• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "runtime.h"
18 
19 // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
20 #include <sys/mount.h>
21 #ifdef __linux__
22 #include <linux/fs.h>
23 #include <sys/prctl.h>
24 #endif
25 
26 #include <fcntl.h>
27 #include <signal.h>
28 #include <sys/syscall.h>
29 
30 #if defined(__APPLE__)
31 #include <crt_externs.h>  // for _NSGetEnviron
32 #endif
33 
34 #include <cstdio>
35 #include <cstdlib>
36 #include <limits>
37 #include <vector>
38 
39 #include "android-base/strings.h"
40 
41 #include "aot_class_linker.h"
42 #include "arch/arm/quick_method_frame_info_arm.h"
43 #include "arch/arm/registers_arm.h"
44 #include "arch/arm64/quick_method_frame_info_arm64.h"
45 #include "arch/arm64/registers_arm64.h"
46 #include "arch/instruction_set_features.h"
47 #include "arch/mips/quick_method_frame_info_mips.h"
48 #include "arch/mips/registers_mips.h"
49 #include "arch/mips64/quick_method_frame_info_mips64.h"
50 #include "arch/mips64/registers_mips64.h"
51 #include "arch/x86/quick_method_frame_info_x86.h"
52 #include "arch/x86/registers_x86.h"
53 #include "arch/x86_64/quick_method_frame_info_x86_64.h"
54 #include "arch/x86_64/registers_x86_64.h"
55 #include "art_field-inl.h"
56 #include "art_method-inl.h"
57 #include "asm_support.h"
58 #include "asm_support_check.h"
59 #include "base/aborting.h"
60 #include "base/arena_allocator.h"
61 #include "base/atomic.h"
62 #include "base/dumpable.h"
63 #include "base/enums.h"
64 #include "base/file_utils.h"
65 #include "base/memory_tool.h"
66 #include "base/mutex.h"
67 #include "base/os.h"
68 #include "base/quasi_atomic.h"
69 #include "base/stl_util.h"
70 #include "base/systrace.h"
71 #include "base/unix_file/fd_file.h"
72 #include "base/utils.h"
73 #include "class_linker-inl.h"
74 #include "compiler_callbacks.h"
75 #include "debugger.h"
76 #include "dex/art_dex_file_loader.h"
77 #include "dex/dex_file_loader.h"
78 #include "elf_file.h"
79 #include "entrypoints/runtime_asm_entrypoints.h"
80 #include "experimental_flags.h"
81 #include "fault_handler.h"
82 #include "gc/accounting/card_table-inl.h"
83 #include "gc/heap.h"
84 #include "gc/scoped_gc_critical_section.h"
85 #include "gc/space/image_space.h"
86 #include "gc/space/space-inl.h"
87 #include "gc/system_weak.h"
88 #include "handle_scope-inl.h"
89 #include "hidden_api.h"
90 #include "image-inl.h"
91 #include "instrumentation.h"
92 #include "intern_table.h"
93 #include "interpreter/interpreter.h"
94 #include "java_vm_ext.h"
95 #include "jit/jit.h"
96 #include "jit/jit_code_cache.h"
97 #include "jit/profile_saver.h"
98 #include "jni_internal.h"
99 #include "linear_alloc.h"
100 #include "memory_representation.h"
101 #include "mirror/array.h"
102 #include "mirror/class-inl.h"
103 #include "mirror/class_ext.h"
104 #include "mirror/class_loader.h"
105 #include "mirror/emulated_stack_frame.h"
106 #include "mirror/field.h"
107 #include "mirror/method.h"
108 #include "mirror/method_handle_impl.h"
109 #include "mirror/method_handles_lookup.h"
110 #include "mirror/method_type.h"
111 #include "mirror/stack_trace_element.h"
112 #include "mirror/throwable.h"
113 #include "mirror/var_handle.h"
114 #include "monitor.h"
115 #include "native/dalvik_system_DexFile.h"
116 #include "native/dalvik_system_VMDebug.h"
117 #include "native/dalvik_system_VMRuntime.h"
118 #include "native/dalvik_system_VMStack.h"
119 #include "native/dalvik_system_ZygoteHooks.h"
120 #include "native/java_lang_Class.h"
121 #include "native/java_lang_Object.h"
122 #include "native/java_lang_String.h"
123 #include "native/java_lang_StringFactory.h"
124 #include "native/java_lang_System.h"
125 #include "native/java_lang_Thread.h"
126 #include "native/java_lang_Throwable.h"
127 #include "native/java_lang_VMClassLoader.h"
128 #include "native/java_lang_invoke_MethodHandleImpl.h"
129 #include "native/java_lang_ref_FinalizerReference.h"
130 #include "native/java_lang_ref_Reference.h"
131 #include "native/java_lang_reflect_Array.h"
132 #include "native/java_lang_reflect_Constructor.h"
133 #include "native/java_lang_reflect_Executable.h"
134 #include "native/java_lang_reflect_Field.h"
135 #include "native/java_lang_reflect_Method.h"
136 #include "native/java_lang_reflect_Parameter.h"
137 #include "native/java_lang_reflect_Proxy.h"
138 #include "native/java_util_concurrent_atomic_AtomicLong.h"
139 #include "native/libcore_util_CharsetUtils.h"
140 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
141 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
142 #include "native/sun_misc_Unsafe.h"
143 #include "native_bridge_art_interface.h"
144 #include "native_stack_dump.h"
145 #include "nativehelper/scoped_local_ref.h"
146 #include "oat_file.h"
147 #include "oat_file_manager.h"
148 #include "object_callbacks.h"
149 #include "parsed_options.h"
150 #include "quick/quick_method_frame_info.h"
151 #include "reflection.h"
152 #include "runtime_callbacks.h"
153 #include "runtime_intrinsics.h"
154 #include "runtime_options.h"
155 #include "scoped_thread_state_change-inl.h"
156 #include "sigchain.h"
157 #include "signal_catcher.h"
158 #include "signal_set.h"
159 #include "thread.h"
160 #include "thread_list.h"
161 #include "ti/agent.h"
162 #include "trace.h"
163 #include "transaction.h"
164 #include "vdex_file.h"
165 #include "verifier/method_verifier.h"
166 #include "well_known_classes.h"
167 
168 #ifdef ART_TARGET_ANDROID
169 #include <android/set_abort_message.h>
170 #endif
171 
172 namespace art {
173 
174 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
175 static constexpr bool kEnableJavaStackTraceHandler = false;
176 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
177 // linking.
178 static constexpr double kLowMemoryMinLoadFactor = 0.5;
179 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
180 static constexpr double kNormalMinLoadFactor = 0.4;
181 static constexpr double kNormalMaxLoadFactor = 0.7;
182 
183 // Extra added to the default heap growth multiplier. Used to adjust the GC ergonomics for the read
184 // barrier config.
185 static constexpr double kExtraDefaultHeapGrowthMultiplier = kUseReadBarrier ? 1.0 : 0.0;
186 
187 Runtime* Runtime::instance_ = nullptr;
188 
189 struct TraceConfig {
190   Trace::TraceMode trace_mode;
191   Trace::TraceOutputMode trace_output_mode;
192   std::string trace_file;
193   size_t trace_file_size;
194 };
195 
196 namespace {
197 #ifdef __APPLE__
GetEnviron()198 inline char** GetEnviron() {
199   // When Google Test is built as a framework on MacOS X, the environ variable
200   // is unavailable. Apple's documentation (man environ) recommends using
201   // _NSGetEnviron() instead.
202   return *_NSGetEnviron();
203 }
204 #else
205 // Some POSIX platforms expect you to declare environ. extern "C" makes
206 // it reside in the global namespace.
207 extern "C" char** environ;
208 inline char** GetEnviron() { return environ; }
209 #endif
210 }  // namespace
211 
Runtime()212 Runtime::Runtime()
213     : resolution_method_(nullptr),
214       imt_conflict_method_(nullptr),
215       imt_unimplemented_method_(nullptr),
216       instruction_set_(InstructionSet::kNone),
217       compiler_callbacks_(nullptr),
218       is_zygote_(false),
219       must_relocate_(false),
220       is_concurrent_gc_enabled_(true),
221       is_explicit_gc_disabled_(false),
222       dex2oat_enabled_(true),
223       image_dex2oat_enabled_(true),
224       default_stack_size_(0),
225       heap_(nullptr),
226       max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
227       monitor_list_(nullptr),
228       monitor_pool_(nullptr),
229       thread_list_(nullptr),
230       intern_table_(nullptr),
231       class_linker_(nullptr),
232       signal_catcher_(nullptr),
233       use_tombstoned_traces_(false),
234       java_vm_(nullptr),
235       fault_message_lock_("Fault message lock"),
236       fault_message_(""),
237       threads_being_born_(0),
238       shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
239       shutting_down_(false),
240       shutting_down_started_(false),
241       started_(false),
242       finished_starting_(false),
243       vfprintf_(nullptr),
244       exit_(nullptr),
245       abort_(nullptr),
246       stats_enabled_(false),
247       is_running_on_memory_tool_(RUNNING_ON_MEMORY_TOOL),
248       instrumentation_(),
249       main_thread_group_(nullptr),
250       system_thread_group_(nullptr),
251       system_class_loader_(nullptr),
252       dump_gc_performance_on_shutdown_(false),
253       preinitialization_transactions_(),
254       verify_(verifier::VerifyMode::kNone),
255       allow_dex_file_fallback_(true),
256       target_sdk_version_(kUnsetSdkVersion),
257       implicit_null_checks_(false),
258       implicit_so_checks_(false),
259       implicit_suspend_checks_(false),
260       no_sig_chain_(false),
261       force_native_bridge_(false),
262       is_native_bridge_loaded_(false),
263       is_native_debuggable_(false),
264       async_exceptions_thrown_(false),
265       is_java_debuggable_(false),
266       zygote_max_failed_boots_(0),
267       experimental_flags_(ExperimentalFlags::kNone),
268       oat_file_manager_(nullptr),
269       is_low_memory_mode_(false),
270       safe_mode_(false),
271       hidden_api_policy_(hiddenapi::EnforcementPolicy::kNoChecks),
272       pending_hidden_api_warning_(false),
273       dedupe_hidden_api_warnings_(true),
274       always_set_hidden_api_warning_flag_(false),
275       hidden_api_access_event_log_rate_(0),
276       dump_native_stack_on_sig_quit_(true),
277       pruned_dalvik_cache_(false),
278       // Initially assume we perceive jank in case the process state is never updated.
279       process_state_(kProcessStateJankPerceptible),
280       zygote_no_threads_(false) {
281   static_assert(Runtime::kCalleeSaveSize ==
282                     static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
283 
284   CheckAsmSupportOffsetsAndSizes();
285   std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
286   interpreter::CheckInterpreterAsmConstants();
287   callbacks_.reset(new RuntimeCallbacks());
288   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
289     deoptimization_counts_[i] = 0u;
290   }
291 }
292 
~Runtime()293 Runtime::~Runtime() {
294   ScopedTrace trace("Runtime shutdown");
295   if (is_native_bridge_loaded_) {
296     UnloadNativeBridge();
297   }
298 
299   Thread* self = Thread::Current();
300   const bool attach_shutdown_thread = self == nullptr;
301   if (attach_shutdown_thread) {
302     // We can only create a peer if the runtime is actually started. This is only not true during
303     // some tests. If there is extreme memory pressure the allocation of the thread peer can fail.
304     // In this case we will just try again without allocating a peer so that shutdown can continue.
305     // Very few things are actually capable of distinguishing between the peer & peerless states so
306     // this should be fine.
307     bool thread_attached = AttachCurrentThread("Shutdown thread",
308                                                /* as_daemon */ false,
309                                                GetSystemThreadGroup(),
310                                                /* Create peer */ IsStarted());
311     if (UNLIKELY(!thread_attached)) {
312       LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer.";
313       CHECK(AttachCurrentThread("Shutdown thread (no java peer)",
314                                 /* as_daemon */   false,
315                                 /* thread_group*/ nullptr,
316                                 /* Create peer */ false));
317     }
318     self = Thread::Current();
319   } else {
320     LOG(WARNING) << "Current thread not detached in Runtime shutdown";
321   }
322 
323   if (dump_gc_performance_on_shutdown_) {
324     ScopedLogSeverity sls(LogSeverity::INFO);
325     // This can't be called from the Heap destructor below because it
326     // could call RosAlloc::InspectAll() which needs the thread_list
327     // to be still alive.
328     heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
329   }
330 
331   if (jit_ != nullptr) {
332     // Stop the profile saver thread before marking the runtime as shutting down.
333     // The saver will try to dump the profiles before being sopped and that
334     // requires holding the mutator lock.
335     jit_->StopProfileSaver();
336   }
337 
338   {
339     ScopedTrace trace2("Wait for shutdown cond");
340     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
341     shutting_down_started_ = true;
342     while (threads_being_born_ > 0) {
343       shutdown_cond_->Wait(self);
344     }
345     shutting_down_ = true;
346   }
347   // Shutdown and wait for the daemons.
348   CHECK(self != nullptr);
349   if (IsFinishedStarting()) {
350     ScopedTrace trace2("Waiting for Daemons");
351     self->ClearException();
352     self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
353                                             WellKnownClasses::java_lang_Daemons_stop);
354   }
355 
356   Trace::Shutdown();
357 
358   // Report death. Clients me require a working thread, still, so do it before GC completes and
359   // all non-daemon threads are done.
360   {
361     ScopedObjectAccess soa(self);
362     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
363   }
364 
365   if (attach_shutdown_thread) {
366     DetachCurrentThread();
367     self = nullptr;
368   }
369 
370   // Make sure to let the GC complete if it is running.
371   heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
372   heap_->DeleteThreadPool();
373   if (jit_ != nullptr) {
374     ScopedTrace trace2("Delete jit");
375     VLOG(jit) << "Deleting jit thread pool";
376     // Delete thread pool before the thread list since we don't want to wait forever on the
377     // JIT compiler threads.
378     jit_->DeleteThreadPool();
379   }
380 
381   // Make sure our internal threads are dead before we start tearing down things they're using.
382   GetRuntimeCallbacks()->StopDebugger();
383   delete signal_catcher_;
384 
385   // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
386   {
387     ScopedTrace trace2("Delete thread list");
388     thread_list_->ShutDown();
389   }
390 
391   // TODO Maybe do some locking.
392   for (auto& agent : agents_) {
393     agent->Unload();
394   }
395 
396   // TODO Maybe do some locking
397   for (auto& plugin : plugins_) {
398     plugin.Unload();
399   }
400 
401   // Finally delete the thread list.
402   delete thread_list_;
403 
404   // Delete the JIT after thread list to ensure that there is no remaining threads which could be
405   // accessing the instrumentation when we delete it.
406   if (jit_ != nullptr) {
407     VLOG(jit) << "Deleting jit";
408     jit_.reset(nullptr);
409   }
410 
411   // Shutdown the fault manager if it was initialized.
412   fault_manager.Shutdown();
413 
414   ScopedTrace trace2("Delete state");
415   delete monitor_list_;
416   delete monitor_pool_;
417   delete class_linker_;
418   delete heap_;
419   delete intern_table_;
420   delete oat_file_manager_;
421   Thread::Shutdown();
422   QuasiAtomic::Shutdown();
423   verifier::MethodVerifier::Shutdown();
424 
425   // Destroy allocators before shutting down the MemMap because they may use it.
426   java_vm_.reset();
427   linear_alloc_.reset();
428   low_4gb_arena_pool_.reset();
429   arena_pool_.reset();
430   jit_arena_pool_.reset();
431   protected_fault_page_.reset();
432   MemMap::Shutdown();
433 
434   // TODO: acquire a static mutex on Runtime to avoid racing.
435   CHECK(instance_ == nullptr || instance_ == this);
436   instance_ = nullptr;
437 
438   // Well-known classes must be deleted or it is impossible to successfully start another Runtime
439   // instance. We rely on a small initialization order issue in Runtime::Start() that requires
440   // elements of WellKnownClasses to be null, see b/65500943.
441   WellKnownClasses::Clear();
442 }
443 
444 struct AbortState {
Dumpart::AbortState445   void Dump(std::ostream& os) const {
446     if (gAborting > 1) {
447       os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
448       DumpRecursiveAbort(os);
449       return;
450     }
451     gAborting++;
452     os << "Runtime aborting...\n";
453     if (Runtime::Current() == nullptr) {
454       os << "(Runtime does not yet exist!)\n";
455       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
456       return;
457     }
458     Thread* self = Thread::Current();
459 
460     // Dump all threads first and then the aborting thread. While this is counter the logical flow,
461     // it improves the chance of relevant data surviving in the Android logs.
462 
463     DumpAllThreads(os, self);
464 
465     if (self == nullptr) {
466       os << "(Aborting thread was not attached to runtime!)\n";
467       DumpKernelStack(os, GetTid(), "  kernel: ", false);
468       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
469     } else {
470       os << "Aborting thread:\n";
471       if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
472         DumpThread(os, self);
473       } else {
474         if (Locks::mutator_lock_->SharedTryLock(self)) {
475           DumpThread(os, self);
476           Locks::mutator_lock_->SharedUnlock(self);
477         }
478       }
479     }
480   }
481 
482   // No thread-safety analysis as we do explicitly test for holding the mutator lock.
DumpThreadart::AbortState483   void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
484     DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
485     self->Dump(os);
486     if (self->IsExceptionPending()) {
487       mirror::Throwable* exception = self->GetException();
488       os << "Pending exception " << exception->Dump();
489     }
490   }
491 
DumpAllThreadsart::AbortState492   void DumpAllThreads(std::ostream& os, Thread* self) const {
493     Runtime* runtime = Runtime::Current();
494     if (runtime != nullptr) {
495       ThreadList* thread_list = runtime->GetThreadList();
496       if (thread_list != nullptr) {
497         bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
498         bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
499         if (!tll_already_held || !ml_already_held) {
500           os << "Dumping all threads without appropriate locks held:"
501               << (!tll_already_held ? " thread list lock" : "")
502               << (!ml_already_held ? " mutator lock" : "")
503               << "\n";
504         }
505         os << "All threads:\n";
506         thread_list->Dump(os);
507       }
508     }
509   }
510 
511   // For recursive aborts.
DumpRecursiveAbortart::AbortState512   void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
513     // The only thing we'll attempt is dumping the native stack of the current thread. We will only
514     // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
515     // die.
516     // Note: as we're using a global counter for the recursive abort detection, there is a potential
517     //       race here and it is not OK to just print when the counter is "2" (one from
518     //       Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
519     static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
520     if (gAborting < kOnlyPrintWhenRecursionLessThan) {
521       gAborting++;
522       DumpNativeStack(os, GetTid());
523     }
524   }
525 };
526 
Abort(const char * msg)527 void Runtime::Abort(const char* msg) {
528   auto old_value = gAborting.fetch_add(1);  // set before taking any locks
529 
530 #ifdef ART_TARGET_ANDROID
531   if (old_value == 0) {
532     // Only set the first abort message.
533     android_set_abort_message(msg);
534   }
535 #else
536   UNUSED(old_value);
537 #endif
538 
539 #ifdef ART_TARGET_ANDROID
540   android_set_abort_message(msg);
541 #endif
542 
543   // Ensure that we don't have multiple threads trying to abort at once,
544   // which would result in significantly worse diagnostics.
545   MutexLock mu(Thread::Current(), *Locks::abort_lock_);
546 
547   // Get any pending output out of the way.
548   fflush(nullptr);
549 
550   // Many people have difficulty distinguish aborts from crashes,
551   // so be explicit.
552   // Note: use cerr on the host to print log lines immediately, so we get at least some output
553   //       in case of recursive aborts. We lose annotation with the source file and line number
554   //       here, which is a minor issue. The same is significantly more complicated on device,
555   //       which is why we ignore the issue there.
556   AbortState state;
557   if (kIsTargetBuild) {
558     LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
559   } else {
560     std::cerr << Dumpable<AbortState>(state);
561   }
562 
563   // Sometimes we dump long messages, and the Android abort message only retains the first line.
564   // In those cases, just log the message again, to avoid logcat limits.
565   if (msg != nullptr && strchr(msg, '\n') != nullptr) {
566     LOG(FATAL_WITHOUT_ABORT) << msg;
567   }
568 
569   // Call the abort hook if we have one.
570   if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
571     LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
572     Runtime::Current()->abort_();
573     // notreached
574     LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
575   }
576 
577 #if defined(__GLIBC__)
578   // TODO: we ought to be able to use pthread_kill(3) here (or abort(3),
579   // which POSIX defines in terms of raise(3), which POSIX defines in terms
580   // of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through
581   // libpthread, which means the stacks we dump would be useless. Calling
582   // tgkill(2) directly avoids that.
583   syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT);
584   // TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM?
585   // If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3).
586   exit(1);
587 #else
588   abort();
589 #endif
590   // notreached
591 }
592 
PreZygoteFork()593 void Runtime::PreZygoteFork() {
594   heap_->PreZygoteFork();
595 }
596 
CallExitHook(jint status)597 void Runtime::CallExitHook(jint status) {
598   if (exit_ != nullptr) {
599     ScopedThreadStateChange tsc(Thread::Current(), kNative);
600     exit_(status);
601     LOG(WARNING) << "Exit hook returned instead of exiting!";
602   }
603 }
604 
SweepSystemWeaks(IsMarkedVisitor * visitor)605 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
606   GetInternTable()->SweepInternTableWeaks(visitor);
607   GetMonitorList()->SweepMonitorList(visitor);
608   GetJavaVM()->SweepJniWeakGlobals(visitor);
609   GetHeap()->SweepAllocationRecords(visitor);
610   if (GetJit() != nullptr) {
611     // Visit JIT literal tables. Objects in these tables are classes and strings
612     // and only classes can be affected by class unloading. The strings always
613     // stay alive as they are strongly interned.
614     // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
615     // from mutators. See b/32167580.
616     GetJit()->GetCodeCache()->SweepRootTables(visitor);
617   }
618 
619   // All other generic system-weak holders.
620   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
621     holder->Sweep(visitor);
622   }
623 }
624 
ParseOptions(const RuntimeOptions & raw_options,bool ignore_unrecognized,RuntimeArgumentMap * runtime_options)625 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
626                            bool ignore_unrecognized,
627                            RuntimeArgumentMap* runtime_options) {
628   Locks::Init();
629   InitLogging(/* argv */ nullptr, Abort);  // Calls Locks::Init() as a side effect.
630   bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
631   if (!parsed) {
632     LOG(ERROR) << "Failed to parse options";
633     return false;
634   }
635   return true;
636 }
637 
638 // Callback to check whether it is safe to call Abort (e.g., to use a call to
639 // LOG(FATAL)).  It is only safe to call Abort if the runtime has been created,
640 // properly initialized, and has not shut down.
IsSafeToCallAbort()641 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
642   Runtime* runtime = Runtime::Current();
643   return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
644 }
645 
Create(RuntimeArgumentMap && runtime_options)646 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
647   // TODO: acquire a static mutex on Runtime to avoid racing.
648   if (Runtime::instance_ != nullptr) {
649     return false;
650   }
651   instance_ = new Runtime;
652   Locks::SetClientCallback(IsSafeToCallAbort);
653   if (!instance_->Init(std::move(runtime_options))) {
654     // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
655     // leak memory, instead. Fix the destructor. b/19100793.
656     // delete instance_;
657     instance_ = nullptr;
658     return false;
659   }
660   return true;
661 }
662 
Create(const RuntimeOptions & raw_options,bool ignore_unrecognized)663 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
664   RuntimeArgumentMap runtime_options;
665   return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
666       Create(std::move(runtime_options));
667 }
668 
CreateSystemClassLoader(Runtime * runtime)669 static jobject CreateSystemClassLoader(Runtime* runtime) {
670   if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
671     return nullptr;
672   }
673 
674   ScopedObjectAccess soa(Thread::Current());
675   ClassLinker* cl = Runtime::Current()->GetClassLinker();
676   auto pointer_size = cl->GetImagePointerSize();
677 
678   StackHandleScope<2> hs(soa.Self());
679   Handle<mirror::Class> class_loader_class(
680       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
681   CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
682 
683   ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
684       "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
685   CHECK(getSystemClassLoader != nullptr);
686   CHECK(getSystemClassLoader->IsStatic());
687 
688   JValue result = InvokeWithJValues(soa,
689                                     nullptr,
690                                     jni::EncodeArtMethod(getSystemClassLoader),
691                                     nullptr);
692   JNIEnv* env = soa.Self()->GetJniEnv();
693   ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
694   CHECK(system_class_loader.get() != nullptr);
695 
696   soa.Self()->SetClassLoaderOverride(system_class_loader.get());
697 
698   Handle<mirror::Class> thread_class(
699       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
700   CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
701 
702   ArtField* contextClassLoader =
703       thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
704   CHECK(contextClassLoader != nullptr);
705 
706   // We can't run in a transaction yet.
707   contextClassLoader->SetObject<false>(
708       soa.Self()->GetPeer(),
709       soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
710 
711   return env->NewGlobalRef(system_class_loader.get());
712 }
713 
GetPatchoatExecutable() const714 std::string Runtime::GetPatchoatExecutable() const {
715   if (!patchoat_executable_.empty()) {
716     return patchoat_executable_;
717   }
718   std::string patchoat_executable(GetAndroidRoot());
719   patchoat_executable += (kIsDebugBuild ? "/bin/patchoatd" : "/bin/patchoat");
720   return patchoat_executable;
721 }
722 
GetCompilerExecutable() const723 std::string Runtime::GetCompilerExecutable() const {
724   if (!compiler_executable_.empty()) {
725     return compiler_executable_;
726   }
727   std::string compiler_executable(GetAndroidRoot());
728   compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
729   return compiler_executable;
730 }
731 
Start()732 bool Runtime::Start() {
733   VLOG(startup) << "Runtime::Start entering";
734 
735   CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
736 
737   // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
738   // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
739 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
740   if (kIsDebugBuild) {
741     CHECK_EQ(prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY), 0);
742   }
743 #endif
744 
745   // Restore main thread state to kNative as expected by native code.
746   Thread* self = Thread::Current();
747 
748   self->TransitionFromRunnableToSuspended(kNative);
749 
750   started_ = true;
751 
752   if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
753     ScopedObjectAccess soa(self);
754     StackHandleScope<2> hs(soa.Self());
755 
756     auto class_class(hs.NewHandle<mirror::Class>(mirror::Class::GetJavaLangClass()));
757     auto field_class(hs.NewHandle<mirror::Class>(mirror::Field::StaticClass()));
758 
759     class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
760     // Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
761     class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
762   }
763 
764   // InitNativeMethods needs to be after started_ so that the classes
765   // it touches will have methods linked to the oat file if necessary.
766   {
767     ScopedTrace trace2("InitNativeMethods");
768     InitNativeMethods();
769   }
770 
771   // IntializeIntrinsics needs to be called after the WellKnownClasses::Init in InitNativeMethods
772   // because in checking the invocation types of intrinsic methods ArtMethod::GetInvokeType()
773   // needs the SignaturePolymorphic annotation class which is initialized in WellKnownClasses::Init.
774   InitializeIntrinsics();
775 
776   // Initialize well known thread group values that may be accessed threads while attaching.
777   InitThreadGroups(self);
778 
779   Thread::FinishStartup();
780 
781   // Create the JIT either if we have to use JIT compilation or save profiling info. This is
782   // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
783   // ThreadGroup to exist.
784   //
785   // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
786   // recoding profiles. Maybe we should consider changing the name to be more clear it's
787   // not only about compiling. b/28295073.
788   if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
789     std::string error_msg;
790     if (!IsZygote()) {
791     // If we are the zygote then we need to wait until after forking to create the code cache
792     // due to SELinux restrictions on r/w/x memory regions.
793       CreateJit();
794     } else if (jit_options_->UseJitCompilation()) {
795       if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
796         // Try to load compiler pre zygote to reduce PSS. b/27744947
797         LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
798       }
799     }
800   }
801 
802   // Send the start phase event. We have to wait till here as this is when the main thread peer
803   // has just been generated, important root clinits have been run and JNI is completely functional.
804   {
805     ScopedObjectAccess soa(self);
806     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
807   }
808 
809   system_class_loader_ = CreateSystemClassLoader(this);
810 
811   if (!is_zygote_) {
812     if (is_native_bridge_loaded_) {
813       PreInitializeNativeBridge(".");
814     }
815     NativeBridgeAction action = force_native_bridge_
816         ? NativeBridgeAction::kInitialize
817         : NativeBridgeAction::kUnload;
818     InitNonZygoteOrPostFork(self->GetJniEnv(),
819                             /* is_system_server */ false,
820                             action,
821                             GetInstructionSetString(kRuntimeISA));
822   }
823 
824   // Send the initialized phase event. Send it before starting daemons, as otherwise
825   // sending thread events becomes complicated.
826   {
827     ScopedObjectAccess soa(self);
828     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
829   }
830 
831   StartDaemonThreads();
832 
833   {
834     ScopedObjectAccess soa(self);
835     self->GetJniEnv()->AssertLocalsEmpty();
836   }
837 
838   VLOG(startup) << "Runtime::Start exiting";
839   finished_starting_ = true;
840 
841   if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
842     ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
843     Trace::Start(trace_config_->trace_file.c_str(),
844                  -1,
845                  static_cast<int>(trace_config_->trace_file_size),
846                  0,
847                  trace_config_->trace_output_mode,
848                  trace_config_->trace_mode,
849                  0);
850   }
851 
852   // In case we have a profile path passed as a command line argument,
853   // register the current class path for profiling now. Note that we cannot do
854   // this before we create the JIT and having it here is the most convenient way.
855   // This is used when testing profiles with dalvikvm command as there is no
856   // framework to register the dex files for profiling.
857   if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() &&
858       !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
859     std::vector<std::string> dex_filenames;
860     Split(class_path_string_, ':', &dex_filenames);
861     RegisterAppInfo(dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath());
862   }
863 
864   return true;
865 }
866 
EndThreadBirth()867 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
868   DCHECK_GT(threads_being_born_, 0U);
869   threads_being_born_--;
870   if (shutting_down_started_ && threads_being_born_ == 0) {
871     shutdown_cond_->Broadcast(Thread::Current());
872   }
873 }
874 
InitNonZygoteOrPostFork(JNIEnv * env,bool is_system_server,NativeBridgeAction action,const char * isa,bool profile_system_server)875 void Runtime::InitNonZygoteOrPostFork(
876     JNIEnv* env,
877     bool is_system_server,
878     NativeBridgeAction action,
879     const char* isa,
880     bool profile_system_server) {
881   is_zygote_ = false;
882 
883   if (is_native_bridge_loaded_) {
884     switch (action) {
885       case NativeBridgeAction::kUnload:
886         UnloadNativeBridge();
887         is_native_bridge_loaded_ = false;
888         break;
889 
890       case NativeBridgeAction::kInitialize:
891         InitializeNativeBridge(env, isa);
892         break;
893     }
894   }
895 
896   // Create the thread pools.
897   heap_->CreateThreadPool();
898   // Reset the gc performance data at zygote fork so that the GCs
899   // before fork aren't attributed to an app.
900   heap_->ResetGcPerformanceInfo();
901 
902   // We may want to collect profiling samples for system server, but we never want to JIT there.
903   if (is_system_server) {
904     jit_options_->SetUseJitCompilation(false);
905     jit_options_->SetSaveProfilingInfo(profile_system_server);
906     if (profile_system_server) {
907       jit_options_->SetWaitForJitNotificationsToSaveProfile(false);
908       VLOG(profiler) << "Enabling system server profiles";
909     }
910   }
911   if (!safe_mode_ &&
912       (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) &&
913       jit_ == nullptr) {
914     // Note that when running ART standalone (not zygote, nor zygote fork),
915     // the jit may have already been created.
916     CreateJit();
917   }
918 
919   StartSignalCatcher();
920 
921   // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
922   // this will pause the runtime (in the internal debugger implementation), so we probably want
923   // this to come last.
924   ScopedObjectAccess soa(Thread::Current());
925   GetRuntimeCallbacks()->StartDebugger();
926 }
927 
StartSignalCatcher()928 void Runtime::StartSignalCatcher() {
929   if (!is_zygote_) {
930     signal_catcher_ = new SignalCatcher(stack_trace_file_, use_tombstoned_traces_);
931   }
932 }
933 
IsShuttingDown(Thread * self)934 bool Runtime::IsShuttingDown(Thread* self) {
935   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
936   return IsShuttingDownLocked();
937 }
938 
StartDaemonThreads()939 void Runtime::StartDaemonThreads() {
940   ScopedTrace trace(__FUNCTION__);
941   VLOG(startup) << "Runtime::StartDaemonThreads entering";
942 
943   Thread* self = Thread::Current();
944 
945   // Must be in the kNative state for calling native methods.
946   CHECK_EQ(self->GetState(), kNative);
947 
948   JNIEnv* env = self->GetJniEnv();
949   env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
950                             WellKnownClasses::java_lang_Daemons_start);
951   if (env->ExceptionCheck()) {
952     env->ExceptionDescribe();
953     LOG(FATAL) << "Error starting java.lang.Daemons";
954   }
955 
956   VLOG(startup) << "Runtime::StartDaemonThreads exiting";
957 }
958 
959 // Attempts to open dex files from image(s). Given the image location, try to find the oat file
960 // and open it to get the stored dex file. If the image is the first for a multi-image boot
961 // classpath, go on and also open the other images.
OpenDexFilesFromImage(const std::string & image_location,std::vector<std::unique_ptr<const DexFile>> * dex_files,size_t * failures)962 static bool OpenDexFilesFromImage(const std::string& image_location,
963                                   std::vector<std::unique_ptr<const DexFile>>* dex_files,
964                                   size_t* failures) {
965   DCHECK(dex_files != nullptr) << "OpenDexFilesFromImage: out-param is nullptr";
966 
967   // Use a work-list approach, so that we can easily reuse the opening code.
968   std::vector<std::string> image_locations;
969   image_locations.push_back(image_location);
970 
971   for (size_t index = 0; index < image_locations.size(); ++index) {
972     std::string system_filename;
973     bool has_system = false;
974     std::string cache_filename_unused;
975     bool dalvik_cache_exists_unused;
976     bool has_cache_unused;
977     bool is_global_cache_unused;
978     bool found_image = gc::space::ImageSpace::FindImageFilename(image_locations[index].c_str(),
979                                                                 kRuntimeISA,
980                                                                 &system_filename,
981                                                                 &has_system,
982                                                                 &cache_filename_unused,
983                                                                 &dalvik_cache_exists_unused,
984                                                                 &has_cache_unused,
985                                                                 &is_global_cache_unused);
986 
987     if (!found_image || !has_system) {
988       return false;
989     }
990 
991     // We are falling back to non-executable use of the oat file because patching failed, presumably
992     // due to lack of space.
993     std::string vdex_filename =
994         ImageHeader::GetVdexLocationFromImageLocation(system_filename.c_str());
995     std::string oat_filename =
996         ImageHeader::GetOatLocationFromImageLocation(system_filename.c_str());
997     std::string oat_location =
998         ImageHeader::GetOatLocationFromImageLocation(image_locations[index].c_str());
999     // Note: in the multi-image case, the image location may end in ".jar," and not ".art." Handle
1000     //       that here.
1001     if (android::base::EndsWith(oat_location, ".jar")) {
1002       oat_location.replace(oat_location.length() - 3, 3, "oat");
1003     }
1004     std::string error_msg;
1005 
1006     std::unique_ptr<VdexFile> vdex_file(VdexFile::Open(vdex_filename,
1007                                                        false /* writable */,
1008                                                        false /* low_4gb */,
1009                                                        false, /* unquicken */
1010                                                        &error_msg));
1011     if (vdex_file.get() == nullptr) {
1012       return false;
1013     }
1014 
1015     std::unique_ptr<File> file(OS::OpenFileForReading(oat_filename.c_str()));
1016     if (file.get() == nullptr) {
1017       return false;
1018     }
1019     std::unique_ptr<ElfFile> elf_file(ElfFile::Open(file.get(),
1020                                                     false /* writable */,
1021                                                     false /* program_header_only */,
1022                                                     false /* low_4gb */,
1023                                                     &error_msg));
1024     if (elf_file.get() == nullptr) {
1025       return false;
1026     }
1027     std::unique_ptr<const OatFile> oat_file(
1028         OatFile::OpenWithElfFile(/* zip_fd */ -1,
1029                                  elf_file.release(),
1030                                  vdex_file.release(),
1031                                  oat_location,
1032                                  nullptr,
1033                                  &error_msg));
1034     if (oat_file == nullptr) {
1035       LOG(WARNING) << "Unable to use '" << oat_filename << "' because " << error_msg;
1036       return false;
1037     }
1038 
1039     for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
1040       if (oat_dex_file == nullptr) {
1041         *failures += 1;
1042         continue;
1043       }
1044       std::unique_ptr<const DexFile> dex_file = oat_dex_file->OpenDexFile(&error_msg);
1045       if (dex_file.get() == nullptr) {
1046         *failures += 1;
1047       } else {
1048         dex_files->push_back(std::move(dex_file));
1049       }
1050     }
1051 
1052     if (index == 0) {
1053       // First file. See if this is a multi-image environment, and if so, enqueue the other images.
1054       const OatHeader& boot_oat_header = oat_file->GetOatHeader();
1055       const char* boot_cp = boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
1056       if (boot_cp != nullptr) {
1057         gc::space::ImageSpace::ExtractMultiImageLocations(image_locations[0],
1058                                                           boot_cp,
1059                                                           &image_locations);
1060       }
1061     }
1062 
1063     Runtime::Current()->GetOatFileManager().RegisterOatFile(std::move(oat_file));
1064   }
1065   return true;
1066 }
1067 
1068 
OpenDexFiles(const std::vector<std::string> & dex_filenames,const std::vector<std::string> & dex_locations,const std::string & image_location,std::vector<std::unique_ptr<const DexFile>> * dex_files)1069 static size_t OpenDexFiles(const std::vector<std::string>& dex_filenames,
1070                            const std::vector<std::string>& dex_locations,
1071                            const std::string& image_location,
1072                            std::vector<std::unique_ptr<const DexFile>>* dex_files) {
1073   DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
1074   size_t failure_count = 0;
1075   if (!image_location.empty() && OpenDexFilesFromImage(image_location, dex_files, &failure_count)) {
1076     return failure_count;
1077   }
1078   const ArtDexFileLoader dex_file_loader;
1079   failure_count = 0;
1080   for (size_t i = 0; i < dex_filenames.size(); i++) {
1081     const char* dex_filename = dex_filenames[i].c_str();
1082     const char* dex_location = dex_locations[i].c_str();
1083     static constexpr bool kVerifyChecksum = true;
1084     std::string error_msg;
1085     if (!OS::FileExists(dex_filename)) {
1086       LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
1087       continue;
1088     }
1089     if (!dex_file_loader.Open(dex_filename,
1090                               dex_location,
1091                               Runtime::Current()->IsVerificationEnabled(),
1092                               kVerifyChecksum,
1093                               &error_msg,
1094                               dex_files)) {
1095       LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
1096       ++failure_count;
1097     }
1098   }
1099   return failure_count;
1100 }
1101 
SetSentinel(mirror::Object * sentinel)1102 void Runtime::SetSentinel(mirror::Object* sentinel) {
1103   CHECK(sentinel_.Read() == nullptr);
1104   CHECK(sentinel != nullptr);
1105   CHECK(!heap_->IsMovableObject(sentinel));
1106   sentinel_ = GcRoot<mirror::Object>(sentinel);
1107 }
1108 
Init(RuntimeArgumentMap && runtime_options_in)1109 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
1110   // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
1111   // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
1112   env_snapshot_.TakeSnapshot();
1113 
1114   using Opt = RuntimeArgumentMap;
1115   Opt runtime_options(std::move(runtime_options_in));
1116   ScopedTrace trace(__FUNCTION__);
1117   CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
1118 
1119   // Early override for logging output.
1120   if (runtime_options.Exists(Opt::UseStderrLogger)) {
1121     android::base::SetLogger(android::base::StderrLogger);
1122   }
1123 
1124   MemMap::Init();
1125 
1126   // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
1127   // If we cannot reserve it, log a warning.
1128   // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
1129   //       is out-of-the-way enough that it should not collide with boot image mapping.
1130   // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
1131   //       leading to logspam.
1132   {
1133     constexpr uintptr_t kSentinelAddr =
1134         RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize);
1135     protected_fault_page_.reset(MemMap::MapAnonymous("Sentinel fault page",
1136                                                      reinterpret_cast<uint8_t*>(kSentinelAddr),
1137                                                      kPageSize,
1138                                                      PROT_NONE,
1139                                                      /* low_4g */ true,
1140                                                      /* reuse */ false,
1141                                                      /* error_msg */ nullptr));
1142     if (protected_fault_page_ == nullptr) {
1143       LOG(WARNING) << "Could not reserve sentinel fault page";
1144     } else if (reinterpret_cast<uintptr_t>(protected_fault_page_->Begin()) != kSentinelAddr) {
1145       LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
1146       protected_fault_page_.reset();
1147     }
1148   }
1149 
1150   VLOG(startup) << "Runtime::Init -verbose:startup enabled";
1151 
1152   QuasiAtomic::Startup();
1153 
1154   oat_file_manager_ = new OatFileManager;
1155 
1156   Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
1157   Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
1158                 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
1159 
1160   boot_class_path_string_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
1161   class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
1162   properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
1163 
1164   compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
1165   patchoat_executable_ = runtime_options.ReleaseOrDefault(Opt::PatchOat);
1166   must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
1167   is_zygote_ = runtime_options.Exists(Opt::Zygote);
1168   is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
1169   dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::Dex2Oat);
1170   image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
1171   dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
1172 
1173   vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
1174   exit_ = runtime_options.GetOrDefault(Opt::HookExit);
1175   abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
1176 
1177   default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
1178   use_tombstoned_traces_ = runtime_options.GetOrDefault(Opt::UseTombstonedTraces);
1179 #if !defined(ART_TARGET_ANDROID)
1180   CHECK(!use_tombstoned_traces_)
1181       << "-Xusetombstonedtraces is only supported in an Android environment";
1182 #endif
1183   stack_trace_file_ = runtime_options.ReleaseOrDefault(Opt::StackTraceFile);
1184 
1185   compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
1186   compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
1187   for (StringPiece option : Runtime::Current()->GetCompilerOptions()) {
1188     if (option.starts_with("--debuggable")) {
1189       SetJavaDebuggable(true);
1190       break;
1191     }
1192   }
1193   image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
1194   image_location_ = runtime_options.GetOrDefault(Opt::Image);
1195 
1196   max_spins_before_thin_lock_inflation_ =
1197       runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
1198 
1199   monitor_list_ = new MonitorList;
1200   monitor_pool_ = MonitorPool::Create();
1201   thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
1202   intern_table_ = new InternTable;
1203 
1204   verify_ = runtime_options.GetOrDefault(Opt::Verify);
1205   allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback);
1206 
1207   target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion);
1208 
1209   // Check whether to enforce hidden API access checks. The checks are disabled
1210   // by default and we only enable them if:
1211   // (a) runtime was started with a flag that enables the checks, or
1212   // (b) Zygote forked a new process that is not exempt (see ZygoteHooks).
1213   bool do_hidden_api_checks = runtime_options.Exists(Opt::HiddenApiChecks);
1214   DCHECK(!is_zygote_ || !do_hidden_api_checks);
1215   // TODO pass the actual enforcement policy in, rather than just a single bit.
1216   // As is, we're encoding some logic here about which specific policy to use, which would be better
1217   // controlled by the framework.
1218   hidden_api_policy_ = do_hidden_api_checks
1219       ? hiddenapi::EnforcementPolicy::kDarkGreyAndBlackList
1220       : hiddenapi::EnforcementPolicy::kNoChecks;
1221 
1222   no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
1223   force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
1224 
1225   Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
1226 
1227   fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
1228 
1229   if (runtime_options.GetOrDefault(Opt::Interpret)) {
1230     GetInstrumentation()->ForceInterpretOnly();
1231   }
1232 
1233   zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
1234   experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
1235   is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
1236   madvise_random_access_ = runtime_options.GetOrDefault(Opt::MadviseRandomAccess);
1237 
1238   plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
1239   agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
1240   // TODO Add back in -agentlib
1241   // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
1242   //   agents_.push_back(lib);
1243   // }
1244 
1245   float foreground_heap_growth_multiplier;
1246   if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
1247     // If low memory mode, use 1.0 as the multiplier by default.
1248     foreground_heap_growth_multiplier = 1.0f;
1249   } else {
1250     foreground_heap_growth_multiplier =
1251         runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) +
1252             kExtraDefaultHeapGrowthMultiplier;
1253   }
1254   XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
1255   heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
1256                        runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
1257                        runtime_options.GetOrDefault(Opt::HeapMinFree),
1258                        runtime_options.GetOrDefault(Opt::HeapMaxFree),
1259                        runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
1260                        foreground_heap_growth_multiplier,
1261                        runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
1262                        runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
1263                        runtime_options.GetOrDefault(Opt::Image),
1264                        runtime_options.GetOrDefault(Opt::ImageInstructionSet),
1265                        // Override the collector type to CC if the read barrier config.
1266                        kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
1267                        kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
1268                                        : runtime_options.GetOrDefault(Opt::BackgroundGc),
1269                        runtime_options.GetOrDefault(Opt::LargeObjectSpace),
1270                        runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
1271                        runtime_options.GetOrDefault(Opt::ParallelGCThreads),
1272                        runtime_options.GetOrDefault(Opt::ConcGCThreads),
1273                        runtime_options.Exists(Opt::LowMemoryMode),
1274                        runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
1275                        runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
1276                        runtime_options.Exists(Opt::IgnoreMaxFootprint),
1277                        runtime_options.GetOrDefault(Opt::UseTLAB),
1278                        xgc_option.verify_pre_gc_heap_,
1279                        xgc_option.verify_pre_sweeping_heap_,
1280                        xgc_option.verify_post_gc_heap_,
1281                        xgc_option.verify_pre_gc_rosalloc_,
1282                        xgc_option.verify_pre_sweeping_rosalloc_,
1283                        xgc_option.verify_post_gc_rosalloc_,
1284                        xgc_option.gcstress_,
1285                        xgc_option.measure_,
1286                        runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
1287                        runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs));
1288 
1289   if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
1290     LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
1291     return false;
1292   }
1293 
1294   dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
1295 
1296   jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions);
1297   jdwp_provider_ = runtime_options.GetOrDefault(Opt::JdwpProvider);
1298   switch (jdwp_provider_) {
1299     case JdwpProvider::kNone: {
1300       VLOG(jdwp) << "Disabling all JDWP support.";
1301       if (!jdwp_options_.empty()) {
1302         bool has_transport = jdwp_options_.find("transport") != std::string::npos;
1303         const char* transport_internal = !has_transport ? "transport=dt_android_adb," : "";
1304         std::string adb_connection_args =
1305             std::string("  -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_;
1306         LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable "
1307                      << "jdwp with one of:" << std::endl
1308                      << "  -XjdwpProvider:internal "
1309                      << "-XjdwpOptions:" << transport_internal << jdwp_options_ << std::endl
1310                      << "  -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so "
1311                      << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl
1312                      << (has_transport ? "" : adb_connection_args);
1313       }
1314       break;
1315     }
1316     case JdwpProvider::kInternal: {
1317       if (runtime_options.Exists(Opt::JdwpOptions)) {
1318         JDWP::JdwpOptions ops;
1319         if (!JDWP::ParseJdwpOptions(runtime_options.GetOrDefault(Opt::JdwpOptions), &ops)) {
1320           LOG(ERROR) << "failed to parse jdwp options!";
1321           return false;
1322         }
1323         Dbg::ConfigureJdwp(ops);
1324       }
1325       break;
1326     }
1327     case JdwpProvider::kAdbConnection: {
1328       constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so"
1329                                                         : "libadbconnection.so";
1330       plugins_.push_back(Plugin::Create(plugin_name));
1331     }
1332   }
1333   callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
1334   callbacks_->AddClassLoadCallback(Dbg::GetClassLoadCallback());
1335 
1336   jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
1337   if (IsAotCompiler()) {
1338     // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
1339     // this case.
1340     // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
1341     // null and we don't create the jit.
1342     jit_options_->SetUseJitCompilation(false);
1343     jit_options_->SetSaveProfilingInfo(false);
1344   }
1345 
1346   // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
1347   // can't be trimmed as easily.
1348   const bool use_malloc = IsAotCompiler();
1349   arena_pool_.reset(new ArenaPool(use_malloc, /* low_4gb */ false));
1350   jit_arena_pool_.reset(
1351       new ArenaPool(/* use_malloc */ false, /* low_4gb */ false, "CompilerMetadata"));
1352 
1353   if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
1354     // 4gb, no malloc. Explanation in header.
1355     low_4gb_arena_pool_.reset(new ArenaPool(/* use_malloc */ false, /* low_4gb */ true));
1356   }
1357   linear_alloc_.reset(CreateLinearAlloc());
1358 
1359   BlockSignals();
1360   InitPlatformSignalHandlers();
1361 
1362   // Change the implicit checks flags based on runtime architecture.
1363   switch (kRuntimeISA) {
1364     case InstructionSet::kArm:
1365     case InstructionSet::kThumb2:
1366     case InstructionSet::kX86:
1367     case InstructionSet::kArm64:
1368     case InstructionSet::kX86_64:
1369     case InstructionSet::kMips:
1370     case InstructionSet::kMips64:
1371       implicit_null_checks_ = true;
1372       // Installing stack protection does not play well with valgrind.
1373       implicit_so_checks_ = !(RUNNING_ON_MEMORY_TOOL && kMemoryToolIsValgrind);
1374       break;
1375     default:
1376       // Keep the defaults.
1377       break;
1378   }
1379 
1380   if (!no_sig_chain_) {
1381     // Dex2Oat's Runtime does not need the signal chain or the fault handler.
1382     if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
1383       fault_manager.Init();
1384 
1385       // These need to be in a specific order.  The null point check handler must be
1386       // after the suspend check and stack overflow check handlers.
1387       //
1388       // Note: the instances attach themselves to the fault manager and are handled by it. The manager
1389       //       will delete the instance on Shutdown().
1390       if (implicit_suspend_checks_) {
1391         new SuspensionHandler(&fault_manager);
1392       }
1393 
1394       if (implicit_so_checks_) {
1395         new StackOverflowHandler(&fault_manager);
1396       }
1397 
1398       if (implicit_null_checks_) {
1399         new NullPointerHandler(&fault_manager);
1400       }
1401 
1402       if (kEnableJavaStackTraceHandler) {
1403         new JavaStackTraceHandler(&fault_manager);
1404       }
1405     }
1406   }
1407 
1408   std::string error_msg;
1409   java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
1410   if (java_vm_.get() == nullptr) {
1411     LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
1412     return false;
1413   }
1414 
1415   // Add the JniEnv handler.
1416   // TODO Refactor this stuff.
1417   java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
1418 
1419   Thread::Startup();
1420 
1421   // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
1422   // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
1423   // thread, we do not get a java peer.
1424   Thread* self = Thread::Attach("main", false, nullptr, false);
1425   CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
1426   CHECK(self != nullptr);
1427 
1428   self->SetCanCallIntoJava(!IsAotCompiler());
1429 
1430   // Set us to runnable so tools using a runtime can allocate and GC by default
1431   self->TransitionFromSuspendedToRunnable();
1432 
1433   // Now we're attached, we can take the heap locks and validate the heap.
1434   GetHeap()->EnableObjectValidation();
1435 
1436   CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
1437   if (UNLIKELY(IsAotCompiler())) {
1438     class_linker_ = new AotClassLinker(intern_table_);
1439   } else {
1440     class_linker_ = new ClassLinker(intern_table_);
1441   }
1442   if (GetHeap()->HasBootImageSpace()) {
1443     bool result = class_linker_->InitFromBootImage(&error_msg);
1444     if (!result) {
1445       LOG(ERROR) << "Could not initialize from image: " << error_msg;
1446       return false;
1447     }
1448     if (kIsDebugBuild) {
1449       for (auto image_space : GetHeap()->GetBootImageSpaces()) {
1450         image_space->VerifyImageAllocations();
1451       }
1452     }
1453     if (boot_class_path_string_.empty()) {
1454       // The bootclasspath is not explicitly specified: construct it from the loaded dex files.
1455       const std::vector<const DexFile*>& boot_class_path = GetClassLinker()->GetBootClassPath();
1456       std::vector<std::string> dex_locations;
1457       dex_locations.reserve(boot_class_path.size());
1458       for (const DexFile* dex_file : boot_class_path) {
1459         dex_locations.push_back(dex_file->GetLocation());
1460       }
1461       boot_class_path_string_ = android::base::Join(dex_locations, ':');
1462     }
1463     {
1464       ScopedTrace trace2("AddImageStringsToTable");
1465       GetInternTable()->AddImagesStringsToTable(heap_->GetBootImageSpaces());
1466     }
1467     if (IsJavaDebuggable()) {
1468       // Now that we have loaded the boot image, deoptimize its methods if we are running
1469       // debuggable, as the code may have been compiled non-debuggable.
1470       DeoptimizeBootImage();
1471     }
1472   } else {
1473     std::vector<std::string> dex_filenames;
1474     Split(boot_class_path_string_, ':', &dex_filenames);
1475 
1476     std::vector<std::string> dex_locations;
1477     if (!runtime_options.Exists(Opt::BootClassPathLocations)) {
1478       dex_locations = dex_filenames;
1479     } else {
1480       dex_locations = runtime_options.GetOrDefault(Opt::BootClassPathLocations);
1481       CHECK_EQ(dex_filenames.size(), dex_locations.size());
1482     }
1483 
1484     std::vector<std::unique_ptr<const DexFile>> boot_class_path;
1485     if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1486       boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1487     } else {
1488       OpenDexFiles(dex_filenames,
1489                    dex_locations,
1490                    runtime_options.GetOrDefault(Opt::Image),
1491                    &boot_class_path);
1492     }
1493     instruction_set_ = runtime_options.GetOrDefault(Opt::ImageInstructionSet);
1494     if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
1495       LOG(ERROR) << "Could not initialize without image: " << error_msg;
1496       return false;
1497     }
1498 
1499     // TODO: Should we move the following to InitWithoutImage?
1500     SetInstructionSet(instruction_set_);
1501     for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
1502       CalleeSaveType type = CalleeSaveType(i);
1503       if (!HasCalleeSaveMethod(type)) {
1504         SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
1505       }
1506     }
1507   }
1508 
1509   CHECK(class_linker_ != nullptr);
1510 
1511   verifier::MethodVerifier::Init();
1512 
1513   if (runtime_options.Exists(Opt::MethodTrace)) {
1514     trace_config_.reset(new TraceConfig());
1515     trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
1516     trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
1517     trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
1518     trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
1519         Trace::TraceOutputMode::kStreaming :
1520         Trace::TraceOutputMode::kFile;
1521   }
1522 
1523   // TODO: move this to just be an Trace::Start argument
1524   Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
1525 
1526   // Pre-allocate an OutOfMemoryError for the double-OOME case.
1527   self->ThrowNewException("Ljava/lang/OutOfMemoryError;",
1528                           "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
1529                           "no stack trace available");
1530   pre_allocated_OutOfMemoryError_ = GcRoot<mirror::Throwable>(self->GetException());
1531   self->ClearException();
1532 
1533   // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
1534   // ahead of checking the application's class loader.
1535   self->ThrowNewException("Ljava/lang/NoClassDefFoundError;",
1536                           "Class not found using the boot class loader; no stack trace available");
1537   pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(self->GetException());
1538   self->ClearException();
1539 
1540   // Runtime initialization is largely done now.
1541   // We load plugins first since that can modify the runtime state slightly.
1542   // Load all plugins
1543   for (auto& plugin : plugins_) {
1544     std::string err;
1545     if (!plugin.Load(&err)) {
1546       LOG(FATAL) << plugin << " failed to load: " << err;
1547     }
1548   }
1549 
1550   // Look for a native bridge.
1551   //
1552   // The intended flow here is, in the case of a running system:
1553   //
1554   // Runtime::Init() (zygote):
1555   //   LoadNativeBridge -> dlopen from cmd line parameter.
1556   //  |
1557   //  V
1558   // Runtime::Start() (zygote):
1559   //   No-op wrt native bridge.
1560   //  |
1561   //  | start app
1562   //  V
1563   // DidForkFromZygote(action)
1564   //   action = kUnload -> dlclose native bridge.
1565   //   action = kInitialize -> initialize library
1566   //
1567   //
1568   // The intended flow here is, in the case of a simple dalvikvm call:
1569   //
1570   // Runtime::Init():
1571   //   LoadNativeBridge -> dlopen from cmd line parameter.
1572   //  |
1573   //  V
1574   // Runtime::Start():
1575   //   DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
1576   //   No-op wrt native bridge.
1577   {
1578     std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
1579     is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
1580   }
1581 
1582   // Startup agents
1583   // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
1584   for (auto& agent_spec : agent_specs_) {
1585     // TODO Check err
1586     int res = 0;
1587     std::string err = "";
1588     ti::LoadError error;
1589     std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err);
1590 
1591     if (agent != nullptr) {
1592       agents_.push_back(std::move(agent));
1593       continue;
1594     }
1595 
1596     switch (error) {
1597       case ti::LoadError::kInitializationError:
1598         LOG(FATAL) << "Unable to initialize agent!";
1599         UNREACHABLE();
1600 
1601       case ti::LoadError::kLoadingError:
1602         LOG(ERROR) << "Unable to load an agent: " << err;
1603         continue;
1604 
1605       case ti::LoadError::kNoError:
1606         break;
1607     }
1608     LOG(FATAL) << "Unreachable";
1609     UNREACHABLE();
1610   }
1611   {
1612     ScopedObjectAccess soa(self);
1613     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
1614   }
1615 
1616   VLOG(startup) << "Runtime::Init exiting";
1617 
1618   // Set OnlyUseSystemOatFiles only after boot classpath has been set up.
1619   if (runtime_options.Exists(Opt::OnlyUseSystemOatFiles)) {
1620     oat_file_manager_->SetOnlyUseSystemOatFiles();
1621   }
1622 
1623   return true;
1624 }
1625 
EnsureJvmtiPlugin(Runtime * runtime,std::vector<Plugin> * plugins,std::string * error_msg)1626 static bool EnsureJvmtiPlugin(Runtime* runtime,
1627                               std::vector<Plugin>* plugins,
1628                               std::string* error_msg) {
1629   constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
1630 
1631   // Is the plugin already loaded?
1632   for (const Plugin& p : *plugins) {
1633     if (p.GetLibrary() == plugin_name) {
1634       return true;
1635     }
1636   }
1637 
1638   // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed.
1639   DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable())
1640       << "Being debuggable requires that jdwp (i.e. debugging) is allowed.";
1641   // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are
1642   // specifically allowed.
1643   if (!Dbg::IsJdwpAllowed()) {
1644     *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable";
1645     return false;
1646   }
1647 
1648   Plugin new_plugin = Plugin::Create(plugin_name);
1649 
1650   if (!new_plugin.Load(error_msg)) {
1651     return false;
1652   }
1653 
1654   plugins->push_back(std::move(new_plugin));
1655   return true;
1656 }
1657 
1658 // Attach a new agent and add it to the list of runtime agents
1659 //
1660 // TODO: once we decide on the threading model for agents,
1661 //   revisit this and make sure we're doing this on the right thread
1662 //   (and we synchronize access to any shared data structures like "agents_")
1663 //
AttachAgent(JNIEnv * env,const std::string & agent_arg,jobject class_loader)1664 void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) {
1665   std::string error_msg;
1666   if (!EnsureJvmtiPlugin(this, &plugins_, &error_msg)) {
1667     LOG(WARNING) << "Could not load plugin: " << error_msg;
1668     ScopedObjectAccess soa(Thread::Current());
1669     ThrowIOException("%s", error_msg.c_str());
1670     return;
1671   }
1672 
1673   ti::AgentSpec agent_spec(agent_arg);
1674 
1675   int res = 0;
1676   ti::LoadError error;
1677   std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg);
1678 
1679   if (agent != nullptr) {
1680     agents_.push_back(std::move(agent));
1681   } else {
1682     LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg;
1683     ScopedObjectAccess soa(Thread::Current());
1684     ThrowIOException("%s", error_msg.c_str());
1685   }
1686 }
1687 
InitNativeMethods()1688 void Runtime::InitNativeMethods() {
1689   VLOG(startup) << "Runtime::InitNativeMethods entering";
1690   Thread* self = Thread::Current();
1691   JNIEnv* env = self->GetJniEnv();
1692 
1693   // Must be in the kNative state for calling native methods (JNI_OnLoad code).
1694   CHECK_EQ(self->GetState(), kNative);
1695 
1696   // Set up the native methods provided by the runtime itself.
1697   RegisterRuntimeNativeMethods(env);
1698 
1699   // Initialize classes used in JNI. The initialization requires runtime native
1700   // methods to be loaded first.
1701   WellKnownClasses::Init(env);
1702 
1703   // Then set up libjavacore / libopenjdk, which are just a regular JNI libraries with
1704   // a regular JNI_OnLoad. Most JNI libraries can just use System.loadLibrary, but
1705   // libcore can't because it's the library that implements System.loadLibrary!
1706   {
1707     std::string error_msg;
1708     if (!java_vm_->LoadNativeLibrary(env, "libjavacore.so", nullptr, &error_msg)) {
1709       LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
1710     }
1711   }
1712   {
1713     constexpr const char* kOpenJdkLibrary = kIsDebugBuild
1714                                                 ? "libopenjdkd.so"
1715                                                 : "libopenjdk.so";
1716     std::string error_msg;
1717     if (!java_vm_->LoadNativeLibrary(env, kOpenJdkLibrary, nullptr, &error_msg)) {
1718       LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
1719     }
1720   }
1721 
1722   // Initialize well known classes that may invoke runtime native methods.
1723   WellKnownClasses::LateInit(env);
1724 
1725   VLOG(startup) << "Runtime::InitNativeMethods exiting";
1726 }
1727 
ReclaimArenaPoolMemory()1728 void Runtime::ReclaimArenaPoolMemory() {
1729   arena_pool_->LockReclaimMemory();
1730 }
1731 
InitThreadGroups(Thread * self)1732 void Runtime::InitThreadGroups(Thread* self) {
1733   JNIEnvExt* env = self->GetJniEnv();
1734   ScopedJniEnvLocalRefState env_state(env);
1735   main_thread_group_ =
1736       env->NewGlobalRef(env->GetStaticObjectField(
1737           WellKnownClasses::java_lang_ThreadGroup,
1738           WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
1739   CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1740   system_thread_group_ =
1741       env->NewGlobalRef(env->GetStaticObjectField(
1742           WellKnownClasses::java_lang_ThreadGroup,
1743           WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
1744   CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1745 }
1746 
GetMainThreadGroup() const1747 jobject Runtime::GetMainThreadGroup() const {
1748   CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1749   return main_thread_group_;
1750 }
1751 
GetSystemThreadGroup() const1752 jobject Runtime::GetSystemThreadGroup() const {
1753   CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1754   return system_thread_group_;
1755 }
1756 
GetSystemClassLoader() const1757 jobject Runtime::GetSystemClassLoader() const {
1758   CHECK(system_class_loader_ != nullptr || IsAotCompiler());
1759   return system_class_loader_;
1760 }
1761 
RegisterRuntimeNativeMethods(JNIEnv * env)1762 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
1763   register_dalvik_system_DexFile(env);
1764   register_dalvik_system_VMDebug(env);
1765   register_dalvik_system_VMRuntime(env);
1766   register_dalvik_system_VMStack(env);
1767   register_dalvik_system_ZygoteHooks(env);
1768   register_java_lang_Class(env);
1769   register_java_lang_Object(env);
1770   register_java_lang_invoke_MethodHandleImpl(env);
1771   register_java_lang_ref_FinalizerReference(env);
1772   register_java_lang_reflect_Array(env);
1773   register_java_lang_reflect_Constructor(env);
1774   register_java_lang_reflect_Executable(env);
1775   register_java_lang_reflect_Field(env);
1776   register_java_lang_reflect_Method(env);
1777   register_java_lang_reflect_Parameter(env);
1778   register_java_lang_reflect_Proxy(env);
1779   register_java_lang_ref_Reference(env);
1780   register_java_lang_String(env);
1781   register_java_lang_StringFactory(env);
1782   register_java_lang_System(env);
1783   register_java_lang_Thread(env);
1784   register_java_lang_Throwable(env);
1785   register_java_lang_VMClassLoader(env);
1786   register_java_util_concurrent_atomic_AtomicLong(env);
1787   register_libcore_util_CharsetUtils(env);
1788   register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
1789   register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
1790   register_sun_misc_Unsafe(env);
1791 }
1792 
operator <<(std::ostream & os,const DeoptimizationKind & kind)1793 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
1794   os << GetDeoptimizationKindName(kind);
1795   return os;
1796 }
1797 
DumpDeoptimizations(std::ostream & os)1798 void Runtime::DumpDeoptimizations(std::ostream& os) {
1799   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
1800     if (deoptimization_counts_[i] != 0) {
1801       os << "Number of "
1802          << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
1803          << " deoptimizations: "
1804          << deoptimization_counts_[i]
1805          << "\n";
1806     }
1807   }
1808 }
1809 
DumpForSigQuit(std::ostream & os)1810 void Runtime::DumpForSigQuit(std::ostream& os) {
1811   GetClassLinker()->DumpForSigQuit(os);
1812   GetInternTable()->DumpForSigQuit(os);
1813   GetJavaVM()->DumpForSigQuit(os);
1814   GetHeap()->DumpForSigQuit(os);
1815   oat_file_manager_->DumpForSigQuit(os);
1816   if (GetJit() != nullptr) {
1817     GetJit()->DumpForSigQuit(os);
1818   } else {
1819     os << "Running non JIT\n";
1820   }
1821   DumpDeoptimizations(os);
1822   TrackedAllocators::Dump(os);
1823   os << "\n";
1824 
1825   thread_list_->DumpForSigQuit(os);
1826   BaseMutex::DumpAll(os);
1827 
1828   // Inform anyone else who is interested in SigQuit.
1829   {
1830     ScopedObjectAccess soa(Thread::Current());
1831     callbacks_->SigQuit();
1832   }
1833 }
1834 
DumpLockHolders(std::ostream & os)1835 void Runtime::DumpLockHolders(std::ostream& os) {
1836   uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
1837   pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
1838   pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
1839   pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
1840   if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
1841     os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
1842        << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
1843        << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
1844        << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
1845   }
1846 }
1847 
SetStatsEnabled(bool new_state)1848 void Runtime::SetStatsEnabled(bool new_state) {
1849   Thread* self = Thread::Current();
1850   MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
1851   if (new_state == true) {
1852     GetStats()->Clear(~0);
1853     // TODO: wouldn't it make more sense to clear _all_ threads' stats?
1854     self->GetStats()->Clear(~0);
1855     if (stats_enabled_ != new_state) {
1856       GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
1857     }
1858   } else if (stats_enabled_ != new_state) {
1859     GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
1860   }
1861   stats_enabled_ = new_state;
1862 }
1863 
ResetStats(int kinds)1864 void Runtime::ResetStats(int kinds) {
1865   GetStats()->Clear(kinds & 0xffff);
1866   // TODO: wouldn't it make more sense to clear _all_ threads' stats?
1867   Thread::Current()->GetStats()->Clear(kinds >> 16);
1868 }
1869 
GetStat(int kind)1870 int32_t Runtime::GetStat(int kind) {
1871   RuntimeStats* stats;
1872   if (kind < (1<<16)) {
1873     stats = GetStats();
1874   } else {
1875     stats = Thread::Current()->GetStats();
1876     kind >>= 16;
1877   }
1878   switch (kind) {
1879   case KIND_ALLOCATED_OBJECTS:
1880     return stats->allocated_objects;
1881   case KIND_ALLOCATED_BYTES:
1882     return stats->allocated_bytes;
1883   case KIND_FREED_OBJECTS:
1884     return stats->freed_objects;
1885   case KIND_FREED_BYTES:
1886     return stats->freed_bytes;
1887   case KIND_GC_INVOCATIONS:
1888     return stats->gc_for_alloc_count;
1889   case KIND_CLASS_INIT_COUNT:
1890     return stats->class_init_count;
1891   case KIND_CLASS_INIT_TIME:
1892     // Convert ns to us, reduce to 32 bits.
1893     return static_cast<int>(stats->class_init_time_ns / 1000);
1894   case KIND_EXT_ALLOCATED_OBJECTS:
1895   case KIND_EXT_ALLOCATED_BYTES:
1896   case KIND_EXT_FREED_OBJECTS:
1897   case KIND_EXT_FREED_BYTES:
1898     return 0;  // backward compatibility
1899   default:
1900     LOG(FATAL) << "Unknown statistic " << kind;
1901     return -1;  // unreachable
1902   }
1903 }
1904 
BlockSignals()1905 void Runtime::BlockSignals() {
1906   SignalSet signals;
1907   signals.Add(SIGPIPE);
1908   // SIGQUIT is used to dump the runtime's state (including stack traces).
1909   signals.Add(SIGQUIT);
1910   // SIGUSR1 is used to initiate a GC.
1911   signals.Add(SIGUSR1);
1912   signals.Block();
1913 }
1914 
AttachCurrentThread(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)1915 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
1916                                   bool create_peer) {
1917   ScopedTrace trace(__FUNCTION__);
1918   Thread* self = Thread::Attach(thread_name, as_daemon, thread_group, create_peer);
1919   // Run ThreadGroup.add to notify the group that this thread is now started.
1920   if (self != nullptr && create_peer && !IsAotCompiler()) {
1921     ScopedObjectAccess soa(self);
1922     self->NotifyThreadGroup(soa, thread_group);
1923   }
1924   return self != nullptr;
1925 }
1926 
DetachCurrentThread()1927 void Runtime::DetachCurrentThread() {
1928   ScopedTrace trace(__FUNCTION__);
1929   Thread* self = Thread::Current();
1930   if (self == nullptr) {
1931     LOG(FATAL) << "attempting to detach thread that is not attached";
1932   }
1933   if (self->HasManagedStack()) {
1934     LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
1935   }
1936   thread_list_->Unregister(self);
1937 }
1938 
GetPreAllocatedOutOfMemoryError()1939 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() {
1940   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_.Read();
1941   if (oome == nullptr) {
1942     LOG(ERROR) << "Failed to return pre-allocated OOME";
1943   }
1944   return oome;
1945 }
1946 
GetPreAllocatedNoClassDefFoundError()1947 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
1948   mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
1949   if (ncdfe == nullptr) {
1950     LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
1951   }
1952   return ncdfe;
1953 }
1954 
VisitConstantRoots(RootVisitor * visitor)1955 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
1956   // Visit the classes held as static in mirror classes, these can be visited concurrently and only
1957   // need to be visited once per GC since they never change.
1958   mirror::Class::VisitRoots(visitor);
1959   mirror::Constructor::VisitRoots(visitor);
1960   mirror::Reference::VisitRoots(visitor);
1961   mirror::Method::VisitRoots(visitor);
1962   mirror::StackTraceElement::VisitRoots(visitor);
1963   mirror::String::VisitRoots(visitor);
1964   mirror::Throwable::VisitRoots(visitor);
1965   mirror::Field::VisitRoots(visitor);
1966   mirror::MethodType::VisitRoots(visitor);
1967   mirror::MethodHandleImpl::VisitRoots(visitor);
1968   mirror::MethodHandlesLookup::VisitRoots(visitor);
1969   mirror::EmulatedStackFrame::VisitRoots(visitor);
1970   mirror::ClassExt::VisitRoots(visitor);
1971   mirror::CallSite::VisitRoots(visitor);
1972   mirror::VarHandle::VisitRoots(visitor);
1973   mirror::FieldVarHandle::VisitRoots(visitor);
1974   mirror::ArrayElementVarHandle::VisitRoots(visitor);
1975   mirror::ByteArrayViewVarHandle::VisitRoots(visitor);
1976   mirror::ByteBufferViewVarHandle::VisitRoots(visitor);
1977   // Visit all the primitive array types classes.
1978   mirror::PrimitiveArray<uint8_t>::VisitRoots(visitor);   // BooleanArray
1979   mirror::PrimitiveArray<int8_t>::VisitRoots(visitor);    // ByteArray
1980   mirror::PrimitiveArray<uint16_t>::VisitRoots(visitor);  // CharArray
1981   mirror::PrimitiveArray<double>::VisitRoots(visitor);    // DoubleArray
1982   mirror::PrimitiveArray<float>::VisitRoots(visitor);     // FloatArray
1983   mirror::PrimitiveArray<int32_t>::VisitRoots(visitor);   // IntArray
1984   mirror::PrimitiveArray<int64_t>::VisitRoots(visitor);   // LongArray
1985   mirror::PrimitiveArray<int16_t>::VisitRoots(visitor);   // ShortArray
1986   // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
1987   // null.
1988   BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
1989   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
1990   if (HasResolutionMethod()) {
1991     resolution_method_->VisitRoots(buffered_visitor, pointer_size);
1992   }
1993   if (HasImtConflictMethod()) {
1994     imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
1995   }
1996   if (imt_unimplemented_method_ != nullptr) {
1997     imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
1998   }
1999   for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
2000     auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
2001     if (m != nullptr) {
2002       m->VisitRoots(buffered_visitor, pointer_size);
2003     }
2004   }
2005 }
2006 
VisitConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2007 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2008   intern_table_->VisitRoots(visitor, flags);
2009   class_linker_->VisitRoots(visitor, flags);
2010   heap_->VisitAllocationRecords(visitor);
2011   if ((flags & kVisitRootFlagNewRoots) == 0) {
2012     // Guaranteed to have no new roots in the constant roots.
2013     VisitConstantRoots(visitor);
2014   }
2015   Dbg::VisitRoots(visitor);
2016 }
2017 
VisitTransactionRoots(RootVisitor * visitor)2018 void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
2019   for (auto& transaction : preinitialization_transactions_) {
2020     transaction->VisitRoots(visitor);
2021   }
2022 }
2023 
VisitNonThreadRoots(RootVisitor * visitor)2024 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
2025   java_vm_->VisitRoots(visitor);
2026   sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2027   pre_allocated_OutOfMemoryError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2028   pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2029   verifier::MethodVerifier::VisitStaticRoots(visitor);
2030   VisitTransactionRoots(visitor);
2031 }
2032 
VisitNonConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2033 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2034   VisitThreadRoots(visitor, flags);
2035   VisitNonThreadRoots(visitor);
2036 }
2037 
VisitThreadRoots(RootVisitor * visitor,VisitRootFlags flags)2038 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
2039   thread_list_->VisitRoots(visitor, flags);
2040 }
2041 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)2042 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
2043   VisitNonConcurrentRoots(visitor, flags);
2044   VisitConcurrentRoots(visitor, flags);
2045 }
2046 
VisitImageRoots(RootVisitor * visitor)2047 void Runtime::VisitImageRoots(RootVisitor* visitor) {
2048   for (auto* space : GetHeap()->GetContinuousSpaces()) {
2049     if (space->IsImageSpace()) {
2050       auto* image_space = space->AsImageSpace();
2051       const auto& image_header = image_space->GetImageHeader();
2052       for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
2053         auto* obj = image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i));
2054         if (obj != nullptr) {
2055           auto* after_obj = obj;
2056           visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
2057           CHECK_EQ(after_obj, obj);
2058         }
2059       }
2060     }
2061   }
2062 }
2063 
CreateRuntimeMethod(ClassLinker * class_linker,LinearAlloc * linear_alloc)2064 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc) {
2065   const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
2066   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
2067   const size_t method_size = ArtMethod::Size(image_pointer_size);
2068   LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
2069       Thread::Current(),
2070       linear_alloc,
2071       1);
2072   ArtMethod* method = &method_array->At(0, method_size, method_alignment);
2073   CHECK(method != nullptr);
2074   method->SetDexMethodIndex(dex::kDexNoIndex);
2075   CHECK(method->IsRuntimeMethod());
2076   return method;
2077 }
2078 
CreateImtConflictMethod(LinearAlloc * linear_alloc)2079 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
2080   ClassLinker* const class_linker = GetClassLinker();
2081   ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
2082   // When compiling, the code pointer will get set later when the image is loaded.
2083   const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2084   if (IsAotCompiler()) {
2085     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2086   } else {
2087     method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
2088   }
2089   // Create empty conflict table.
2090   method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count*/0u, linear_alloc),
2091                               pointer_size);
2092   return method;
2093 }
2094 
SetImtConflictMethod(ArtMethod * method)2095 void Runtime::SetImtConflictMethod(ArtMethod* method) {
2096   CHECK(method != nullptr);
2097   CHECK(method->IsRuntimeMethod());
2098   imt_conflict_method_ = method;
2099 }
2100 
CreateResolutionMethod()2101 ArtMethod* Runtime::CreateResolutionMethod() {
2102   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2103   // When compiling, the code pointer will get set later when the image is loaded.
2104   if (IsAotCompiler()) {
2105     PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2106     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2107   } else {
2108     method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
2109   }
2110   return method;
2111 }
2112 
CreateCalleeSaveMethod()2113 ArtMethod* Runtime::CreateCalleeSaveMethod() {
2114   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2115   PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2116   method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2117   DCHECK_NE(instruction_set_, InstructionSet::kNone);
2118   DCHECK(method->IsRuntimeMethod());
2119   return method;
2120 }
2121 
DisallowNewSystemWeaks()2122 void Runtime::DisallowNewSystemWeaks() {
2123   CHECK(!kUseReadBarrier);
2124   monitor_list_->DisallowNewMonitors();
2125   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
2126   java_vm_->DisallowNewWeakGlobals();
2127   heap_->DisallowNewAllocationRecords();
2128   if (GetJit() != nullptr) {
2129     GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
2130   }
2131 
2132   // All other generic system-weak holders.
2133   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2134     holder->Disallow();
2135   }
2136 }
2137 
AllowNewSystemWeaks()2138 void Runtime::AllowNewSystemWeaks() {
2139   CHECK(!kUseReadBarrier);
2140   monitor_list_->AllowNewMonitors();
2141   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal);  // TODO: Do this in the sweeping.
2142   java_vm_->AllowNewWeakGlobals();
2143   heap_->AllowNewAllocationRecords();
2144   if (GetJit() != nullptr) {
2145     GetJit()->GetCodeCache()->AllowInlineCacheAccess();
2146   }
2147 
2148   // All other generic system-weak holders.
2149   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2150     holder->Allow();
2151   }
2152 }
2153 
BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint)2154 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
2155   // This is used for the read barrier case that uses the thread-local
2156   // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
2157   // (see ThreadList::RunCheckpoint).
2158   monitor_list_->BroadcastForNewMonitors();
2159   intern_table_->BroadcastForNewInterns();
2160   java_vm_->BroadcastForNewWeakGlobals();
2161   heap_->BroadcastForNewAllocationRecords();
2162   if (GetJit() != nullptr) {
2163     GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
2164   }
2165 
2166   // All other generic system-weak holders.
2167   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2168     holder->Broadcast(broadcast_for_checkpoint);
2169   }
2170 }
2171 
SetInstructionSet(InstructionSet instruction_set)2172 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
2173   instruction_set_ = instruction_set;
2174   if ((instruction_set_ == InstructionSet::kThumb2) || (instruction_set_ == InstructionSet::kArm)) {
2175     for (int i = 0; i != kCalleeSaveSize; ++i) {
2176       CalleeSaveType type = static_cast<CalleeSaveType>(i);
2177       callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type);
2178     }
2179   } else if (instruction_set_ == InstructionSet::kMips) {
2180     for (int i = 0; i != kCalleeSaveSize; ++i) {
2181       CalleeSaveType type = static_cast<CalleeSaveType>(i);
2182       callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type);
2183     }
2184   } else if (instruction_set_ == InstructionSet::kMips64) {
2185     for (int i = 0; i != kCalleeSaveSize; ++i) {
2186       CalleeSaveType type = static_cast<CalleeSaveType>(i);
2187       callee_save_method_frame_infos_[i] = mips64::Mips64CalleeSaveMethodFrameInfo(type);
2188     }
2189   } else if (instruction_set_ == InstructionSet::kX86) {
2190     for (int i = 0; i != kCalleeSaveSize; ++i) {
2191       CalleeSaveType type = static_cast<CalleeSaveType>(i);
2192       callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type);
2193     }
2194   } else if (instruction_set_ == InstructionSet::kX86_64) {
2195     for (int i = 0; i != kCalleeSaveSize; ++i) {
2196       CalleeSaveType type = static_cast<CalleeSaveType>(i);
2197       callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type);
2198     }
2199   } else if (instruction_set_ == InstructionSet::kArm64) {
2200     for (int i = 0; i != kCalleeSaveSize; ++i) {
2201       CalleeSaveType type = static_cast<CalleeSaveType>(i);
2202       callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type);
2203     }
2204   } else {
2205     UNIMPLEMENTED(FATAL) << instruction_set_;
2206   }
2207 }
2208 
ClearInstructionSet()2209 void Runtime::ClearInstructionSet() {
2210   instruction_set_ = InstructionSet::kNone;
2211 }
2212 
SetCalleeSaveMethod(ArtMethod * method,CalleeSaveType type)2213 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
2214   DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
2215   CHECK(method != nullptr);
2216   callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
2217 }
2218 
ClearCalleeSaveMethods()2219 void Runtime::ClearCalleeSaveMethods() {
2220   for (size_t i = 0; i < kCalleeSaveSize; ++i) {
2221     callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
2222   }
2223 }
2224 
RegisterAppInfo(const std::vector<std::string> & code_paths,const std::string & profile_output_filename)2225 void Runtime::RegisterAppInfo(const std::vector<std::string>& code_paths,
2226                               const std::string& profile_output_filename) {
2227   if (jit_.get() == nullptr) {
2228     // We are not JITing. Nothing to do.
2229     return;
2230   }
2231 
2232   VLOG(profiler) << "Register app with " << profile_output_filename
2233       << " " << android::base::Join(code_paths, ':');
2234 
2235   if (profile_output_filename.empty()) {
2236     LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
2237     return;
2238   }
2239   if (!OS::FileExists(profile_output_filename.c_str(), false /*check_file_type*/)) {
2240     LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exits.";
2241     return;
2242   }
2243   if (code_paths.empty()) {
2244     LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
2245     return;
2246   }
2247 
2248   jit_->StartProfileSaver(profile_output_filename, code_paths);
2249 }
2250 
2251 // Transaction support.
IsActiveTransaction() const2252 bool Runtime::IsActiveTransaction() const {
2253   return !preinitialization_transactions_.empty() && !GetTransaction()->IsRollingBack();
2254 }
2255 
EnterTransactionMode()2256 void Runtime::EnterTransactionMode() {
2257   DCHECK(IsAotCompiler());
2258   DCHECK(!IsActiveTransaction());
2259   preinitialization_transactions_.push_back(std::make_unique<Transaction>());
2260 }
2261 
EnterTransactionMode(bool strict,mirror::Class * root)2262 void Runtime::EnterTransactionMode(bool strict, mirror::Class* root) {
2263   DCHECK(IsAotCompiler());
2264   preinitialization_transactions_.push_back(std::make_unique<Transaction>(strict, root));
2265 }
2266 
ExitTransactionMode()2267 void Runtime::ExitTransactionMode() {
2268   DCHECK(IsAotCompiler());
2269   DCHECK(IsActiveTransaction());
2270   preinitialization_transactions_.pop_back();
2271 }
2272 
RollbackAndExitTransactionMode()2273 void Runtime::RollbackAndExitTransactionMode() {
2274   DCHECK(IsAotCompiler());
2275   DCHECK(IsActiveTransaction());
2276   preinitialization_transactions_.back()->Rollback();
2277   preinitialization_transactions_.pop_back();
2278 }
2279 
IsTransactionAborted() const2280 bool Runtime::IsTransactionAborted() const {
2281   if (!IsActiveTransaction()) {
2282     return false;
2283   } else {
2284     DCHECK(IsAotCompiler());
2285     return GetTransaction()->IsAborted();
2286   }
2287 }
2288 
RollbackAllTransactions()2289 void Runtime::RollbackAllTransactions() {
2290   // If transaction is aborted, all transactions will be kept in the list.
2291   // Rollback and exit all of them.
2292   while (IsActiveTransaction()) {
2293     RollbackAndExitTransactionMode();
2294   }
2295 }
2296 
IsActiveStrictTransactionMode() const2297 bool Runtime::IsActiveStrictTransactionMode() const {
2298   return IsActiveTransaction() && GetTransaction()->IsStrict();
2299 }
2300 
GetTransaction() const2301 const std::unique_ptr<Transaction>& Runtime::GetTransaction() const {
2302   DCHECK(!preinitialization_transactions_.empty());
2303   return preinitialization_transactions_.back();
2304 }
2305 
AbortTransactionAndThrowAbortError(Thread * self,const std::string & abort_message)2306 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
2307   DCHECK(IsAotCompiler());
2308   DCHECK(IsActiveTransaction());
2309   // Throwing an exception may cause its class initialization. If we mark the transaction
2310   // aborted before that, we may warn with a false alarm. Throwing the exception before
2311   // marking the transaction aborted avoids that.
2312   // But now the transaction can be nested, and abort the transaction will relax the constraints
2313   // for constructing stack trace.
2314   GetTransaction()->Abort(abort_message);
2315   GetTransaction()->ThrowAbortError(self, &abort_message);
2316 }
2317 
ThrowTransactionAbortError(Thread * self)2318 void Runtime::ThrowTransactionAbortError(Thread* self) {
2319   DCHECK(IsAotCompiler());
2320   DCHECK(IsActiveTransaction());
2321   // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
2322   GetTransaction()->ThrowAbortError(self, nullptr);
2323 }
2324 
RecordWriteFieldBoolean(mirror::Object * obj,MemberOffset field_offset,uint8_t value,bool is_volatile) const2325 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
2326                                       uint8_t value, bool is_volatile) const {
2327   DCHECK(IsAotCompiler());
2328   DCHECK(IsActiveTransaction());
2329   GetTransaction()->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
2330 }
2331 
RecordWriteFieldByte(mirror::Object * obj,MemberOffset field_offset,int8_t value,bool is_volatile) const2332 void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
2333                                    int8_t value, bool is_volatile) const {
2334   DCHECK(IsAotCompiler());
2335   DCHECK(IsActiveTransaction());
2336   GetTransaction()->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
2337 }
2338 
RecordWriteFieldChar(mirror::Object * obj,MemberOffset field_offset,uint16_t value,bool is_volatile) const2339 void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
2340                                    uint16_t value, bool is_volatile) const {
2341   DCHECK(IsAotCompiler());
2342   DCHECK(IsActiveTransaction());
2343   GetTransaction()->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
2344 }
2345 
RecordWriteFieldShort(mirror::Object * obj,MemberOffset field_offset,int16_t value,bool is_volatile) const2346 void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
2347                                     int16_t value, bool is_volatile) const {
2348   DCHECK(IsAotCompiler());
2349   DCHECK(IsActiveTransaction());
2350   GetTransaction()->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
2351 }
2352 
RecordWriteField32(mirror::Object * obj,MemberOffset field_offset,uint32_t value,bool is_volatile) const2353 void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
2354                                  uint32_t value, bool is_volatile) const {
2355   DCHECK(IsAotCompiler());
2356   DCHECK(IsActiveTransaction());
2357   GetTransaction()->RecordWriteField32(obj, field_offset, value, is_volatile);
2358 }
2359 
RecordWriteField64(mirror::Object * obj,MemberOffset field_offset,uint64_t value,bool is_volatile) const2360 void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
2361                                  uint64_t value, bool is_volatile) const {
2362   DCHECK(IsAotCompiler());
2363   DCHECK(IsActiveTransaction());
2364   GetTransaction()->RecordWriteField64(obj, field_offset, value, is_volatile);
2365 }
2366 
RecordWriteFieldReference(mirror::Object * obj,MemberOffset field_offset,ObjPtr<mirror::Object> value,bool is_volatile) const2367 void Runtime::RecordWriteFieldReference(mirror::Object* obj,
2368                                         MemberOffset field_offset,
2369                                         ObjPtr<mirror::Object> value,
2370                                         bool is_volatile) const {
2371   DCHECK(IsAotCompiler());
2372   DCHECK(IsActiveTransaction());
2373   GetTransaction()->RecordWriteFieldReference(obj,
2374                                                             field_offset,
2375                                                             value.Ptr(),
2376                                                             is_volatile);
2377 }
2378 
RecordWriteArray(mirror::Array * array,size_t index,uint64_t value) const2379 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
2380   DCHECK(IsAotCompiler());
2381   DCHECK(IsActiveTransaction());
2382   GetTransaction()->RecordWriteArray(array, index, value);
2383 }
2384 
RecordStrongStringInsertion(ObjPtr<mirror::String> s) const2385 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const {
2386   DCHECK(IsAotCompiler());
2387   DCHECK(IsActiveTransaction());
2388   GetTransaction()->RecordStrongStringInsertion(s);
2389 }
2390 
RecordWeakStringInsertion(ObjPtr<mirror::String> s) const2391 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const {
2392   DCHECK(IsAotCompiler());
2393   DCHECK(IsActiveTransaction());
2394   GetTransaction()->RecordWeakStringInsertion(s);
2395 }
2396 
RecordStrongStringRemoval(ObjPtr<mirror::String> s) const2397 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const {
2398   DCHECK(IsAotCompiler());
2399   DCHECK(IsActiveTransaction());
2400   GetTransaction()->RecordStrongStringRemoval(s);
2401 }
2402 
RecordWeakStringRemoval(ObjPtr<mirror::String> s) const2403 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const {
2404   DCHECK(IsAotCompiler());
2405   DCHECK(IsActiveTransaction());
2406   GetTransaction()->RecordWeakStringRemoval(s);
2407 }
2408 
RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,dex::StringIndex string_idx) const2409 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
2410                                   dex::StringIndex string_idx) const {
2411   DCHECK(IsAotCompiler());
2412   DCHECK(IsActiveTransaction());
2413   GetTransaction()->RecordResolveString(dex_cache, string_idx);
2414 }
2415 
SetFaultMessage(const std::string & message)2416 void Runtime::SetFaultMessage(const std::string& message) {
2417   MutexLock mu(Thread::Current(), fault_message_lock_);
2418   fault_message_ = message;
2419 }
2420 
AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string> * argv) const2421 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
2422     const {
2423   if (GetInstrumentation()->InterpretOnly()) {
2424     argv->push_back("--compiler-filter=quicken");
2425   }
2426 
2427   // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
2428   // architecture support, dex2oat may be compiled as a different instruction-set than that
2429   // currently being executed.
2430   std::string instruction_set("--instruction-set=");
2431   instruction_set += GetInstructionSetString(kRuntimeISA);
2432   argv->push_back(instruction_set);
2433 
2434   std::unique_ptr<const InstructionSetFeatures> features(InstructionSetFeatures::FromCppDefines());
2435   std::string feature_string("--instruction-set-features=");
2436   feature_string += features->GetFeatureString();
2437   argv->push_back(feature_string);
2438 }
2439 
CreateJit()2440 void Runtime::CreateJit() {
2441   CHECK(!IsAotCompiler());
2442   if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
2443     DCHECK(!jit_options_->UseJitCompilation());
2444   }
2445   std::string error_msg;
2446   jit_.reset(jit::Jit::Create(jit_options_.get(), &error_msg));
2447   if (jit_.get() == nullptr) {
2448     LOG(WARNING) << "Failed to create JIT " << error_msg;
2449     return;
2450   }
2451 }
2452 
CanRelocate() const2453 bool Runtime::CanRelocate() const {
2454   return !IsAotCompiler() || compiler_callbacks_->IsRelocationPossible();
2455 }
2456 
IsCompilingBootImage() const2457 bool Runtime::IsCompilingBootImage() const {
2458   return IsCompiler() && compiler_callbacks_->IsBootImage();
2459 }
2460 
SetResolutionMethod(ArtMethod * method)2461 void Runtime::SetResolutionMethod(ArtMethod* method) {
2462   CHECK(method != nullptr);
2463   CHECK(method->IsRuntimeMethod()) << method;
2464   resolution_method_ = method;
2465 }
2466 
SetImtUnimplementedMethod(ArtMethod * method)2467 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
2468   CHECK(method != nullptr);
2469   CHECK(method->IsRuntimeMethod());
2470   imt_unimplemented_method_ = method;
2471 }
2472 
FixupConflictTables()2473 void Runtime::FixupConflictTables() {
2474   // We can only do this after the class linker is created.
2475   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2476   if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
2477     imt_unimplemented_method_->SetImtConflictTable(
2478         ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
2479         pointer_size);
2480   }
2481   if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
2482     imt_conflict_method_->SetImtConflictTable(
2483           ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
2484           pointer_size);
2485   }
2486 }
2487 
DisableVerifier()2488 void Runtime::DisableVerifier() {
2489   verify_ = verifier::VerifyMode::kNone;
2490 }
2491 
IsVerificationEnabled() const2492 bool Runtime::IsVerificationEnabled() const {
2493   return verify_ == verifier::VerifyMode::kEnable ||
2494       verify_ == verifier::VerifyMode::kSoftFail;
2495 }
2496 
IsVerificationSoftFail() const2497 bool Runtime::IsVerificationSoftFail() const {
2498   return verify_ == verifier::VerifyMode::kSoftFail;
2499 }
2500 
IsAsyncDeoptimizeable(uintptr_t code) const2501 bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
2502   // We only support async deopt (ie the compiled code is not explicitly asking for
2503   // deopt, but something else like the debugger) in debuggable JIT code.
2504   // We could look at the oat file where `code` is being defined,
2505   // and check whether it's been compiled debuggable, but we decided to
2506   // only rely on the JIT for debuggable apps.
2507   return IsJavaDebuggable() &&
2508       GetJit() != nullptr &&
2509       GetJit()->GetCodeCache()->ContainsPc(reinterpret_cast<const void*>(code));
2510 }
2511 
CreateLinearAlloc()2512 LinearAlloc* Runtime::CreateLinearAlloc() {
2513   // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
2514   // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
2515   // when we have 64 bit ArtMethod pointers.
2516   return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
2517       ? new LinearAlloc(low_4gb_arena_pool_.get())
2518       : new LinearAlloc(arena_pool_.get());
2519 }
2520 
GetHashTableMinLoadFactor() const2521 double Runtime::GetHashTableMinLoadFactor() const {
2522   return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
2523 }
2524 
GetHashTableMaxLoadFactor() const2525 double Runtime::GetHashTableMaxLoadFactor() const {
2526   return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
2527 }
2528 
UpdateProcessState(ProcessState process_state)2529 void Runtime::UpdateProcessState(ProcessState process_state) {
2530   ProcessState old_process_state = process_state_;
2531   process_state_ = process_state;
2532   GetHeap()->UpdateProcessState(old_process_state, process_state);
2533 }
2534 
RegisterSensitiveThread() const2535 void Runtime::RegisterSensitiveThread() const {
2536   Thread::SetJitSensitiveThread();
2537 }
2538 
2539 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
UseJitCompilation() const2540 bool Runtime::UseJitCompilation() const {
2541   return (jit_ != nullptr) && jit_->UseJitCompilation();
2542 }
2543 
TakeSnapshot()2544 void Runtime::EnvSnapshot::TakeSnapshot() {
2545   char** env = GetEnviron();
2546   for (size_t i = 0; env[i] != nullptr; ++i) {
2547     name_value_pairs_.emplace_back(new std::string(env[i]));
2548   }
2549   // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
2550   // for quick use by GetSnapshot.  This avoids allocation and copying cost at Exec.
2551   c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
2552   for (size_t i = 0; env[i] != nullptr; ++i) {
2553     c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
2554   }
2555   c_env_vector_[name_value_pairs_.size()] = nullptr;
2556 }
2557 
GetSnapshot() const2558 char** Runtime::EnvSnapshot::GetSnapshot() const {
2559   return c_env_vector_.get();
2560 }
2561 
AddSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)2562 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2563   gc::ScopedGCCriticalSection gcs(Thread::Current(),
2564                                   gc::kGcCauseAddRemoveSystemWeakHolder,
2565                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
2566   // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
2567   //       a critical section.
2568   system_weak_holders_.push_back(holder);
2569 }
2570 
RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)2571 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2572   gc::ScopedGCCriticalSection gcs(Thread::Current(),
2573                                   gc::kGcCauseAddRemoveSystemWeakHolder,
2574                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
2575   auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
2576   if (it != system_weak_holders_.end()) {
2577     system_weak_holders_.erase(it);
2578   }
2579 }
2580 
GetRuntimeCallbacks()2581 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
2582   return callbacks_.get();
2583 }
2584 
2585 // Used to patch boot image method entry point to interpreter bridge.
2586 class UpdateEntryPointsClassVisitor : public ClassVisitor {
2587  public:
UpdateEntryPointsClassVisitor(instrumentation::Instrumentation * instrumentation)2588   explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
2589       : instrumentation_(instrumentation) {}
2590 
operator ()(ObjPtr<mirror::Class> klass)2591   bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES(Locks::mutator_lock_) {
2592     auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
2593     for (auto& m : klass->GetMethods(pointer_size)) {
2594       const void* code = m.GetEntryPointFromQuickCompiledCode();
2595       if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
2596           !m.IsNative() &&
2597           !m.IsProxyMethod()) {
2598         instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
2599       }
2600     }
2601     return true;
2602   }
2603 
2604  private:
2605   instrumentation::Instrumentation* const instrumentation_;
2606 };
2607 
SetJavaDebuggable(bool value)2608 void Runtime::SetJavaDebuggable(bool value) {
2609   is_java_debuggable_ = value;
2610   // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
2611 }
2612 
DeoptimizeBootImage()2613 void Runtime::DeoptimizeBootImage() {
2614   // If we've already started and we are setting this runtime to debuggable,
2615   // we patch entry points of methods in boot image to interpreter bridge, as
2616   // boot image code may be AOT compiled as not debuggable.
2617   if (!GetInstrumentation()->IsForcedInterpretOnly()) {
2618     ScopedObjectAccess soa(Thread::Current());
2619     UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
2620     GetClassLinker()->VisitClasses(&visitor);
2621   }
2622 }
2623 }  // namespace art
2624