, RegState::Implicit | RegState::Define);
903 MI.eraseFromParent();
904 break;
905 }
906
907 case AMDGPU::SI_PC_ADD_REL_OFFSET: {
908 const SIRegisterInfo *TRI
909 = static_cast<const SIRegisterInfo *>(ST.getRegisterInfo());
910 MachineFunction &MF = *MBB.getParent();
911 unsigned Reg = MI.getOperand(0).getReg();
912 unsigned RegLo = TRI->getSubReg(Reg, AMDGPU::sub0);
913 unsigned RegHi = TRI->getSubReg(Reg, AMDGPU::sub1);
914
915 // Create a bundle so these instructions won't be re-ordered by the
916 // post-RA scheduler.
917 MIBundleBuilder Bundler(MBB, MI);
918 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg));
919
920 // Add 32-bit offset from this instruction to the start of the
921 // constant data.
922 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo)
923 .addReg(RegLo)
924 .addOperand(MI.getOperand(1)));
925 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi)
926 .addReg(RegHi)
927 .addImm(0));
928
929 llvm::finalizeBundle(MBB, Bundler.begin());
930
931 MI.eraseFromParent();
932 break;
933 }
934 }
935 return true;
936 }
937
938 /// Commutes the operands in the given instruction.
939 /// The commutable operands are specified by their indices OpIdx0 and OpIdx1.
940 ///
941 /// Do not call this method for a non-commutable instruction or for
942 /// non-commutable pair of operand indices OpIdx0 and OpIdx1.
943 /// Even though the instruction is commutable, the method may still
944 /// fail to commute the operands, null pointer is returned in such cases.
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx0,unsigned OpIdx1) const945 MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
946 unsigned OpIdx0,
947 unsigned OpIdx1) const {
948 int CommutedOpcode = commuteOpcode(MI);
949 if (CommutedOpcode == -1)
950 return nullptr;
951
952 int Src0Idx =
953 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
954 MachineOperand &Src0 = MI.getOperand(Src0Idx);
955 if (!Src0.isReg())
956 return nullptr;
957
958 int Src1Idx =
959 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src1);
960
961 if ((OpIdx0 != static_cast<unsigned>(Src0Idx) ||
962 OpIdx1 != static_cast<unsigned>(Src1Idx)) &&
963 (OpIdx0 != static_cast<unsigned>(Src1Idx) ||
964 OpIdx1 != static_cast<unsigned>(Src0Idx)))
965 return nullptr;
966
967 MachineOperand &Src1 = MI.getOperand(Src1Idx);
968
969 if (isVOP2(MI) || isVOPC(MI)) {
970 const MCInstrDesc &InstrDesc = MI.getDesc();
971 // For VOP2 and VOPC instructions, any operand type is valid to use for
972 // src0. Make sure we can use the src0 as src1.
973 //
974 // We could be stricter here and only allow commuting if there is a reason
975 // to do so. i.e. if both operands are VGPRs there is no real benefit,
976 // although MachineCSE attempts to find matches by commuting.
977 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
978 if (!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0))
979 return nullptr;
980 }
981
982 MachineInstr *CommutedMI = &MI;
983 if (!Src1.isReg()) {
984 // Allow commuting instructions with Imm operands.
985 if (NewMI || !Src1.isImm() || (!isVOP2(MI) && !isVOP3(MI))) {
986 return nullptr;
987 }
988 // Be sure to copy the source modifiers to the right place.
989 if (MachineOperand *Src0Mods =
990 getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)) {
991 MachineOperand *Src1Mods =
992 getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
993
994 int Src0ModsVal = Src0Mods->getImm();
995 if (!Src1Mods && Src0ModsVal != 0)
996 return nullptr;
997
998 // XXX - This assert might be a lie. It might be useful to have a neg
999 // modifier with 0.0.
1000 int Src1ModsVal = Src1Mods->getImm();
1001 assert((Src1ModsVal == 0) && "Not expecting modifiers with immediates");
1002
1003 Src1Mods->setImm(Src0ModsVal);
1004 Src0Mods->setImm(Src1ModsVal);
1005 }
1006
1007 unsigned Reg = Src0.getReg();
1008 unsigned SubReg = Src0.getSubReg();
1009 if (Src1.isImm())
1010 Src0.ChangeToImmediate(Src1.getImm());
1011 else
1012 llvm_unreachable("Should only have immediates");
1013
1014 Src1.ChangeToRegister(Reg, false);
1015 Src1.setSubReg(SubReg);
1016 } else {
1017 CommutedMI =
1018 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx0, OpIdx1);
1019 }
1020
1021 if (CommutedMI)
1022 CommutedMI->setDesc(get(CommutedOpcode));
1023
1024 return CommutedMI;
1025 }
1026
1027 // This needs to be implemented because the source modifiers may be inserted
1028 // between the true commutable operands, and the base
1029 // TargetInstrInfo::commuteInstruction uses it.
findCommutedOpIndices(MachineInstr & MI,unsigned & SrcOpIdx0,unsigned & SrcOpIdx1) const1030 bool SIInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx0,
1031 unsigned &SrcOpIdx1) const {
1032 const MCInstrDesc &MCID = MI.getDesc();
1033 if (!MCID.isCommutable())
1034 return false;
1035
1036 unsigned Opc = MI.getOpcode();
1037 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1038 if (Src0Idx == -1)
1039 return false;
1040
1041 // FIXME: Workaround TargetInstrInfo::commuteInstruction asserting on
1042 // immediate. Also, immediate src0 operand is not handled in
1043 // SIInstrInfo::commuteInstruction();
1044 if (!MI.getOperand(Src0Idx).isReg())
1045 return false;
1046
1047 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1048 if (Src1Idx == -1)
1049 return false;
1050
1051 MachineOperand &Src1 = MI.getOperand(Src1Idx);
1052 if (Src1.isImm()) {
1053 // SIInstrInfo::commuteInstruction() does support commuting the immediate
1054 // operand src1 in 2 and 3 operand instructions.
1055 if (!isVOP2(MI.getOpcode()) && !isVOP3(MI.getOpcode()))
1056 return false;
1057 } else if (Src1.isReg()) {
1058 // If any source modifiers are set, the generic instruction commuting won't
1059 // understand how to copy the source modifiers.
1060 if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1061 hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers))
1062 return false;
1063 } else
1064 return false;
1065
1066 return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx);
1067 }
1068
getBranchOpcode(SIInstrInfo::BranchPredicate Cond)1069 unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) {
1070 switch (Cond) {
1071 case SIInstrInfo::SCC_TRUE:
1072 return AMDGPU::S_CBRANCH_SCC1;
1073 case SIInstrInfo::SCC_FALSE:
1074 return AMDGPU::S_CBRANCH_SCC0;
1075 case SIInstrInfo::VCCNZ:
1076 return AMDGPU::S_CBRANCH_VCCNZ;
1077 case SIInstrInfo::VCCZ:
1078 return AMDGPU::S_CBRANCH_VCCZ;
1079 case SIInstrInfo::EXECNZ:
1080 return AMDGPU::S_CBRANCH_EXECNZ;
1081 case SIInstrInfo::EXECZ:
1082 return AMDGPU::S_CBRANCH_EXECZ;
1083 default:
1084 llvm_unreachable("invalid branch predicate");
1085 }
1086 }
1087
getBranchPredicate(unsigned Opcode)1088 SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) {
1089 switch (Opcode) {
1090 case AMDGPU::S_CBRANCH_SCC0:
1091 return SCC_FALSE;
1092 case AMDGPU::S_CBRANCH_SCC1:
1093 return SCC_TRUE;
1094 case AMDGPU::S_CBRANCH_VCCNZ:
1095 return VCCNZ;
1096 case AMDGPU::S_CBRANCH_VCCZ:
1097 return VCCZ;
1098 case AMDGPU::S_CBRANCH_EXECNZ:
1099 return EXECNZ;
1100 case AMDGPU::S_CBRANCH_EXECZ:
1101 return EXECZ;
1102 default:
1103 return INVALID_BR;
1104 }
1105 }
1106
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const1107 bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
1108 MachineBasicBlock *&FBB,
1109 SmallVectorImpl<MachineOperand> &Cond,
1110 bool AllowModify) const {
1111 MachineBasicBlock::iterator I = MBB.getFirstTerminator();
1112
1113 if (I == MBB.end())
1114 return false;
1115
1116 if (I->getOpcode() == AMDGPU::S_BRANCH) {
1117 // Unconditional Branch
1118 TBB = I->getOperand(0).getMBB();
1119 return false;
1120 }
1121
1122 BranchPredicate Pred = getBranchPredicate(I->getOpcode());
1123 if (Pred == INVALID_BR)
1124 return true;
1125
1126 MachineBasicBlock *CondBB = I->getOperand(0).getMBB();
1127 Cond.push_back(MachineOperand::CreateImm(Pred));
1128
1129 ++I;
1130
1131 if (I == MBB.end()) {
1132 // Conditional branch followed by fall-through.
1133 TBB = CondBB;
1134 return false;
1135 }
1136
1137 if (I->getOpcode() == AMDGPU::S_BRANCH) {
1138 TBB = CondBB;
1139 FBB = I->getOperand(0).getMBB();
1140 return false;
1141 }
1142
1143 return true;
1144 }
1145
RemoveBranch(MachineBasicBlock & MBB) const1146 unsigned SIInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1147 MachineBasicBlock::iterator I = MBB.getFirstTerminator();
1148
1149 unsigned Count = 0;
1150 while (I != MBB.end()) {
1151 MachineBasicBlock::iterator Next = std::next(I);
1152 I->eraseFromParent();
1153 ++Count;
1154 I = Next;
1155 }
1156
1157 return Count;
1158 }
1159
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL) const1160 unsigned SIInstrInfo::InsertBranch(MachineBasicBlock &MBB,
1161 MachineBasicBlock *TBB,
1162 MachineBasicBlock *FBB,
1163 ArrayRef<MachineOperand> Cond,
1164 const DebugLoc &DL) const {
1165
1166 if (!FBB && Cond.empty()) {
1167 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
1168 .addMBB(TBB);
1169 return 1;
1170 }
1171
1172 assert(TBB && Cond[0].isImm());
1173
1174 unsigned Opcode
1175 = getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm()));
1176
1177 if (!FBB) {
1178 BuildMI(&MBB, DL, get(Opcode))
1179 .addMBB(TBB);
1180 return 1;
1181 }
1182
1183 assert(TBB && FBB);
1184
1185 BuildMI(&MBB, DL, get(Opcode))
1186 .addMBB(TBB);
1187 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
1188 .addMBB(FBB);
1189
1190 return 2;
1191 }
1192
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const1193 bool SIInstrInfo::ReverseBranchCondition(
1194 SmallVectorImpl<MachineOperand> &Cond) const {
1195 assert(Cond.size() == 1);
1196 Cond[0].setImm(-Cond[0].getImm());
1197 return false;
1198 }
1199
removeModOperands(MachineInstr & MI)1200 static void removeModOperands(MachineInstr &MI) {
1201 unsigned Opc = MI.getOpcode();
1202 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc,
1203 AMDGPU::OpName::src0_modifiers);
1204 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc,
1205 AMDGPU::OpName::src1_modifiers);
1206 int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc,
1207 AMDGPU::OpName::src2_modifiers);
1208
1209 MI.RemoveOperand(Src2ModIdx);
1210 MI.RemoveOperand(Src1ModIdx);
1211 MI.RemoveOperand(Src0ModIdx);
1212 }
1213
1214 // TODO: Maybe this should be removed this and custom fold everything in
1215 // SIFoldOperands?
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,unsigned Reg,MachineRegisterInfo * MRI) const1216 bool SIInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1217 unsigned Reg, MachineRegisterInfo *MRI) const {
1218 if (!MRI->hasOneNonDBGUse(Reg))
1219 return false;
1220
1221 unsigned Opc = UseMI.getOpcode();
1222 if (Opc == AMDGPU::V_MAD_F32 || Opc == AMDGPU::V_MAC_F32_e64) {
1223 // Don't fold if we are using source modifiers. The new VOP2 instructions
1224 // don't have them.
1225 if (hasModifiersSet(UseMI, AMDGPU::OpName::src0_modifiers) ||
1226 hasModifiersSet(UseMI, AMDGPU::OpName::src1_modifiers) ||
1227 hasModifiersSet(UseMI, AMDGPU::OpName::src2_modifiers)) {
1228 return false;
1229 }
1230
1231 const MachineOperand &ImmOp = DefMI.getOperand(1);
1232
1233 // If this is a free constant, there's no reason to do this.
1234 // TODO: We could fold this here instead of letting SIFoldOperands do it
1235 // later.
1236 if (isInlineConstant(ImmOp, 4))
1237 return false;
1238
1239 MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0);
1240 MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1);
1241 MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2);
1242
1243 // Multiplied part is the constant: Use v_madmk_f32
1244 // We should only expect these to be on src0 due to canonicalizations.
1245 if (Src0->isReg() && Src0->getReg() == Reg) {
1246 if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))
1247 return false;
1248
1249 if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg())))
1250 return false;
1251
1252 // We need to swap operands 0 and 1 since madmk constant is at operand 1.
1253
1254 const int64_t Imm = DefMI.getOperand(1).getImm();
1255
1256 // FIXME: This would be a lot easier if we could return a new instruction
1257 // instead of having to modify in place.
1258
1259 // Remove these first since they are at the end.
1260 UseMI.RemoveOperand(
1261 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod));
1262 UseMI.RemoveOperand(
1263 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp));
1264
1265 unsigned Src1Reg = Src1->getReg();
1266 unsigned Src1SubReg = Src1->getSubReg();
1267 Src0->setReg(Src1Reg);
1268 Src0->setSubReg(Src1SubReg);
1269 Src0->setIsKill(Src1->isKill());
1270
1271 if (Opc == AMDGPU::V_MAC_F32_e64) {
1272 UseMI.untieRegOperand(
1273 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
1274 }
1275
1276 Src1->ChangeToImmediate(Imm);
1277
1278 removeModOperands(UseMI);
1279 UseMI.setDesc(get(AMDGPU::V_MADMK_F32));
1280
1281 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1282 if (DeleteDef)
1283 DefMI.eraseFromParent();
1284
1285 return true;
1286 }
1287
1288 // Added part is the constant: Use v_madak_f32
1289 if (Src2->isReg() && Src2->getReg() == Reg) {
1290 // Not allowed to use constant bus for another operand.
1291 // We can however allow an inline immediate as src0.
1292 if (!Src0->isImm() &&
1293 (Src0->isReg() && RI.isSGPRClass(MRI->getRegClass(Src0->getReg()))))
1294 return false;
1295
1296 if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))
1297 return false;
1298
1299 const int64_t Imm = DefMI.getOperand(1).getImm();
1300
1301 // FIXME: This would be a lot easier if we could return a new instruction
1302 // instead of having to modify in place.
1303
1304 // Remove these first since they are at the end.
1305 UseMI.RemoveOperand(
1306 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod));
1307 UseMI.RemoveOperand(
1308 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp));
1309
1310 if (Opc == AMDGPU::V_MAC_F32_e64) {
1311 UseMI.untieRegOperand(
1312 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
1313 }
1314
1315 // ChangingToImmediate adds Src2 back to the instruction.
1316 Src2->ChangeToImmediate(Imm);
1317
1318 // These come before src2.
1319 removeModOperands(UseMI);
1320 UseMI.setDesc(get(AMDGPU::V_MADAK_F32));
1321
1322 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1323 if (DeleteDef)
1324 DefMI.eraseFromParent();
1325
1326 return true;
1327 }
1328 }
1329
1330 return false;
1331 }
1332
offsetsDoNotOverlap(int WidthA,int OffsetA,int WidthB,int OffsetB)1333 static bool offsetsDoNotOverlap(int WidthA, int OffsetA,
1334 int WidthB, int OffsetB) {
1335 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1336 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1337 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1338 return LowOffset + LowWidth <= HighOffset;
1339 }
1340
checkInstOffsetsDoNotOverlap(MachineInstr & MIa,MachineInstr & MIb) const1341 bool SIInstrInfo::checkInstOffsetsDoNotOverlap(MachineInstr &MIa,
1342 MachineInstr &MIb) const {
1343 unsigned BaseReg0, BaseReg1;
1344 int64_t Offset0, Offset1;
1345
1346 if (getMemOpBaseRegImmOfs(MIa, BaseReg0, Offset0, &RI) &&
1347 getMemOpBaseRegImmOfs(MIb, BaseReg1, Offset1, &RI)) {
1348
1349 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) {
1350 // FIXME: Handle ds_read2 / ds_write2.
1351 return false;
1352 }
1353 unsigned Width0 = (*MIa.memoperands_begin())->getSize();
1354 unsigned Width1 = (*MIb.memoperands_begin())->getSize();
1355 if (BaseReg0 == BaseReg1 &&
1356 offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1)) {
1357 return true;
1358 }
1359 }
1360
1361 return false;
1362 }
1363
areMemAccessesTriviallyDisjoint(MachineInstr & MIa,MachineInstr & MIb,AliasAnalysis * AA) const1364 bool SIInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr &MIa,
1365 MachineInstr &MIb,
1366 AliasAnalysis *AA) const {
1367 assert((MIa.mayLoad() || MIa.mayStore()) &&
1368 "MIa must load from or modify a memory location");
1369 assert((MIb.mayLoad() || MIb.mayStore()) &&
1370 "MIb must load from or modify a memory location");
1371
1372 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects())
1373 return false;
1374
1375 // XXX - Can we relax this between address spaces?
1376 if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1377 return false;
1378
1379 // TODO: Should we check the address space from the MachineMemOperand? That
1380 // would allow us to distinguish objects we know don't alias based on the
1381 // underlying address space, even if it was lowered to a different one,
1382 // e.g. private accesses lowered to use MUBUF instructions on a scratch
1383 // buffer.
1384 if (isDS(MIa)) {
1385 if (isDS(MIb))
1386 return checkInstOffsetsDoNotOverlap(MIa, MIb);
1387
1388 return !isFLAT(MIb);
1389 }
1390
1391 if (isMUBUF(MIa) || isMTBUF(MIa)) {
1392 if (isMUBUF(MIb) || isMTBUF(MIb))
1393 return checkInstOffsetsDoNotOverlap(MIa, MIb);
1394
1395 return !isFLAT(MIb) && !isSMRD(MIb);
1396 }
1397
1398 if (isSMRD(MIa)) {
1399 if (isSMRD(MIb))
1400 return checkInstOffsetsDoNotOverlap(MIa, MIb);
1401
1402 return !isFLAT(MIb) && !isMUBUF(MIa) && !isMTBUF(MIa);
1403 }
1404
1405 if (isFLAT(MIa)) {
1406 if (isFLAT(MIb))
1407 return checkInstOffsetsDoNotOverlap(MIa, MIb);
1408
1409 return false;
1410 }
1411
1412 return false;
1413 }
1414
convertToThreeAddress(MachineFunction::iterator & MBB,MachineInstr & MI,LiveVariables * LV) const1415 MachineInstr *SIInstrInfo::convertToThreeAddress(MachineFunction::iterator &MBB,
1416 MachineInstr &MI,
1417 LiveVariables *LV) const {
1418
1419 switch (MI.getOpcode()) {
1420 default:
1421 return nullptr;
1422 case AMDGPU::V_MAC_F32_e64:
1423 break;
1424 case AMDGPU::V_MAC_F32_e32: {
1425 const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0);
1426 if (Src0->isImm() && !isInlineConstant(*Src0, 4))
1427 return nullptr;
1428 break;
1429 }
1430 }
1431
1432 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
1433 const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0);
1434 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
1435 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
1436
1437 return BuildMI(*MBB, MI, MI.getDebugLoc(), get(AMDGPU::V_MAD_F32))
1438 .addOperand(*Dst)
1439 .addImm(0) // Src0 mods
1440 .addOperand(*Src0)
1441 .addImm(0) // Src1 mods
1442 .addOperand(*Src1)
1443 .addImm(0) // Src mods
1444 .addOperand(*Src2)
1445 .addImm(0) // clamp
1446 .addImm(0); // omod
1447 }
1448
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1449 bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1450 const MachineBasicBlock *MBB,
1451 const MachineFunction &MF) const {
1452 // XXX - Do we want the SP check in the base implementation?
1453
1454 // Target-independent instructions do not have an implicit-use of EXEC, even
1455 // when they operate on VGPRs. Treating EXEC modifications as scheduling
1456 // boundaries prevents incorrect movements of such instructions.
1457 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF) ||
1458 MI.modifiesRegister(AMDGPU::EXEC, &RI);
1459 }
1460
isInlineConstant(const APInt & Imm) const1461 bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
1462 int64_t SVal = Imm.getSExtValue();
1463 if (SVal >= -16 && SVal <= 64)
1464 return true;
1465
1466 if (Imm.getBitWidth() == 64) {
1467 uint64_t Val = Imm.getZExtValue();
1468 return (DoubleToBits(0.0) == Val) ||
1469 (DoubleToBits(1.0) == Val) ||
1470 (DoubleToBits(-1.0) == Val) ||
1471 (DoubleToBits(0.5) == Val) ||
1472 (DoubleToBits(-0.5) == Val) ||
1473 (DoubleToBits(2.0) == Val) ||
1474 (DoubleToBits(-2.0) == Val) ||
1475 (DoubleToBits(4.0) == Val) ||
1476 (DoubleToBits(-4.0) == Val);
1477 }
1478
1479 // The actual type of the operand does not seem to matter as long
1480 // as the bits match one of the inline immediate values. For example:
1481 //
1482 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1483 // so it is a legal inline immediate.
1484 //
1485 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1486 // floating-point, so it is a legal inline immediate.
1487 uint32_t Val = Imm.getZExtValue();
1488
1489 return (FloatToBits(0.0f) == Val) ||
1490 (FloatToBits(1.0f) == Val) ||
1491 (FloatToBits(-1.0f) == Val) ||
1492 (FloatToBits(0.5f) == Val) ||
1493 (FloatToBits(-0.5f) == Val) ||
1494 (FloatToBits(2.0f) == Val) ||
1495 (FloatToBits(-2.0f) == Val) ||
1496 (FloatToBits(4.0f) == Val) ||
1497 (FloatToBits(-4.0f) == Val);
1498 }
1499
isInlineConstant(const MachineOperand & MO,unsigned OpSize) const1500 bool SIInstrInfo::isInlineConstant(const MachineOperand &MO,
1501 unsigned OpSize) const {
1502 if (MO.isImm()) {
1503 // MachineOperand provides no way to tell the true operand size, since it
1504 // only records a 64-bit value. We need to know the size to determine if a
1505 // 32-bit floating point immediate bit pattern is legal for an integer
1506 // immediate. It would be for any 32-bit integer operand, but would not be
1507 // for a 64-bit one.
1508
1509 unsigned BitSize = 8 * OpSize;
1510 return isInlineConstant(APInt(BitSize, MO.getImm(), true));
1511 }
1512
1513 return false;
1514 }
1515
isLiteralConstant(const MachineOperand & MO,unsigned OpSize) const1516 bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO,
1517 unsigned OpSize) const {
1518 return MO.isImm() && !isInlineConstant(MO, OpSize);
1519 }
1520
compareMachineOp(const MachineOperand & Op0,const MachineOperand & Op1)1521 static bool compareMachineOp(const MachineOperand &Op0,
1522 const MachineOperand &Op1) {
1523 if (Op0.getType() != Op1.getType())
1524 return false;
1525
1526 switch (Op0.getType()) {
1527 case MachineOperand::MO_Register:
1528 return Op0.getReg() == Op1.getReg();
1529 case MachineOperand::MO_Immediate:
1530 return Op0.getImm() == Op1.getImm();
1531 default:
1532 llvm_unreachable("Didn't expect to be comparing these operand types");
1533 }
1534 }
1535
isImmOperandLegal(const MachineInstr & MI,unsigned OpNo,const MachineOperand & MO) const1536 bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo,
1537 const MachineOperand &MO) const {
1538 const MCOperandInfo &OpInfo = get(MI.getOpcode()).OpInfo[OpNo];
1539
1540 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI());
1541
1542 if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
1543 return true;
1544
1545 if (OpInfo.RegClass < 0)
1546 return false;
1547
1548 unsigned OpSize = RI.getRegClass(OpInfo.RegClass)->getSize();
1549 if (isLiteralConstant(MO, OpSize))
1550 return RI.opCanUseLiteralConstant(OpInfo.OperandType);
1551
1552 return RI.opCanUseInlineConstant(OpInfo.OperandType);
1553 }
1554
hasVALU32BitEncoding(unsigned Opcode) const1555 bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
1556 int Op32 = AMDGPU::getVOPe32(Opcode);
1557 if (Op32 == -1)
1558 return false;
1559
1560 return pseudoToMCOpcode(Op32) != -1;
1561 }
1562
hasModifiers(unsigned Opcode) const1563 bool SIInstrInfo::hasModifiers(unsigned Opcode) const {
1564 // The src0_modifier operand is present on all instructions
1565 // that have modifiers.
1566
1567 return AMDGPU::getNamedOperandIdx(Opcode,
1568 AMDGPU::OpName::src0_modifiers) != -1;
1569 }
1570
hasModifiersSet(const MachineInstr & MI,unsigned OpName) const1571 bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI,
1572 unsigned OpName) const {
1573 const MachineOperand *Mods = getNamedOperand(MI, OpName);
1574 return Mods && Mods->getImm();
1575 }
1576
usesConstantBus(const MachineRegisterInfo & MRI,const MachineOperand & MO,unsigned OpSize) const1577 bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI,
1578 const MachineOperand &MO,
1579 unsigned OpSize) const {
1580 // Literal constants use the constant bus.
1581 if (isLiteralConstant(MO, OpSize))
1582 return true;
1583
1584 if (!MO.isReg() || !MO.isUse())
1585 return false;
1586
1587 if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1588 return RI.isSGPRClass(MRI.getRegClass(MO.getReg()));
1589
1590 // FLAT_SCR is just an SGPR pair.
1591 if (!MO.isImplicit() && (MO.getReg() == AMDGPU::FLAT_SCR))
1592 return true;
1593
1594 // EXEC register uses the constant bus.
1595 if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC)
1596 return true;
1597
1598 // SGPRs use the constant bus
1599 return (MO.getReg() == AMDGPU::VCC || MO.getReg() == AMDGPU::M0 ||
1600 (!MO.isImplicit() &&
1601 (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) ||
1602 AMDGPU::SGPR_64RegClass.contains(MO.getReg()))));
1603 }
1604
findImplicitSGPRRead(const MachineInstr & MI)1605 static unsigned findImplicitSGPRRead(const MachineInstr &MI) {
1606 for (const MachineOperand &MO : MI.implicit_operands()) {
1607 // We only care about reads.
1608 if (MO.isDef())
1609 continue;
1610
1611 switch (MO.getReg()) {
1612 case AMDGPU::VCC:
1613 case AMDGPU::M0:
1614 case AMDGPU::FLAT_SCR:
1615 return MO.getReg();
1616
1617 default:
1618 break;
1619 }
1620 }
1621
1622 return AMDGPU::NoRegister;
1623 }
1624
shouldReadExec(const MachineInstr & MI)1625 static bool shouldReadExec(const MachineInstr &MI) {
1626 if (SIInstrInfo::isVALU(MI)) {
1627 switch (MI.getOpcode()) {
1628 case AMDGPU::V_READLANE_B32:
1629 case AMDGPU::V_READLANE_B32_si:
1630 case AMDGPU::V_READLANE_B32_vi:
1631 case AMDGPU::V_WRITELANE_B32:
1632 case AMDGPU::V_WRITELANE_B32_si:
1633 case AMDGPU::V_WRITELANE_B32_vi:
1634 return false;
1635 }
1636
1637 return true;
1638 }
1639
1640 if (SIInstrInfo::isGenericOpcode(MI.getOpcode()) ||
1641 SIInstrInfo::isSALU(MI) ||
1642 SIInstrInfo::isSMRD(MI))
1643 return false;
1644
1645 return true;
1646 }
1647
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const1648 bool SIInstrInfo::verifyInstruction(const MachineInstr &MI,
1649 StringRef &ErrInfo) const {
1650 uint16_t Opcode = MI.getOpcode();
1651 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
1652 int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
1653 int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
1654 int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
1655
1656 // Make sure the number of operands is correct.
1657 const MCInstrDesc &Desc = get(Opcode);
1658 if (!Desc.isVariadic() &&
1659 Desc.getNumOperands() != MI.getNumExplicitOperands()) {
1660 ErrInfo = "Instruction has wrong number of operands.";
1661 return false;
1662 }
1663
1664 // Make sure the register classes are correct.
1665 for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) {
1666 if (MI.getOperand(i).isFPImm()) {
1667 ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast "
1668 "all fp values to integers.";
1669 return false;
1670 }
1671
1672 int RegClass = Desc.OpInfo[i].RegClass;
1673
1674 switch (Desc.OpInfo[i].OperandType) {
1675 case MCOI::OPERAND_REGISTER:
1676 if (MI.getOperand(i).isImm()) {
1677 ErrInfo = "Illegal immediate value for operand.";
1678 return false;
1679 }
1680 break;
1681 case AMDGPU::OPERAND_REG_IMM32:
1682 break;
1683 case AMDGPU::OPERAND_REG_INLINE_C:
1684 if (isLiteralConstant(MI.getOperand(i),
1685 RI.getRegClass(RegClass)->getSize())) {
1686 ErrInfo = "Illegal immediate value for operand.";
1687 return false;
1688 }
1689 break;
1690 case MCOI::OPERAND_IMMEDIATE:
1691 case AMDGPU::OPERAND_KIMM32:
1692 // Check if this operand is an immediate.
1693 // FrameIndex operands will be replaced by immediates, so they are
1694 // allowed.
1695 if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) {
1696 ErrInfo = "Expected immediate, but got non-immediate";
1697 return false;
1698 }
1699 // Fall-through
1700 default:
1701 continue;
1702 }
1703
1704 if (!MI.getOperand(i).isReg())
1705 continue;
1706
1707 if (RegClass != -1) {
1708 unsigned Reg = MI.getOperand(i).getReg();
1709 if (Reg == AMDGPU::NoRegister ||
1710 TargetRegisterInfo::isVirtualRegister(Reg))
1711 continue;
1712
1713 const TargetRegisterClass *RC = RI.getRegClass(RegClass);
1714 if (!RC->contains(Reg)) {
1715 ErrInfo = "Operand has incorrect register class.";
1716 return false;
1717 }
1718 }
1719 }
1720
1721 // Verify VOP*
1722 if (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isVOPC(MI)) {
1723 // Only look at the true operands. Only a real operand can use the constant
1724 // bus, and we don't want to check pseudo-operands like the source modifier
1725 // flags.
1726 const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx };
1727
1728 unsigned ConstantBusCount = 0;
1729
1730 if (AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm) != -1)
1731 ++ConstantBusCount;
1732
1733 unsigned SGPRUsed = findImplicitSGPRRead(MI);
1734 if (SGPRUsed != AMDGPU::NoRegister)
1735 ++ConstantBusCount;
1736
1737 for (int OpIdx : OpIndices) {
1738 if (OpIdx == -1)
1739 break;
1740 const MachineOperand &MO = MI.getOperand(OpIdx);
1741 if (usesConstantBus(MRI, MO, getOpSize(Opcode, OpIdx))) {
1742 if (MO.isReg()) {
1743 if (MO.getReg() != SGPRUsed)
1744 ++ConstantBusCount;
1745 SGPRUsed = MO.getReg();
1746 } else {
1747 ++ConstantBusCount;
1748 }
1749 }
1750 }
1751 if (ConstantBusCount > 1) {
1752 ErrInfo = "VOP* instruction uses the constant bus more than once";
1753 return false;
1754 }
1755 }
1756
1757 // Verify misc. restrictions on specific instructions.
1758 if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 ||
1759 Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) {
1760 const MachineOperand &Src0 = MI.getOperand(Src0Idx);
1761 const MachineOperand &Src1 = MI.getOperand(Src1Idx);
1762 const MachineOperand &Src2 = MI.getOperand(Src2Idx);
1763 if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
1764 if (!compareMachineOp(Src0, Src1) &&
1765 !compareMachineOp(Src0, Src2)) {
1766 ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2";
1767 return false;
1768 }
1769 }
1770 }
1771
1772 // Make sure we aren't losing exec uses in the td files. This mostly requires
1773 // being careful when using let Uses to try to add other use registers.
1774 if (shouldReadExec(MI)) {
1775 if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) {
1776 ErrInfo = "VALU instruction does not implicitly read exec mask";
1777 return false;
1778 }
1779 }
1780
1781 return true;
1782 }
1783
getVALUOp(const MachineInstr & MI)1784 unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) {
1785 switch (MI.getOpcode()) {
1786 default: return AMDGPU::INSTRUCTION_LIST_END;
1787 case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
1788 case AMDGPU::COPY: return AMDGPU::COPY;
1789 case AMDGPU::PHI: return AMDGPU::PHI;
1790 case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG;
1791 case AMDGPU::S_MOV_B32:
1792 return MI.getOperand(1).isReg() ?
1793 AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
1794 case AMDGPU::S_ADD_I32:
1795 case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_I32_e32;
1796 case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32;
1797 case AMDGPU::S_SUB_I32:
1798 case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_I32_e32;
1799 case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
1800 case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_I32;
1801 case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32;
1802 case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32;
1803 case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32;
1804 case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32;
1805 case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32;
1806 case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32;
1807 case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32;
1808 case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
1809 case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64;
1810 case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
1811 case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64;
1812 case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
1813 case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64;
1814 case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32;
1815 case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32;
1816 case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32;
1817 case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32;
1818 case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64;
1819 case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32;
1820 case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32;
1821 case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32;
1822 case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32;
1823 case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32;
1824 case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32;
1825 case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32;
1826 case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32;
1827 case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32;
1828 case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e32;
1829 case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e32;
1830 case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e32;
1831 case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e32;
1832 case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e32;
1833 case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e32;
1834 case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64;
1835 case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
1836 case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
1837 case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64;
1838 case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ;
1839 case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ;
1840 }
1841 }
1842
isSALUOpSupportedOnVALU(const MachineInstr & MI) const1843 bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const {
1844 return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END;
1845 }
1846
getOpRegClass(const MachineInstr & MI,unsigned OpNo) const1847 const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
1848 unsigned OpNo) const {
1849 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
1850 const MCInstrDesc &Desc = get(MI.getOpcode());
1851 if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
1852 Desc.OpInfo[OpNo].RegClass == -1) {
1853 unsigned Reg = MI.getOperand(OpNo).getReg();
1854
1855 if (TargetRegisterInfo::isVirtualRegister(Reg))
1856 return MRI.getRegClass(Reg);
1857 return RI.getPhysRegClass(Reg);
1858 }
1859
1860 unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1861 return RI.getRegClass(RCID);
1862 }
1863
canReadVGPR(const MachineInstr & MI,unsigned OpNo) const1864 bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const {
1865 switch (MI.getOpcode()) {
1866 case AMDGPU::COPY:
1867 case AMDGPU::REG_SEQUENCE:
1868 case AMDGPU::PHI:
1869 case AMDGPU::INSERT_SUBREG:
1870 return RI.hasVGPRs(getOpRegClass(MI, 0));
1871 default:
1872 return RI.hasVGPRs(getOpRegClass(MI, OpNo));
1873 }
1874 }
1875
legalizeOpWithMove(MachineInstr & MI,unsigned OpIdx) const1876 void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const {
1877 MachineBasicBlock::iterator I = MI;
1878 MachineBasicBlock *MBB = MI.getParent();
1879 MachineOperand &MO = MI.getOperand(OpIdx);
1880 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1881 unsigned RCID = get(MI.getOpcode()).OpInfo[OpIdx].RegClass;
1882 const TargetRegisterClass *RC = RI.getRegClass(RCID);
1883 unsigned Opcode = AMDGPU::V_MOV_B32_e32;
1884 if (MO.isReg())
1885 Opcode = AMDGPU::COPY;
1886 else if (RI.isSGPRClass(RC))
1887 Opcode = AMDGPU::S_MOV_B32;
1888
1889 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
1890 if (RI.getCommonSubClass(&AMDGPU::VReg_64RegClass, VRC))
1891 VRC = &AMDGPU::VReg_64RegClass;
1892 else
1893 VRC = &AMDGPU::VGPR_32RegClass;
1894
1895 unsigned Reg = MRI.createVirtualRegister(VRC);
1896 DebugLoc DL = MBB->findDebugLoc(I);
1897 BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).addOperand(MO);
1898 MO.ChangeToRegister(Reg, false);
1899 }
1900
buildExtractSubReg(MachineBasicBlock::iterator MI,MachineRegisterInfo & MRI,MachineOperand & SuperReg,const TargetRegisterClass * SuperRC,unsigned SubIdx,const TargetRegisterClass * SubRC) const1901 unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI,
1902 MachineRegisterInfo &MRI,
1903 MachineOperand &SuperReg,
1904 const TargetRegisterClass *SuperRC,
1905 unsigned SubIdx,
1906 const TargetRegisterClass *SubRC)
1907 const {
1908 MachineBasicBlock *MBB = MI->getParent();
1909 DebugLoc DL = MI->getDebugLoc();
1910 unsigned SubReg = MRI.createVirtualRegister(SubRC);
1911
1912 if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) {
1913 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
1914 .addReg(SuperReg.getReg(), 0, SubIdx);
1915 return SubReg;
1916 }
1917
1918 // Just in case the super register is itself a sub-register, copy it to a new
1919 // value so we don't need to worry about merging its subreg index with the
1920 // SubIdx passed to this function. The register coalescer should be able to
1921 // eliminate this extra copy.
1922 unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC);
1923
1924 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg)
1925 .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg());
1926
1927 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
1928 .addReg(NewSuperReg, 0, SubIdx);
1929
1930 return SubReg;
1931 }
1932
buildExtractSubRegOrImm(MachineBasicBlock::iterator MII,MachineRegisterInfo & MRI,MachineOperand & Op,const TargetRegisterClass * SuperRC,unsigned SubIdx,const TargetRegisterClass * SubRC) const1933 MachineOperand SIInstrInfo::buildExtractSubRegOrImm(
1934 MachineBasicBlock::iterator MII,
1935 MachineRegisterInfo &MRI,
1936 MachineOperand &Op,
1937 const TargetRegisterClass *SuperRC,
1938 unsigned SubIdx,
1939 const TargetRegisterClass *SubRC) const {
1940 if (Op.isImm()) {
1941 // XXX - Is there a better way to do this?
1942 if (SubIdx == AMDGPU::sub0)
1943 return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF);
1944 if (SubIdx == AMDGPU::sub1)
1945 return MachineOperand::CreateImm(Op.getImm() >> 32);
1946
1947 llvm_unreachable("Unhandled register index for immediate");
1948 }
1949
1950 unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC,
1951 SubIdx, SubRC);
1952 return MachineOperand::CreateReg(SubReg, false);
1953 }
1954
1955 // Change the order of operands from (0, 1, 2) to (0, 2, 1)
swapOperands(MachineInstr & Inst) const1956 void SIInstrInfo::swapOperands(MachineInstr &Inst) const {
1957 assert(Inst.getNumExplicitOperands() == 3);
1958 MachineOperand Op1 = Inst.getOperand(1);
1959 Inst.RemoveOperand(1);
1960 Inst.addOperand(Op1);
1961 }
1962
isLegalRegOperand(const MachineRegisterInfo & MRI,const MCOperandInfo & OpInfo,const MachineOperand & MO) const1963 bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI,
1964 const MCOperandInfo &OpInfo,
1965 const MachineOperand &MO) const {
1966 if (!MO.isReg())
1967 return false;
1968
1969 unsigned Reg = MO.getReg();
1970 const TargetRegisterClass *RC =
1971 TargetRegisterInfo::isVirtualRegister(Reg) ?
1972 MRI.getRegClass(Reg) :
1973 RI.getPhysRegClass(Reg);
1974
1975 const SIRegisterInfo *TRI =
1976 static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo());
1977 RC = TRI->getSubRegClass(RC, MO.getSubReg());
1978
1979 // In order to be legal, the common sub-class must be equal to the
1980 // class of the current operand. For example:
1981 //
1982 // v_mov_b32 s0 ; Operand defined as vsrc_32
1983 // ; RI.getCommonSubClass(s0,vsrc_32) = sgpr ; LEGAL
1984 //
1985 // s_sendmsg 0, s0 ; Operand defined as m0reg
1986 // ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL
1987
1988 return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC;
1989 }
1990
isLegalVSrcOperand(const MachineRegisterInfo & MRI,const MCOperandInfo & OpInfo,const MachineOperand & MO) const1991 bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI,
1992 const MCOperandInfo &OpInfo,
1993 const MachineOperand &MO) const {
1994 if (MO.isReg())
1995 return isLegalRegOperand(MRI, OpInfo, MO);
1996
1997 // Handle non-register types that are treated like immediates.
1998 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI());
1999 return true;
2000 }
2001
isOperandLegal(const MachineInstr & MI,unsigned OpIdx,const MachineOperand * MO) const2002 bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx,
2003 const MachineOperand *MO) const {
2004 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2005 const MCInstrDesc &InstDesc = MI.getDesc();
2006 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx];
2007 const TargetRegisterClass *DefinedRC =
2008 OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr;
2009 if (!MO)
2010 MO = &MI.getOperand(OpIdx);
2011
2012 if (isVALU(MI) && usesConstantBus(MRI, *MO, DefinedRC->getSize())) {
2013
2014 RegSubRegPair SGPRUsed;
2015 if (MO->isReg())
2016 SGPRUsed = RegSubRegPair(MO->getReg(), MO->getSubReg());
2017
2018 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2019 if (i == OpIdx)
2020 continue;
2021 const MachineOperand &Op = MI.getOperand(i);
2022 if (Op.isReg()) {
2023 if ((Op.getReg() != SGPRUsed.Reg || Op.getSubReg() != SGPRUsed.SubReg) &&
2024 usesConstantBus(MRI, Op, getOpSize(MI, i))) {
2025 return false;
2026 }
2027 } else if (InstDesc.OpInfo[i].OperandType == AMDGPU::OPERAND_KIMM32) {
2028 return false;
2029 }
2030 }
2031 }
2032
2033 if (MO->isReg()) {
2034 assert(DefinedRC);
2035 return isLegalRegOperand(MRI, OpInfo, *MO);
2036 }
2037
2038 // Handle non-register types that are treated like immediates.
2039 assert(MO->isImm() || MO->isTargetIndex() || MO->isFI());
2040
2041 if (!DefinedRC) {
2042 // This operand expects an immediate.
2043 return true;
2044 }
2045
2046 return isImmOperandLegal(MI, OpIdx, *MO);
2047 }
2048
legalizeOperandsVOP2(MachineRegisterInfo & MRI,MachineInstr & MI) const2049 void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI,
2050 MachineInstr &MI) const {
2051 unsigned Opc = MI.getOpcode();
2052 const MCInstrDesc &InstrDesc = get(Opc);
2053
2054 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
2055 MachineOperand &Src1 = MI.getOperand(Src1Idx);
2056
2057 // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32
2058 // we need to only have one constant bus use.
2059 //
2060 // Note we do not need to worry about literal constants here. They are
2061 // disabled for the operand type for instructions because they will always
2062 // violate the one constant bus use rule.
2063 bool HasImplicitSGPR = findImplicitSGPRRead(MI) != AMDGPU::NoRegister;
2064 if (HasImplicitSGPR) {
2065 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
2066 MachineOperand &Src0 = MI.getOperand(Src0Idx);
2067
2068 if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg()))
2069 legalizeOpWithMove(MI, Src0Idx);
2070 }
2071
2072 // VOP2 src0 instructions support all operand types, so we don't need to check
2073 // their legality. If src1 is already legal, we don't need to do anything.
2074 if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1))
2075 return;
2076
2077 // We do not use commuteInstruction here because it is too aggressive and will
2078 // commute if it is possible. We only want to commute here if it improves
2079 // legality. This can be called a fairly large number of times so don't waste
2080 // compile time pointlessly swapping and checking legality again.
2081 if (HasImplicitSGPR || !MI.isCommutable()) {
2082 legalizeOpWithMove(MI, Src1Idx);
2083 return;
2084 }
2085
2086 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
2087 MachineOperand &Src0 = MI.getOperand(Src0Idx);
2088
2089 // If src0 can be used as src1, commuting will make the operands legal.
2090 // Otherwise we have to give up and insert a move.
2091 //
2092 // TODO: Other immediate-like operand kinds could be commuted if there was a
2093 // MachineOperand::ChangeTo* for them.
2094 if ((!Src1.isImm() && !Src1.isReg()) ||
2095 !isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) {
2096 legalizeOpWithMove(MI, Src1Idx);
2097 return;
2098 }
2099
2100 int CommutedOpc = commuteOpcode(MI);
2101 if (CommutedOpc == -1) {
2102 legalizeOpWithMove(MI, Src1Idx);
2103 return;
2104 }
2105
2106 MI.setDesc(get(CommutedOpc));
2107
2108 unsigned Src0Reg = Src0.getReg();
2109 unsigned Src0SubReg = Src0.getSubReg();
2110 bool Src0Kill = Src0.isKill();
2111
2112 if (Src1.isImm())
2113 Src0.ChangeToImmediate(Src1.getImm());
2114 else if (Src1.isReg()) {
2115 Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill());
2116 Src0.setSubReg(Src1.getSubReg());
2117 } else
2118 llvm_unreachable("Should only have register or immediate operands");
2119
2120 Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill);
2121 Src1.setSubReg(Src0SubReg);
2122 }
2123
2124 // Legalize VOP3 operands. Because all operand types are supported for any
2125 // operand, and since literal constants are not allowed and should never be
2126 // seen, we only need to worry about inserting copies if we use multiple SGPR
2127 // operands.
legalizeOperandsVOP3(MachineRegisterInfo & MRI,MachineInstr & MI) const2128 void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI,
2129 MachineInstr &MI) const {
2130 unsigned Opc = MI.getOpcode();
2131
2132 int VOP3Idx[3] = {
2133 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
2134 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1),
2135 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)
2136 };
2137
2138 // Find the one SGPR operand we are allowed to use.
2139 unsigned SGPRReg = findUsedSGPR(MI, VOP3Idx);
2140
2141 for (unsigned i = 0; i < 3; ++i) {
2142 int Idx = VOP3Idx[i];
2143 if (Idx == -1)
2144 break;
2145 MachineOperand &MO = MI.getOperand(Idx);
2146
2147 // We should never see a VOP3 instruction with an illegal immediate operand.
2148 if (!MO.isReg())
2149 continue;
2150
2151 if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg())))
2152 continue; // VGPRs are legal
2153
2154 if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) {
2155 SGPRReg = MO.getReg();
2156 // We can use one SGPR in each VOP3 instruction.
2157 continue;
2158 }
2159
2160 // If we make it this far, then the operand is not legal and we must
2161 // legalize it.
2162 legalizeOpWithMove(MI, Idx);
2163 }
2164 }
2165
readlaneVGPRToSGPR(unsigned SrcReg,MachineInstr & UseMI,MachineRegisterInfo & MRI) const2166 unsigned SIInstrInfo::readlaneVGPRToSGPR(unsigned SrcReg, MachineInstr &UseMI,
2167 MachineRegisterInfo &MRI) const {
2168 const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg);
2169 const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC);
2170 unsigned DstReg = MRI.createVirtualRegister(SRC);
2171 unsigned SubRegs = VRC->getSize() / 4;
2172
2173 SmallVector<unsigned, 8> SRegs;
2174 for (unsigned i = 0; i < SubRegs; ++i) {
2175 unsigned SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2176 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
2177 get(AMDGPU::V_READFIRSTLANE_B32), SGPR)
2178 .addReg(SrcReg, 0, RI.getSubRegFromChannel(i));
2179 SRegs.push_back(SGPR);
2180 }
2181
2182 MachineInstrBuilder MIB =
2183 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
2184 get(AMDGPU::REG_SEQUENCE), DstReg);
2185 for (unsigned i = 0; i < SubRegs; ++i) {
2186 MIB.addReg(SRegs[i]);
2187 MIB.addImm(RI.getSubRegFromChannel(i));
2188 }
2189 return DstReg;
2190 }
2191
legalizeOperandsSMRD(MachineRegisterInfo & MRI,MachineInstr & MI) const2192 void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI,
2193 MachineInstr &MI) const {
2194
2195 // If the pointer is store in VGPRs, then we need to move them to
2196 // SGPRs using v_readfirstlane. This is safe because we only select
2197 // loads with uniform pointers to SMRD instruction so we know the
2198 // pointer value is uniform.
2199 MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase);
2200 if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) {
2201 unsigned SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI);
2202 SBase->setReg(SGPR);
2203 }
2204 }
2205
legalizeOperands(MachineInstr & MI) const2206 void SIInstrInfo::legalizeOperands(MachineInstr &MI) const {
2207 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2208
2209 // Legalize VOP2
2210 if (isVOP2(MI) || isVOPC(MI)) {
2211 legalizeOperandsVOP2(MRI, MI);
2212 return;
2213 }
2214
2215 // Legalize VOP3
2216 if (isVOP3(MI)) {
2217 legalizeOperandsVOP3(MRI, MI);
2218 return;
2219 }
2220
2221 // Legalize SMRD
2222 if (isSMRD(MI)) {
2223 legalizeOperandsSMRD(MRI, MI);
2224 return;
2225 }
2226
2227 // Legalize REG_SEQUENCE and PHI
2228 // The register class of the operands much be the same type as the register
2229 // class of the output.
2230 if (MI.getOpcode() == AMDGPU::PHI) {
2231 const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr;
2232 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2233 if (!MI.getOperand(i).isReg() ||
2234 !TargetRegisterInfo::isVirtualRegister(MI.getOperand(i).getReg()))
2235 continue;
2236 const TargetRegisterClass *OpRC =
2237 MRI.getRegClass(MI.getOperand(i).getReg());
2238 if (RI.hasVGPRs(OpRC)) {
2239 VRC = OpRC;
2240 } else {
2241 SRC = OpRC;
2242 }
2243 }
2244
2245 // If any of the operands are VGPR registers, then they all most be
2246 // otherwise we will create illegal VGPR->SGPR copies when legalizing
2247 // them.
2248 if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) {
2249 if (!VRC) {
2250 assert(SRC);
2251 VRC = RI.getEquivalentVGPRClass(SRC);
2252 }
2253 RC = VRC;
2254 } else {
2255 RC = SRC;
2256 }
2257
2258 // Update all the operands so they have the same type.
2259 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2260 MachineOperand &Op = MI.getOperand(I);
2261 if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
2262 continue;
2263 unsigned DstReg = MRI.createVirtualRegister(RC);
2264
2265 // MI is a PHI instruction.
2266 MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB();
2267 MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator();
2268
2269 BuildMI(*InsertBB, Insert, MI.getDebugLoc(), get(AMDGPU::COPY), DstReg)
2270 .addOperand(Op);
2271 Op.setReg(DstReg);
2272 }
2273 }
2274
2275 // REG_SEQUENCE doesn't really require operand legalization, but if one has a
2276 // VGPR dest type and SGPR sources, insert copies so all operands are
2277 // VGPRs. This seems to help operand folding / the register coalescer.
2278 if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) {
2279 MachineBasicBlock *MBB = MI.getParent();
2280 const TargetRegisterClass *DstRC = getOpRegClass(MI, 0);
2281 if (RI.hasVGPRs(DstRC)) {
2282 // Update all the operands so they are VGPR register classes. These may
2283 // not be the same register class because REG_SEQUENCE supports mixing
2284 // subregister index types e.g. sub0_sub1 + sub2 + sub3
2285 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2286 MachineOperand &Op = MI.getOperand(I);
2287 if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
2288 continue;
2289
2290 const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg());
2291 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC);
2292 if (VRC == OpRC)
2293 continue;
2294
2295 unsigned DstReg = MRI.createVirtualRegister(VRC);
2296
2297 BuildMI(*MBB, MI, MI.getDebugLoc(), get(AMDGPU::COPY), DstReg)
2298 .addOperand(Op);
2299
2300 Op.setReg(DstReg);
2301 Op.setIsKill();
2302 }
2303 }
2304
2305 return;
2306 }
2307
2308 // Legalize INSERT_SUBREG
2309 // src0 must have the same register class as dst
2310 if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) {
2311 unsigned Dst = MI.getOperand(0).getReg();
2312 unsigned Src0 = MI.getOperand(1).getReg();
2313 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
2314 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0);
2315 if (DstRC != Src0RC) {
2316 MachineBasicBlock &MBB = *MI.getParent();
2317 unsigned NewSrc0 = MRI.createVirtualRegister(DstRC);
2318 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::COPY), NewSrc0)
2319 .addReg(Src0);
2320 MI.getOperand(1).setReg(NewSrc0);
2321 }
2322 return;
2323 }
2324
2325 // Legalize MIMG
2326 if (isMIMG(MI)) {
2327 MachineOperand *SRsrc = getNamedOperand(MI, AMDGPU::OpName::srsrc);
2328 if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) {
2329 unsigned SGPR = readlaneVGPRToSGPR(SRsrc->getReg(), MI, MRI);
2330 SRsrc->setReg(SGPR);
2331 }
2332
2333 MachineOperand *SSamp = getNamedOperand(MI, AMDGPU::OpName::ssamp);
2334 if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) {
2335 unsigned SGPR = readlaneVGPRToSGPR(SSamp->getReg(), MI, MRI);
2336 SSamp->setReg(SGPR);
2337 }
2338 return;
2339 }
2340
2341 // Legalize MUBUF* instructions
2342 // FIXME: If we start using the non-addr64 instructions for compute, we
2343 // may need to legalize them here.
2344 int SRsrcIdx =
2345 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
2346 if (SRsrcIdx != -1) {
2347 // We have an MUBUF instruction
2348 MachineOperand *SRsrc = &MI.getOperand(SRsrcIdx);
2349 unsigned SRsrcRC = get(MI.getOpcode()).OpInfo[SRsrcIdx].RegClass;
2350 if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()),
2351 RI.getRegClass(SRsrcRC))) {
2352 // The operands are legal.
2353 // FIXME: We may need to legalize operands besided srsrc.
2354 return;
2355 }
2356
2357 MachineBasicBlock &MBB = *MI.getParent();
2358
2359 // Extract the ptr from the resource descriptor.
2360 unsigned SRsrcPtr = buildExtractSubReg(MI, MRI, *SRsrc,
2361 &AMDGPU::VReg_128RegClass, AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass);
2362
2363 // Create an empty resource descriptor
2364 unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2365 unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2366 unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2367 unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
2368 uint64_t RsrcDataFormat = getDefaultRsrcDataFormat();
2369
2370 // Zero64 = 0
2371 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B64), Zero64)
2372 .addImm(0);
2373
2374 // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
2375 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B32), SRsrcFormatLo)
2376 .addImm(RsrcDataFormat & 0xFFFFFFFF);
2377
2378 // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
2379 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B32), SRsrcFormatHi)
2380 .addImm(RsrcDataFormat >> 32);
2381
2382 // NewSRsrc = {Zero64, SRsrcFormat}
2383 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewSRsrc)
2384 .addReg(Zero64)
2385 .addImm(AMDGPU::sub0_sub1)
2386 .addReg(SRsrcFormatLo)
2387 .addImm(AMDGPU::sub2)
2388 .addReg(SRsrcFormatHi)
2389 .addImm(AMDGPU::sub3);
2390
2391 MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr);
2392 unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
2393 if (VAddr) {
2394 // This is already an ADDR64 instruction so we need to add the pointer
2395 // extracted from the resource descriptor to the current value of VAddr.
2396 unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2397 unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2398
2399 // NewVaddrLo = SRsrcPtr:sub0 + VAddr:sub0
2400 DebugLoc DL = MI.getDebugLoc();
2401 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), NewVAddrLo)
2402 .addReg(SRsrcPtr, 0, AMDGPU::sub0)
2403 .addReg(VAddr->getReg(), 0, AMDGPU::sub0);
2404
2405 // NewVaddrHi = SRsrcPtr:sub1 + VAddr:sub1
2406 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e32), NewVAddrHi)
2407 .addReg(SRsrcPtr, 0, AMDGPU::sub1)
2408 .addReg(VAddr->getReg(), 0, AMDGPU::sub1);
2409
2410 // NewVaddr = {NewVaddrHi, NewVaddrLo}
2411 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr)
2412 .addReg(NewVAddrLo)
2413 .addImm(AMDGPU::sub0)
2414 .addReg(NewVAddrHi)
2415 .addImm(AMDGPU::sub1);
2416 } else {
2417 // This instructions is the _OFFSET variant, so we need to convert it to
2418 // ADDR64.
2419 assert(MBB.getParent()->getSubtarget<SISubtarget>().getGeneration()
2420 < SISubtarget::VOLCANIC_ISLANDS &&
2421 "FIXME: Need to emit flat atomics here");
2422
2423 MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata);
2424 MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset);
2425 MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset);
2426 unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode());
2427
2428 // Atomics rith return have have an additional tied operand and are
2429 // missing some of the special bits.
2430 MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in);
2431 MachineInstr *Addr64;
2432
2433 if (!VDataIn) {
2434 // Regular buffer load / store.
2435 MachineInstrBuilder MIB =
2436 BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
2437 .addOperand(*VData)
2438 .addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
2439 // This will be replaced later
2440 // with the new value of vaddr.
2441 .addOperand(*SRsrc)
2442 .addOperand(*SOffset)
2443 .addOperand(*Offset);
2444
2445 // Atomics do not have this operand.
2446 if (const MachineOperand *GLC =
2447 getNamedOperand(MI, AMDGPU::OpName::glc)) {
2448 MIB.addImm(GLC->getImm());
2449 }
2450
2451 MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::slc));
2452
2453 if (const MachineOperand *TFE =
2454 getNamedOperand(MI, AMDGPU::OpName::tfe)) {
2455 MIB.addImm(TFE->getImm());
2456 }
2457
2458 MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
2459 Addr64 = MIB;
2460 } else {
2461 // Atomics with return.
2462 Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
2463 .addOperand(*VData)
2464 .addOperand(*VDataIn)
2465 .addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
2466 // This will be replaced later
2467 // with the new value of vaddr.
2468 .addOperand(*SRsrc)
2469 .addOperand(*SOffset)
2470 .addOperand(*Offset)
2471 .addImm(getNamedImmOperand(MI, AMDGPU::OpName::slc))
2472 .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
2473 }
2474
2475 MI.removeFromParent();
2476
2477 // NewVaddr = {NewVaddrHi, NewVaddrLo}
2478 BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
2479 NewVAddr)
2480 .addReg(SRsrcPtr, 0, AMDGPU::sub0)
2481 .addImm(AMDGPU::sub0)
2482 .addReg(SRsrcPtr, 0, AMDGPU::sub1)
2483 .addImm(AMDGPU::sub1);
2484
2485 VAddr = getNamedOperand(*Addr64, AMDGPU::OpName::vaddr);
2486 SRsrc = getNamedOperand(*Addr64, AMDGPU::OpName::srsrc);
2487 }
2488
2489 // Update the instruction to use NewVaddr
2490 VAddr->setReg(NewVAddr);
2491 // Update the instruction to use NewSRsrc
2492 SRsrc->setReg(NewSRsrc);
2493 }
2494 }
2495
moveToVALU(MachineInstr & TopInst) const2496 void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
2497 SmallVector<MachineInstr *, 128> Worklist;
2498 Worklist.push_back(&TopInst);
2499
2500 while (!Worklist.empty()) {
2501 MachineInstr &Inst = *Worklist.pop_back_val();
2502 MachineBasicBlock *MBB = Inst.getParent();
2503 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
2504
2505 unsigned Opcode = Inst.getOpcode();
2506 unsigned NewOpcode = getVALUOp(Inst);
2507
2508 // Handle some special cases
2509 switch (Opcode) {
2510 default:
2511 break;
2512 case AMDGPU::S_AND_B64:
2513 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_AND_B32_e64);
2514 Inst.eraseFromParent();
2515 continue;
2516
2517 case AMDGPU::S_OR_B64:
2518 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_OR_B32_e64);
2519 Inst.eraseFromParent();
2520 continue;
2521
2522 case AMDGPU::S_XOR_B64:
2523 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_XOR_B32_e64);
2524 Inst.eraseFromParent();
2525 continue;
2526
2527 case AMDGPU::S_NOT_B64:
2528 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::V_NOT_B32_e32);
2529 Inst.eraseFromParent();
2530 continue;
2531
2532 case AMDGPU::S_BCNT1_I32_B64:
2533 splitScalar64BitBCNT(Worklist, Inst);
2534 Inst.eraseFromParent();
2535 continue;
2536
2537 case AMDGPU::S_BFE_I64: {
2538 splitScalar64BitBFE(Worklist, Inst);
2539 Inst.eraseFromParent();
2540 continue;
2541 }
2542
2543 case AMDGPU::S_LSHL_B32:
2544 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
2545 NewOpcode = AMDGPU::V_LSHLREV_B32_e64;
2546 swapOperands(Inst);
2547 }
2548 break;
2549 case AMDGPU::S_ASHR_I32:
2550 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
2551 NewOpcode = AMDGPU::V_ASHRREV_I32_e64;
2552 swapOperands(Inst);
2553 }
2554 break;
2555 case AMDGPU::S_LSHR_B32:
2556 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
2557 NewOpcode = AMDGPU::V_LSHRREV_B32_e64;
2558 swapOperands(Inst);
2559 }
2560 break;
2561 case AMDGPU::S_LSHL_B64:
2562 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
2563 NewOpcode = AMDGPU::V_LSHLREV_B64;
2564 swapOperands(Inst);
2565 }
2566 break;
2567 case AMDGPU::S_ASHR_I64:
2568 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
2569 NewOpcode = AMDGPU::V_ASHRREV_I64;
2570 swapOperands(Inst);
2571 }
2572 break;
2573 case AMDGPU::S_LSHR_B64:
2574 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
2575 NewOpcode = AMDGPU::V_LSHRREV_B64;
2576 swapOperands(Inst);
2577 }
2578 break;
2579
2580 case AMDGPU::S_ABS_I32:
2581 lowerScalarAbs(Worklist, Inst);
2582 Inst.eraseFromParent();
2583 continue;
2584
2585 case AMDGPU::S_CBRANCH_SCC0:
2586 case AMDGPU::S_CBRANCH_SCC1:
2587 // Clear unused bits of vcc
2588 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::S_AND_B64),
2589 AMDGPU::VCC)
2590 .addReg(AMDGPU::EXEC)
2591 .addReg(AMDGPU::VCC);
2592 break;
2593
2594 case AMDGPU::S_BFE_U64:
2595 case AMDGPU::S_BFM_B64:
2596 llvm_unreachable("Moving this op to VALU not implemented");
2597 }
2598
2599 if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
2600 // We cannot move this instruction to the VALU, so we should try to
2601 // legalize its operands instead.
2602 legalizeOperands(Inst);
2603 continue;
2604 }
2605
2606 // Use the new VALU Opcode.
2607 const MCInstrDesc &NewDesc = get(NewOpcode);
2608 Inst.setDesc(NewDesc);
2609
2610 // Remove any references to SCC. Vector instructions can't read from it, and
2611 // We're just about to add the implicit use / defs of VCC, and we don't want
2612 // both.
2613 for (unsigned i = Inst.getNumOperands() - 1; i > 0; --i) {
2614 MachineOperand &Op = Inst.getOperand(i);
2615 if (Op.isReg() && Op.getReg() == AMDGPU::SCC) {
2616 Inst.RemoveOperand(i);
2617 addSCCDefUsersToVALUWorklist(Inst, Worklist);
2618 }
2619 }
2620
2621 if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) {
2622 // We are converting these to a BFE, so we need to add the missing
2623 // operands for the size and offset.
2624 unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
2625 Inst.addOperand(MachineOperand::CreateImm(0));
2626 Inst.addOperand(MachineOperand::CreateImm(Size));
2627
2628 } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
2629 // The VALU version adds the second operand to the result, so insert an
2630 // extra 0 operand.
2631 Inst.addOperand(MachineOperand::CreateImm(0));
2632 }
2633
2634 Inst.addImplicitDefUseOperands(*Inst.getParent()->getParent());
2635
2636 if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) {
2637 const MachineOperand &OffsetWidthOp = Inst.getOperand(2);
2638 // If we need to move this to VGPRs, we need to unpack the second operand
2639 // back into the 2 separate ones for bit offset and width.
2640 assert(OffsetWidthOp.isImm() &&
2641 "Scalar BFE is only implemented for constant width and offset");
2642 uint32_t Imm = OffsetWidthOp.getImm();
2643
2644 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
2645 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
2646 Inst.RemoveOperand(2); // Remove old immediate.
2647 Inst.addOperand(MachineOperand::CreateImm(Offset));
2648 Inst.addOperand(MachineOperand::CreateImm(BitWidth));
2649 }
2650
2651 bool HasDst = Inst.getOperand(0).isReg() && Inst.getOperand(0).isDef();
2652 unsigned NewDstReg = AMDGPU::NoRegister;
2653 if (HasDst) {
2654 // Update the destination register class.
2655 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst);
2656 if (!NewDstRC)
2657 continue;
2658
2659 unsigned DstReg = Inst.getOperand(0).getReg();
2660 NewDstReg = MRI.createVirtualRegister(NewDstRC);
2661 MRI.replaceRegWith(DstReg, NewDstReg);
2662 }
2663
2664 // Legalize the operands
2665 legalizeOperands(Inst);
2666
2667 if (HasDst)
2668 addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist);
2669 }
2670 }
2671
lowerScalarAbs(SmallVectorImpl<MachineInstr * > & Worklist,MachineInstr & Inst) const2672 void SIInstrInfo::lowerScalarAbs(SmallVectorImpl<MachineInstr *> &Worklist,
2673 MachineInstr &Inst) const {
2674 MachineBasicBlock &MBB = *Inst.getParent();
2675 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2676 MachineBasicBlock::iterator MII = Inst;
2677 DebugLoc DL = Inst.getDebugLoc();
2678
2679 MachineOperand &Dest = Inst.getOperand(0);
2680 MachineOperand &Src = Inst.getOperand(1);
2681 unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2682 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2683
2684 BuildMI(MBB, MII, DL, get(AMDGPU::V_SUB_I32_e32), TmpReg)
2685 .addImm(0)
2686 .addReg(Src.getReg());
2687
2688 BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg)
2689 .addReg(Src.getReg())
2690 .addReg(TmpReg);
2691
2692 MRI.replaceRegWith(Dest.getReg(), ResultReg);
2693 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
2694 }
2695
splitScalar64BitUnaryOp(SmallVectorImpl<MachineInstr * > & Worklist,MachineInstr & Inst,unsigned Opcode) const2696 void SIInstrInfo::splitScalar64BitUnaryOp(
2697 SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst,
2698 unsigned Opcode) const {
2699 MachineBasicBlock &MBB = *Inst.getParent();
2700 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2701
2702 MachineOperand &Dest = Inst.getOperand(0);
2703 MachineOperand &Src0 = Inst.getOperand(1);
2704 DebugLoc DL = Inst.getDebugLoc();
2705
2706 MachineBasicBlock::iterator MII = Inst;
2707
2708 const MCInstrDesc &InstDesc = get(Opcode);
2709 const TargetRegisterClass *Src0RC = Src0.isReg() ?
2710 MRI.getRegClass(Src0.getReg()) :
2711 &AMDGPU::SGPR_32RegClass;
2712
2713 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
2714
2715 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
2716 AMDGPU::sub0, Src0SubRC);
2717
2718 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
2719 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
2720 const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
2721
2722 unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
2723 BuildMI(MBB, MII, DL, InstDesc, DestSub0)
2724 .addOperand(SrcReg0Sub0);
2725
2726 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
2727 AMDGPU::sub1, Src0SubRC);
2728
2729 unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
2730 BuildMI(MBB, MII, DL, InstDesc, DestSub1)
2731 .addOperand(SrcReg0Sub1);
2732
2733 unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC);
2734 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
2735 .addReg(DestSub0)
2736 .addImm(AMDGPU::sub0)
2737 .addReg(DestSub1)
2738 .addImm(AMDGPU::sub1);
2739
2740 MRI.replaceRegWith(Dest.getReg(), FullDestReg);
2741
2742 // We don't need to legalizeOperands here because for a single operand, src0
2743 // will support any kind of input.
2744
2745 // Move all users of this moved value.
2746 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
2747 }
2748
splitScalar64BitBinaryOp(SmallVectorImpl<MachineInstr * > & Worklist,MachineInstr & Inst,unsigned Opcode) const2749 void SIInstrInfo::splitScalar64BitBinaryOp(
2750 SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst,
2751 unsigned Opcode) const {
2752 MachineBasicBlock &MBB = *Inst.getParent();
2753 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2754
2755 MachineOperand &Dest = Inst.getOperand(0);
2756 MachineOperand &Src0 = Inst.getOperand(1);
2757 MachineOperand &Src1 = Inst.getOperand(2);
2758 DebugLoc DL = Inst.getDebugLoc();
2759
2760 MachineBasicBlock::iterator MII = Inst;
2761
2762 const MCInstrDesc &InstDesc = get(Opcode);
2763 const TargetRegisterClass *Src0RC = Src0.isReg() ?
2764 MRI.getRegClass(Src0.getReg()) :
2765 &AMDGPU::SGPR_32RegClass;
2766
2767 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
2768 const TargetRegisterClass *Src1RC = Src1.isReg() ?
2769 MRI.getRegClass(Src1.getReg()) :
2770 &AMDGPU::SGPR_32RegClass;
2771
2772 const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0);
2773
2774 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
2775 AMDGPU::sub0, Src0SubRC);
2776 MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
2777 AMDGPU::sub0, Src1SubRC);
2778
2779 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
2780 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
2781 const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
2782
2783 unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
2784 MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0)
2785 .addOperand(SrcReg0Sub0)
2786 .addOperand(SrcReg1Sub0);
2787
2788 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
2789 AMDGPU::sub1, Src0SubRC);
2790 MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
2791 AMDGPU::sub1, Src1SubRC);
2792
2793 unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
2794 MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1)
2795 .addOperand(SrcReg0Sub1)
2796 .addOperand(SrcReg1Sub1);
2797
2798 unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC);
2799 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
2800 .addReg(DestSub0)
2801 .addImm(AMDGPU::sub0)
2802 .addReg(DestSub1)
2803 .addImm(AMDGPU::sub1);
2804
2805 MRI.replaceRegWith(Dest.getReg(), FullDestReg);
2806
2807 // Try to legalize the operands in case we need to swap the order to keep it
2808 // valid.
2809 legalizeOperands(LoHalf);
2810 legalizeOperands(HiHalf);
2811
2812 // Move all users of this moved vlaue.
2813 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
2814 }
2815
splitScalar64BitBCNT(SmallVectorImpl<MachineInstr * > & Worklist,MachineInstr & Inst) const2816 void SIInstrInfo::splitScalar64BitBCNT(
2817 SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst) const {
2818 MachineBasicBlock &MBB = *Inst.getParent();
2819 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2820
2821 MachineBasicBlock::iterator MII = Inst;
2822 DebugLoc DL = Inst.getDebugLoc();
2823
2824 MachineOperand &Dest = Inst.getOperand(0);
2825 MachineOperand &Src = Inst.getOperand(1);
2826
2827 const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64);
2828 const TargetRegisterClass *SrcRC = Src.isReg() ?
2829 MRI.getRegClass(Src.getReg()) :
2830 &AMDGPU::SGPR_32RegClass;
2831
2832 unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2833 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2834
2835 const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0);
2836
2837 MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
2838 AMDGPU::sub0, SrcSubRC);
2839 MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
2840 AMDGPU::sub1, SrcSubRC);
2841
2842 BuildMI(MBB, MII, DL, InstDesc, MidReg)
2843 .addOperand(SrcRegSub0)
2844 .addImm(0);
2845
2846 BuildMI(MBB, MII, DL, InstDesc, ResultReg)
2847 .addOperand(SrcRegSub1)
2848 .addReg(MidReg);
2849
2850 MRI.replaceRegWith(Dest.getReg(), ResultReg);
2851
2852 // We don't need to legalize operands here. src0 for etiher instruction can be
2853 // an SGPR, and the second input is unused or determined here.
2854 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
2855 }
2856
splitScalar64BitBFE(SmallVectorImpl<MachineInstr * > & Worklist,MachineInstr & Inst) const2857 void SIInstrInfo::splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist,
2858 MachineInstr &Inst) const {
2859 MachineBasicBlock &MBB = *Inst.getParent();
2860 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2861 MachineBasicBlock::iterator MII = Inst;
2862 DebugLoc DL = Inst.getDebugLoc();
2863
2864 MachineOperand &Dest = Inst.getOperand(0);
2865 uint32_t Imm = Inst.getOperand(2).getImm();
2866 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
2867 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
2868
2869 (void) Offset;
2870
2871 // Only sext_inreg cases handled.
2872 assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 &&
2873 Offset == 0 && "Not implemented");
2874
2875 if (BitWidth < 32) {
2876 unsigned MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2877 unsigned MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2878 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
2879
2880 BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32), MidRegLo)
2881 .addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0)
2882 .addImm(0)
2883 .addImm(BitWidth);
2884
2885 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi)
2886 .addImm(31)
2887 .addReg(MidRegLo);
2888
2889 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
2890 .addReg(MidRegLo)
2891 .addImm(AMDGPU::sub0)
2892 .addReg(MidRegHi)
2893 .addImm(AMDGPU::sub1);
2894
2895 MRI.replaceRegWith(Dest.getReg(), ResultReg);
2896 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
2897 return;
2898 }
2899
2900 MachineOperand &Src = Inst.getOperand(1);
2901 unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2902 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
2903
2904 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg)
2905 .addImm(31)
2906 .addReg(Src.getReg(), 0, AMDGPU::sub0);
2907
2908 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
2909 .addReg(Src.getReg(), 0, AMDGPU::sub0)
2910 .addImm(AMDGPU::sub0)
2911 .addReg(TmpReg)
2912 .addImm(AMDGPU::sub1);
2913
2914 MRI.replaceRegWith(Dest.getReg(), ResultReg);
2915 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
2916 }
2917
addUsersToMoveToVALUWorklist(unsigned DstReg,MachineRegisterInfo & MRI,SmallVectorImpl<MachineInstr * > & Worklist) const2918 void SIInstrInfo::addUsersToMoveToVALUWorklist(
2919 unsigned DstReg,
2920 MachineRegisterInfo &MRI,
2921 SmallVectorImpl<MachineInstr *> &Worklist) const {
2922 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg),
2923 E = MRI.use_end(); I != E; ++I) {
2924 MachineInstr &UseMI = *I->getParent();
2925 if (!canReadVGPR(UseMI, I.getOperandNo())) {
2926 Worklist.push_back(&UseMI);
2927 }
2928 }
2929 }
2930
addSCCDefUsersToVALUWorklist(MachineInstr & SCCDefInst,SmallVectorImpl<MachineInstr * > & Worklist) const2931 void SIInstrInfo::addSCCDefUsersToVALUWorklist(
2932 MachineInstr &SCCDefInst, SmallVectorImpl<MachineInstr *> &Worklist) const {
2933 // This assumes that all the users of SCC are in the same block
2934 // as the SCC def.
2935 for (MachineInstr &MI :
2936 llvm::make_range(MachineBasicBlock::iterator(SCCDefInst),
2937 SCCDefInst.getParent()->end())) {
2938 // Exit if we find another SCC def.
2939 if (MI.findRegisterDefOperandIdx(AMDGPU::SCC) != -1)
2940 return;
2941
2942 if (MI.findRegisterUseOperandIdx(AMDGPU::SCC) != -1)
2943 Worklist.push_back(&MI);
2944 }
2945 }
2946
getDestEquivalentVGPRClass(const MachineInstr & Inst) const2947 const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass(
2948 const MachineInstr &Inst) const {
2949 const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0);
2950
2951 switch (Inst.getOpcode()) {
2952 // For target instructions, getOpRegClass just returns the virtual register
2953 // class associated with the operand, so we need to find an equivalent VGPR
2954 // register class in order to move the instruction to the VALU.
2955 case AMDGPU::COPY:
2956 case AMDGPU::PHI:
2957 case AMDGPU::REG_SEQUENCE:
2958 case AMDGPU::INSERT_SUBREG:
2959 if (RI.hasVGPRs(NewDstRC))
2960 return nullptr;
2961
2962 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
2963 if (!NewDstRC)
2964 return nullptr;
2965 return NewDstRC;
2966 default:
2967 return NewDstRC;
2968 }
2969 }
2970
2971 // Find the one SGPR operand we are allowed to use.
findUsedSGPR(const MachineInstr & MI,int OpIndices[3]) const2972 unsigned SIInstrInfo::findUsedSGPR(const MachineInstr &MI,
2973 int OpIndices[3]) const {
2974 const MCInstrDesc &Desc = MI.getDesc();
2975
2976 // Find the one SGPR operand we are allowed to use.
2977 //
2978 // First we need to consider the instruction's operand requirements before
2979 // legalizing. Some operands are required to be SGPRs, such as implicit uses
2980 // of VCC, but we are still bound by the constant bus requirement to only use
2981 // one.
2982 //
2983 // If the operand's class is an SGPR, we can never move it.
2984
2985 unsigned SGPRReg = findImplicitSGPRRead(MI);
2986 if (SGPRReg != AMDGPU::NoRegister)
2987 return SGPRReg;
2988
2989 unsigned UsedSGPRs[3] = { AMDGPU::NoRegister };
2990 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2991
2992 for (unsigned i = 0; i < 3; ++i) {
2993 int Idx = OpIndices[i];
2994 if (Idx == -1)
2995 break;
2996
2997 const MachineOperand &MO = MI.getOperand(Idx);
2998 if (!MO.isReg())
2999 continue;
3000
3001 // Is this operand statically required to be an SGPR based on the operand
3002 // constraints?
3003 const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass);
3004 bool IsRequiredSGPR = RI.isSGPRClass(OpRC);
3005 if (IsRequiredSGPR)
3006 return MO.getReg();
3007
3008 // If this could be a VGPR or an SGPR, Check the dynamic register class.
3009 unsigned Reg = MO.getReg();
3010 const TargetRegisterClass *RegRC = MRI.getRegClass(Reg);
3011 if (RI.isSGPRClass(RegRC))
3012 UsedSGPRs[i] = Reg;
3013 }
3014
3015 // We don't have a required SGPR operand, so we have a bit more freedom in
3016 // selecting operands to move.
3017
3018 // Try to select the most used SGPR. If an SGPR is equal to one of the
3019 // others, we choose that.
3020 //
3021 // e.g.
3022 // V_FMA_F32 v0, s0, s0, s0 -> No moves
3023 // V_FMA_F32 v0, s0, s1, s0 -> Move s1
3024
3025 // TODO: If some of the operands are 64-bit SGPRs and some 32, we should
3026 // prefer those.
3027
3028 if (UsedSGPRs[0] != AMDGPU::NoRegister) {
3029 if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2])
3030 SGPRReg = UsedSGPRs[0];
3031 }
3032
3033 if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) {
3034 if (UsedSGPRs[1] == UsedSGPRs[2])
3035 SGPRReg = UsedSGPRs[1];
3036 }
3037
3038 return SGPRReg;
3039 }
3040
getNamedOperand(MachineInstr & MI,unsigned OperandName) const3041 MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI,
3042 unsigned OperandName) const {
3043 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName);
3044 if (Idx == -1)
3045 return nullptr;
3046
3047 return &MI.getOperand(Idx);
3048 }
3049
getDefaultRsrcDataFormat() const3050 uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const {
3051 uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT;
3052 if (ST.isAmdHsaOS()) {
3053 RsrcDataFormat |= (1ULL << 56);
3054
3055 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
3056 // Set MTYPE = 2
3057 RsrcDataFormat |= (2ULL << 59);
3058 }
3059
3060 return RsrcDataFormat;
3061 }
3062
getScratchRsrcWords23() const3063 uint64_t SIInstrInfo::getScratchRsrcWords23() const {
3064 uint64_t Rsrc23 = getDefaultRsrcDataFormat() |
3065 AMDGPU::RSRC_TID_ENABLE |
3066 0xffffffff; // Size;
3067
3068 uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize()) - 1;
3069
3070 Rsrc23 |= (EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT) |
3071 // IndexStride = 64
3072 (UINT64_C(3) << AMDGPU::RSRC_INDEX_STRIDE_SHIFT);
3073
3074 // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17].
3075 // Clear them unless we want a huge stride.
3076 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
3077 Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT;
3078
3079 return Rsrc23;
3080 }
3081
isLowLatencyInstruction(const MachineInstr & MI) const3082 bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const {
3083 unsigned Opc = MI.getOpcode();
3084
3085 return isSMRD(Opc);
3086 }
3087
isHighLatencyInstruction(const MachineInstr & MI) const3088 bool SIInstrInfo::isHighLatencyInstruction(const MachineInstr &MI) const {
3089 unsigned Opc = MI.getOpcode();
3090
3091 return isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc);
3092 }
3093
getInstSizeInBytes(const MachineInstr & MI) const3094 unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
3095 unsigned Opc = MI.getOpcode();
3096 const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc);
3097 unsigned DescSize = Desc.getSize();
3098
3099 // If we have a definitive size, we can use it. Otherwise we need to inspect
3100 // the operands to know the size.
3101 if (DescSize == 8 || DescSize == 4)
3102 return DescSize;
3103
3104 assert(DescSize == 0);
3105
3106 // 4-byte instructions may have a 32-bit literal encoded after them. Check
3107 // operands that coud ever be literals.
3108 if (isVALU(MI) || isSALU(MI)) {
3109 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
3110 if (Src0Idx == -1)
3111 return 4; // No operands.
3112
3113 if (isLiteralConstant(MI.getOperand(Src0Idx), getOpSize(MI, Src0Idx)))
3114 return 8;
3115
3116 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
3117 if (Src1Idx == -1)
3118 return 4;
3119
3120 if (isLiteralConstant(MI.getOperand(Src1Idx), getOpSize(MI, Src1Idx)))
3121 return 8;
3122
3123 return 4;
3124 }
3125
3126 switch (Opc) {
3127 case TargetOpcode::IMPLICIT_DEF:
3128 case TargetOpcode::KILL:
3129 case TargetOpcode::DBG_VALUE:
3130 case TargetOpcode::BUNDLE:
3131 case TargetOpcode::EH_LABEL:
3132 return 0;
3133 case TargetOpcode::INLINEASM: {
3134 const MachineFunction *MF = MI.getParent()->getParent();
3135 const char *AsmStr = MI.getOperand(0).getSymbolName();
3136 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
3137 }
3138 default:
3139 llvm_unreachable("unable to find instruction size");
3140 }
3141 }
3142
3143 ArrayRef<std::pair<int, const char *>>
getSerializableTargetIndices() const3144 SIInstrInfo::getSerializableTargetIndices() const {
3145 static const std::pair<int, const char *> TargetIndices[] = {
3146 {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"},
3147 {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"},
3148 {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"},
3149 {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"},
3150 {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}};
3151 return makeArrayRef(TargetIndices);
3152 }
3153
3154 /// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The
3155 /// post-RA version of misched uses CreateTargetMIHazardRecognizer.
3156 ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const3157 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
3158 const ScheduleDAG *DAG) const {
3159 return new GCNHazardRecognizer(DAG->MF);
3160 }
3161
3162 /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer
3163 /// pass.
3164 ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const MachineFunction & MF) const3165 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
3166 return new GCNHazardRecognizer(MF);
3167 }
3168