1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "runtime.h"
18
19 // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
20 #include <sys/mount.h>
21 #ifdef __linux__
22 #include <linux/fs.h>
23 #include <sys/prctl.h>
24 #endif
25
26 #include <fcntl.h>
27 #include <signal.h>
28 #include <sys/syscall.h>
29
30 #if defined(__APPLE__)
31 #include <crt_externs.h> // for _NSGetEnviron
32 #endif
33
34 #include <cstdio>
35 #include <cstdlib>
36 #include <limits>
37 #include <vector>
38
39 #include "android-base/strings.h"
40
41 #include "aot_class_linker.h"
42 #include "arch/arm/quick_method_frame_info_arm.h"
43 #include "arch/arm/registers_arm.h"
44 #include "arch/arm64/quick_method_frame_info_arm64.h"
45 #include "arch/arm64/registers_arm64.h"
46 #include "arch/instruction_set_features.h"
47 #include "arch/mips/quick_method_frame_info_mips.h"
48 #include "arch/mips/registers_mips.h"
49 #include "arch/mips64/quick_method_frame_info_mips64.h"
50 #include "arch/mips64/registers_mips64.h"
51 #include "arch/x86/quick_method_frame_info_x86.h"
52 #include "arch/x86/registers_x86.h"
53 #include "arch/x86_64/quick_method_frame_info_x86_64.h"
54 #include "arch/x86_64/registers_x86_64.h"
55 #include "art_field-inl.h"
56 #include "art_method-inl.h"
57 #include "asm_support.h"
58 #include "asm_support_check.h"
59 #include "base/aborting.h"
60 #include "base/arena_allocator.h"
61 #include "base/atomic.h"
62 #include "base/dumpable.h"
63 #include "base/enums.h"
64 #include "base/file_utils.h"
65 #include "base/memory_tool.h"
66 #include "base/mutex.h"
67 #include "base/os.h"
68 #include "base/quasi_atomic.h"
69 #include "base/stl_util.h"
70 #include "base/systrace.h"
71 #include "base/unix_file/fd_file.h"
72 #include "base/utils.h"
73 #include "class_linker-inl.h"
74 #include "compiler_callbacks.h"
75 #include "debugger.h"
76 #include "dex/art_dex_file_loader.h"
77 #include "dex/dex_file_loader.h"
78 #include "elf_file.h"
79 #include "entrypoints/runtime_asm_entrypoints.h"
80 #include "experimental_flags.h"
81 #include "fault_handler.h"
82 #include "gc/accounting/card_table-inl.h"
83 #include "gc/heap.h"
84 #include "gc/scoped_gc_critical_section.h"
85 #include "gc/space/image_space.h"
86 #include "gc/space/space-inl.h"
87 #include "gc/system_weak.h"
88 #include "handle_scope-inl.h"
89 #include "hidden_api.h"
90 #include "image-inl.h"
91 #include "instrumentation.h"
92 #include "intern_table.h"
93 #include "interpreter/interpreter.h"
94 #include "java_vm_ext.h"
95 #include "jit/jit.h"
96 #include "jit/jit_code_cache.h"
97 #include "jit/profile_saver.h"
98 #include "jni_internal.h"
99 #include "linear_alloc.h"
100 #include "memory_representation.h"
101 #include "mirror/array.h"
102 #include "mirror/class-inl.h"
103 #include "mirror/class_ext.h"
104 #include "mirror/class_loader.h"
105 #include "mirror/emulated_stack_frame.h"
106 #include "mirror/field.h"
107 #include "mirror/method.h"
108 #include "mirror/method_handle_impl.h"
109 #include "mirror/method_handles_lookup.h"
110 #include "mirror/method_type.h"
111 #include "mirror/stack_trace_element.h"
112 #include "mirror/throwable.h"
113 #include "mirror/var_handle.h"
114 #include "monitor.h"
115 #include "native/dalvik_system_DexFile.h"
116 #include "native/dalvik_system_VMDebug.h"
117 #include "native/dalvik_system_VMRuntime.h"
118 #include "native/dalvik_system_VMStack.h"
119 #include "native/dalvik_system_ZygoteHooks.h"
120 #include "native/java_lang_Class.h"
121 #include "native/java_lang_Object.h"
122 #include "native/java_lang_String.h"
123 #include "native/java_lang_StringFactory.h"
124 #include "native/java_lang_System.h"
125 #include "native/java_lang_Thread.h"
126 #include "native/java_lang_Throwable.h"
127 #include "native/java_lang_VMClassLoader.h"
128 #include "native/java_lang_invoke_MethodHandleImpl.h"
129 #include "native/java_lang_ref_FinalizerReference.h"
130 #include "native/java_lang_ref_Reference.h"
131 #include "native/java_lang_reflect_Array.h"
132 #include "native/java_lang_reflect_Constructor.h"
133 #include "native/java_lang_reflect_Executable.h"
134 #include "native/java_lang_reflect_Field.h"
135 #include "native/java_lang_reflect_Method.h"
136 #include "native/java_lang_reflect_Parameter.h"
137 #include "native/java_lang_reflect_Proxy.h"
138 #include "native/java_util_concurrent_atomic_AtomicLong.h"
139 #include "native/libcore_util_CharsetUtils.h"
140 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
141 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
142 #include "native/sun_misc_Unsafe.h"
143 #include "native_bridge_art_interface.h"
144 #include "native_stack_dump.h"
145 #include "nativehelper/scoped_local_ref.h"
146 #include "oat_file.h"
147 #include "oat_file_manager.h"
148 #include "object_callbacks.h"
149 #include "parsed_options.h"
150 #include "quick/quick_method_frame_info.h"
151 #include "reflection.h"
152 #include "runtime_callbacks.h"
153 #include "runtime_intrinsics.h"
154 #include "runtime_options.h"
155 #include "scoped_thread_state_change-inl.h"
156 #include "sigchain.h"
157 #include "signal_catcher.h"
158 #include "signal_set.h"
159 #include "thread.h"
160 #include "thread_list.h"
161 #include "ti/agent.h"
162 #include "trace.h"
163 #include "transaction.h"
164 #include "vdex_file.h"
165 #include "verifier/method_verifier.h"
166 #include "well_known_classes.h"
167
168 #ifdef ART_TARGET_ANDROID
169 #include <android/set_abort_message.h>
170 #endif
171
172 namespace art {
173
174 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
175 static constexpr bool kEnableJavaStackTraceHandler = false;
176 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
177 // linking.
178 static constexpr double kLowMemoryMinLoadFactor = 0.5;
179 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
180 static constexpr double kNormalMinLoadFactor = 0.4;
181 static constexpr double kNormalMaxLoadFactor = 0.7;
182
183 // Extra added to the default heap growth multiplier. Used to adjust the GC ergonomics for the read
184 // barrier config.
185 static constexpr double kExtraDefaultHeapGrowthMultiplier = kUseReadBarrier ? 1.0 : 0.0;
186
187 Runtime* Runtime::instance_ = nullptr;
188
189 struct TraceConfig {
190 Trace::TraceMode trace_mode;
191 Trace::TraceOutputMode trace_output_mode;
192 std::string trace_file;
193 size_t trace_file_size;
194 };
195
196 namespace {
197 #ifdef __APPLE__
GetEnviron()198 inline char** GetEnviron() {
199 // When Google Test is built as a framework on MacOS X, the environ variable
200 // is unavailable. Apple's documentation (man environ) recommends using
201 // _NSGetEnviron() instead.
202 return *_NSGetEnviron();
203 }
204 #else
205 // Some POSIX platforms expect you to declare environ. extern "C" makes
206 // it reside in the global namespace.
207 extern "C" char** environ;
208 inline char** GetEnviron() { return environ; }
209 #endif
210 } // namespace
211
Runtime()212 Runtime::Runtime()
213 : resolution_method_(nullptr),
214 imt_conflict_method_(nullptr),
215 imt_unimplemented_method_(nullptr),
216 instruction_set_(InstructionSet::kNone),
217 compiler_callbacks_(nullptr),
218 is_zygote_(false),
219 must_relocate_(false),
220 is_concurrent_gc_enabled_(true),
221 is_explicit_gc_disabled_(false),
222 dex2oat_enabled_(true),
223 image_dex2oat_enabled_(true),
224 default_stack_size_(0),
225 heap_(nullptr),
226 max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
227 monitor_list_(nullptr),
228 monitor_pool_(nullptr),
229 thread_list_(nullptr),
230 intern_table_(nullptr),
231 class_linker_(nullptr),
232 signal_catcher_(nullptr),
233 use_tombstoned_traces_(false),
234 java_vm_(nullptr),
235 fault_message_lock_("Fault message lock"),
236 fault_message_(""),
237 threads_being_born_(0),
238 shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
239 shutting_down_(false),
240 shutting_down_started_(false),
241 started_(false),
242 finished_starting_(false),
243 vfprintf_(nullptr),
244 exit_(nullptr),
245 abort_(nullptr),
246 stats_enabled_(false),
247 is_running_on_memory_tool_(RUNNING_ON_MEMORY_TOOL),
248 instrumentation_(),
249 main_thread_group_(nullptr),
250 system_thread_group_(nullptr),
251 system_class_loader_(nullptr),
252 dump_gc_performance_on_shutdown_(false),
253 preinitialization_transactions_(),
254 verify_(verifier::VerifyMode::kNone),
255 allow_dex_file_fallback_(true),
256 target_sdk_version_(kUnsetSdkVersion),
257 implicit_null_checks_(false),
258 implicit_so_checks_(false),
259 implicit_suspend_checks_(false),
260 no_sig_chain_(false),
261 force_native_bridge_(false),
262 is_native_bridge_loaded_(false),
263 is_native_debuggable_(false),
264 async_exceptions_thrown_(false),
265 is_java_debuggable_(false),
266 zygote_max_failed_boots_(0),
267 experimental_flags_(ExperimentalFlags::kNone),
268 oat_file_manager_(nullptr),
269 is_low_memory_mode_(false),
270 safe_mode_(false),
271 hidden_api_policy_(hiddenapi::EnforcementPolicy::kNoChecks),
272 pending_hidden_api_warning_(false),
273 dedupe_hidden_api_warnings_(true),
274 always_set_hidden_api_warning_flag_(false),
275 hidden_api_access_event_log_rate_(0),
276 dump_native_stack_on_sig_quit_(true),
277 pruned_dalvik_cache_(false),
278 // Initially assume we perceive jank in case the process state is never updated.
279 process_state_(kProcessStateJankPerceptible),
280 zygote_no_threads_(false) {
281 static_assert(Runtime::kCalleeSaveSize ==
282 static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
283
284 CheckAsmSupportOffsetsAndSizes();
285 std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
286 interpreter::CheckInterpreterAsmConstants();
287 callbacks_.reset(new RuntimeCallbacks());
288 for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
289 deoptimization_counts_[i] = 0u;
290 }
291 }
292
~Runtime()293 Runtime::~Runtime() {
294 ScopedTrace trace("Runtime shutdown");
295 if (is_native_bridge_loaded_) {
296 UnloadNativeBridge();
297 }
298
299 Thread* self = Thread::Current();
300 const bool attach_shutdown_thread = self == nullptr;
301 if (attach_shutdown_thread) {
302 // We can only create a peer if the runtime is actually started. This is only not true during
303 // some tests. If there is extreme memory pressure the allocation of the thread peer can fail.
304 // In this case we will just try again without allocating a peer so that shutdown can continue.
305 // Very few things are actually capable of distinguishing between the peer & peerless states so
306 // this should be fine.
307 bool thread_attached = AttachCurrentThread("Shutdown thread",
308 /* as_daemon */ false,
309 GetSystemThreadGroup(),
310 /* Create peer */ IsStarted());
311 if (UNLIKELY(!thread_attached)) {
312 LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer.";
313 CHECK(AttachCurrentThread("Shutdown thread (no java peer)",
314 /* as_daemon */ false,
315 /* thread_group*/ nullptr,
316 /* Create peer */ false));
317 }
318 self = Thread::Current();
319 } else {
320 LOG(WARNING) << "Current thread not detached in Runtime shutdown";
321 }
322
323 if (dump_gc_performance_on_shutdown_) {
324 ScopedLogSeverity sls(LogSeverity::INFO);
325 // This can't be called from the Heap destructor below because it
326 // could call RosAlloc::InspectAll() which needs the thread_list
327 // to be still alive.
328 heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
329 }
330
331 if (jit_ != nullptr) {
332 // Stop the profile saver thread before marking the runtime as shutting down.
333 // The saver will try to dump the profiles before being sopped and that
334 // requires holding the mutator lock.
335 jit_->StopProfileSaver();
336 }
337
338 {
339 ScopedTrace trace2("Wait for shutdown cond");
340 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
341 shutting_down_started_ = true;
342 while (threads_being_born_ > 0) {
343 shutdown_cond_->Wait(self);
344 }
345 shutting_down_ = true;
346 }
347 // Shutdown and wait for the daemons.
348 CHECK(self != nullptr);
349 if (IsFinishedStarting()) {
350 ScopedTrace trace2("Waiting for Daemons");
351 self->ClearException();
352 self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
353 WellKnownClasses::java_lang_Daemons_stop);
354 }
355
356 Trace::Shutdown();
357
358 // Report death. Clients me require a working thread, still, so do it before GC completes and
359 // all non-daemon threads are done.
360 {
361 ScopedObjectAccess soa(self);
362 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
363 }
364
365 if (attach_shutdown_thread) {
366 DetachCurrentThread();
367 self = nullptr;
368 }
369
370 // Make sure to let the GC complete if it is running.
371 heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
372 heap_->DeleteThreadPool();
373 if (jit_ != nullptr) {
374 ScopedTrace trace2("Delete jit");
375 VLOG(jit) << "Deleting jit thread pool";
376 // Delete thread pool before the thread list since we don't want to wait forever on the
377 // JIT compiler threads.
378 jit_->DeleteThreadPool();
379 }
380
381 // Make sure our internal threads are dead before we start tearing down things they're using.
382 GetRuntimeCallbacks()->StopDebugger();
383 delete signal_catcher_;
384
385 // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
386 {
387 ScopedTrace trace2("Delete thread list");
388 thread_list_->ShutDown();
389 }
390
391 // TODO Maybe do some locking.
392 for (auto& agent : agents_) {
393 agent->Unload();
394 }
395
396 // TODO Maybe do some locking
397 for (auto& plugin : plugins_) {
398 plugin.Unload();
399 }
400
401 // Finally delete the thread list.
402 delete thread_list_;
403
404 // Delete the JIT after thread list to ensure that there is no remaining threads which could be
405 // accessing the instrumentation when we delete it.
406 if (jit_ != nullptr) {
407 VLOG(jit) << "Deleting jit";
408 jit_.reset(nullptr);
409 }
410
411 // Shutdown the fault manager if it was initialized.
412 fault_manager.Shutdown();
413
414 ScopedTrace trace2("Delete state");
415 delete monitor_list_;
416 delete monitor_pool_;
417 delete class_linker_;
418 delete heap_;
419 delete intern_table_;
420 delete oat_file_manager_;
421 Thread::Shutdown();
422 QuasiAtomic::Shutdown();
423 verifier::MethodVerifier::Shutdown();
424
425 // Destroy allocators before shutting down the MemMap because they may use it.
426 java_vm_.reset();
427 linear_alloc_.reset();
428 low_4gb_arena_pool_.reset();
429 arena_pool_.reset();
430 jit_arena_pool_.reset();
431 protected_fault_page_.reset();
432 MemMap::Shutdown();
433
434 // TODO: acquire a static mutex on Runtime to avoid racing.
435 CHECK(instance_ == nullptr || instance_ == this);
436 instance_ = nullptr;
437
438 // Well-known classes must be deleted or it is impossible to successfully start another Runtime
439 // instance. We rely on a small initialization order issue in Runtime::Start() that requires
440 // elements of WellKnownClasses to be null, see b/65500943.
441 WellKnownClasses::Clear();
442 }
443
444 struct AbortState {
Dumpart::AbortState445 void Dump(std::ostream& os) const {
446 if (gAborting > 1) {
447 os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
448 DumpRecursiveAbort(os);
449 return;
450 }
451 gAborting++;
452 os << "Runtime aborting...\n";
453 if (Runtime::Current() == nullptr) {
454 os << "(Runtime does not yet exist!)\n";
455 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
456 return;
457 }
458 Thread* self = Thread::Current();
459
460 // Dump all threads first and then the aborting thread. While this is counter the logical flow,
461 // it improves the chance of relevant data surviving in the Android logs.
462
463 DumpAllThreads(os, self);
464
465 if (self == nullptr) {
466 os << "(Aborting thread was not attached to runtime!)\n";
467 DumpKernelStack(os, GetTid(), " kernel: ", false);
468 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
469 } else {
470 os << "Aborting thread:\n";
471 if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
472 DumpThread(os, self);
473 } else {
474 if (Locks::mutator_lock_->SharedTryLock(self)) {
475 DumpThread(os, self);
476 Locks::mutator_lock_->SharedUnlock(self);
477 }
478 }
479 }
480 }
481
482 // No thread-safety analysis as we do explicitly test for holding the mutator lock.
DumpThreadart::AbortState483 void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
484 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
485 self->Dump(os);
486 if (self->IsExceptionPending()) {
487 mirror::Throwable* exception = self->GetException();
488 os << "Pending exception " << exception->Dump();
489 }
490 }
491
DumpAllThreadsart::AbortState492 void DumpAllThreads(std::ostream& os, Thread* self) const {
493 Runtime* runtime = Runtime::Current();
494 if (runtime != nullptr) {
495 ThreadList* thread_list = runtime->GetThreadList();
496 if (thread_list != nullptr) {
497 bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
498 bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
499 if (!tll_already_held || !ml_already_held) {
500 os << "Dumping all threads without appropriate locks held:"
501 << (!tll_already_held ? " thread list lock" : "")
502 << (!ml_already_held ? " mutator lock" : "")
503 << "\n";
504 }
505 os << "All threads:\n";
506 thread_list->Dump(os);
507 }
508 }
509 }
510
511 // For recursive aborts.
DumpRecursiveAbortart::AbortState512 void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
513 // The only thing we'll attempt is dumping the native stack of the current thread. We will only
514 // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
515 // die.
516 // Note: as we're using a global counter for the recursive abort detection, there is a potential
517 // race here and it is not OK to just print when the counter is "2" (one from
518 // Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
519 static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
520 if (gAborting < kOnlyPrintWhenRecursionLessThan) {
521 gAborting++;
522 DumpNativeStack(os, GetTid());
523 }
524 }
525 };
526
Abort(const char * msg)527 void Runtime::Abort(const char* msg) {
528 auto old_value = gAborting.fetch_add(1); // set before taking any locks
529
530 #ifdef ART_TARGET_ANDROID
531 if (old_value == 0) {
532 // Only set the first abort message.
533 android_set_abort_message(msg);
534 }
535 #else
536 UNUSED(old_value);
537 #endif
538
539 #ifdef ART_TARGET_ANDROID
540 android_set_abort_message(msg);
541 #endif
542
543 // Ensure that we don't have multiple threads trying to abort at once,
544 // which would result in significantly worse diagnostics.
545 MutexLock mu(Thread::Current(), *Locks::abort_lock_);
546
547 // Get any pending output out of the way.
548 fflush(nullptr);
549
550 // Many people have difficulty distinguish aborts from crashes,
551 // so be explicit.
552 // Note: use cerr on the host to print log lines immediately, so we get at least some output
553 // in case of recursive aborts. We lose annotation with the source file and line number
554 // here, which is a minor issue. The same is significantly more complicated on device,
555 // which is why we ignore the issue there.
556 AbortState state;
557 if (kIsTargetBuild) {
558 LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
559 } else {
560 std::cerr << Dumpable<AbortState>(state);
561 }
562
563 // Sometimes we dump long messages, and the Android abort message only retains the first line.
564 // In those cases, just log the message again, to avoid logcat limits.
565 if (msg != nullptr && strchr(msg, '\n') != nullptr) {
566 LOG(FATAL_WITHOUT_ABORT) << msg;
567 }
568
569 // Call the abort hook if we have one.
570 if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
571 LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
572 Runtime::Current()->abort_();
573 // notreached
574 LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
575 }
576
577 #if defined(__GLIBC__)
578 // TODO: we ought to be able to use pthread_kill(3) here (or abort(3),
579 // which POSIX defines in terms of raise(3), which POSIX defines in terms
580 // of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through
581 // libpthread, which means the stacks we dump would be useless. Calling
582 // tgkill(2) directly avoids that.
583 syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT);
584 // TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM?
585 // If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3).
586 exit(1);
587 #else
588 abort();
589 #endif
590 // notreached
591 }
592
PreZygoteFork()593 void Runtime::PreZygoteFork() {
594 heap_->PreZygoteFork();
595 }
596
CallExitHook(jint status)597 void Runtime::CallExitHook(jint status) {
598 if (exit_ != nullptr) {
599 ScopedThreadStateChange tsc(Thread::Current(), kNative);
600 exit_(status);
601 LOG(WARNING) << "Exit hook returned instead of exiting!";
602 }
603 }
604
SweepSystemWeaks(IsMarkedVisitor * visitor)605 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
606 GetInternTable()->SweepInternTableWeaks(visitor);
607 GetMonitorList()->SweepMonitorList(visitor);
608 GetJavaVM()->SweepJniWeakGlobals(visitor);
609 GetHeap()->SweepAllocationRecords(visitor);
610 if (GetJit() != nullptr) {
611 // Visit JIT literal tables. Objects in these tables are classes and strings
612 // and only classes can be affected by class unloading. The strings always
613 // stay alive as they are strongly interned.
614 // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
615 // from mutators. See b/32167580.
616 GetJit()->GetCodeCache()->SweepRootTables(visitor);
617 }
618
619 // All other generic system-weak holders.
620 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
621 holder->Sweep(visitor);
622 }
623 }
624
ParseOptions(const RuntimeOptions & raw_options,bool ignore_unrecognized,RuntimeArgumentMap * runtime_options)625 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
626 bool ignore_unrecognized,
627 RuntimeArgumentMap* runtime_options) {
628 Locks::Init();
629 InitLogging(/* argv */ nullptr, Abort); // Calls Locks::Init() as a side effect.
630 bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
631 if (!parsed) {
632 LOG(ERROR) << "Failed to parse options";
633 return false;
634 }
635 return true;
636 }
637
638 // Callback to check whether it is safe to call Abort (e.g., to use a call to
639 // LOG(FATAL)). It is only safe to call Abort if the runtime has been created,
640 // properly initialized, and has not shut down.
IsSafeToCallAbort()641 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
642 Runtime* runtime = Runtime::Current();
643 return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
644 }
645
Create(RuntimeArgumentMap && runtime_options)646 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
647 // TODO: acquire a static mutex on Runtime to avoid racing.
648 if (Runtime::instance_ != nullptr) {
649 return false;
650 }
651 instance_ = new Runtime;
652 Locks::SetClientCallback(IsSafeToCallAbort);
653 if (!instance_->Init(std::move(runtime_options))) {
654 // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
655 // leak memory, instead. Fix the destructor. b/19100793.
656 // delete instance_;
657 instance_ = nullptr;
658 return false;
659 }
660 return true;
661 }
662
Create(const RuntimeOptions & raw_options,bool ignore_unrecognized)663 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
664 RuntimeArgumentMap runtime_options;
665 return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
666 Create(std::move(runtime_options));
667 }
668
CreateSystemClassLoader(Runtime * runtime)669 static jobject CreateSystemClassLoader(Runtime* runtime) {
670 if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
671 return nullptr;
672 }
673
674 ScopedObjectAccess soa(Thread::Current());
675 ClassLinker* cl = Runtime::Current()->GetClassLinker();
676 auto pointer_size = cl->GetImagePointerSize();
677
678 StackHandleScope<2> hs(soa.Self());
679 Handle<mirror::Class> class_loader_class(
680 hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
681 CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
682
683 ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
684 "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
685 CHECK(getSystemClassLoader != nullptr);
686 CHECK(getSystemClassLoader->IsStatic());
687
688 JValue result = InvokeWithJValues(soa,
689 nullptr,
690 jni::EncodeArtMethod(getSystemClassLoader),
691 nullptr);
692 JNIEnv* env = soa.Self()->GetJniEnv();
693 ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
694 CHECK(system_class_loader.get() != nullptr);
695
696 soa.Self()->SetClassLoaderOverride(system_class_loader.get());
697
698 Handle<mirror::Class> thread_class(
699 hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
700 CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
701
702 ArtField* contextClassLoader =
703 thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
704 CHECK(contextClassLoader != nullptr);
705
706 // We can't run in a transaction yet.
707 contextClassLoader->SetObject<false>(
708 soa.Self()->GetPeer(),
709 soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
710
711 return env->NewGlobalRef(system_class_loader.get());
712 }
713
GetPatchoatExecutable() const714 std::string Runtime::GetPatchoatExecutable() const {
715 if (!patchoat_executable_.empty()) {
716 return patchoat_executable_;
717 }
718 std::string patchoat_executable(GetAndroidRoot());
719 patchoat_executable += (kIsDebugBuild ? "/bin/patchoatd" : "/bin/patchoat");
720 return patchoat_executable;
721 }
722
GetCompilerExecutable() const723 std::string Runtime::GetCompilerExecutable() const {
724 if (!compiler_executable_.empty()) {
725 return compiler_executable_;
726 }
727 std::string compiler_executable(GetAndroidRoot());
728 compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
729 return compiler_executable;
730 }
731
Start()732 bool Runtime::Start() {
733 VLOG(startup) << "Runtime::Start entering";
734
735 CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
736
737 // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
738 // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
739 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
740 if (kIsDebugBuild) {
741 CHECK_EQ(prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY), 0);
742 }
743 #endif
744
745 // Restore main thread state to kNative as expected by native code.
746 Thread* self = Thread::Current();
747
748 self->TransitionFromRunnableToSuspended(kNative);
749
750 started_ = true;
751
752 if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
753 ScopedObjectAccess soa(self);
754 StackHandleScope<2> hs(soa.Self());
755
756 auto class_class(hs.NewHandle<mirror::Class>(mirror::Class::GetJavaLangClass()));
757 auto field_class(hs.NewHandle<mirror::Class>(mirror::Field::StaticClass()));
758
759 class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
760 // Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
761 class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
762 }
763
764 // InitNativeMethods needs to be after started_ so that the classes
765 // it touches will have methods linked to the oat file if necessary.
766 {
767 ScopedTrace trace2("InitNativeMethods");
768 InitNativeMethods();
769 }
770
771 // IntializeIntrinsics needs to be called after the WellKnownClasses::Init in InitNativeMethods
772 // because in checking the invocation types of intrinsic methods ArtMethod::GetInvokeType()
773 // needs the SignaturePolymorphic annotation class which is initialized in WellKnownClasses::Init.
774 InitializeIntrinsics();
775
776 // Initialize well known thread group values that may be accessed threads while attaching.
777 InitThreadGroups(self);
778
779 Thread::FinishStartup();
780
781 // Create the JIT either if we have to use JIT compilation or save profiling info. This is
782 // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
783 // ThreadGroup to exist.
784 //
785 // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
786 // recoding profiles. Maybe we should consider changing the name to be more clear it's
787 // not only about compiling. b/28295073.
788 if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
789 std::string error_msg;
790 if (!IsZygote()) {
791 // If we are the zygote then we need to wait until after forking to create the code cache
792 // due to SELinux restrictions on r/w/x memory regions.
793 CreateJit();
794 } else if (jit_options_->UseJitCompilation()) {
795 if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
796 // Try to load compiler pre zygote to reduce PSS. b/27744947
797 LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
798 }
799 }
800 }
801
802 // Send the start phase event. We have to wait till here as this is when the main thread peer
803 // has just been generated, important root clinits have been run and JNI is completely functional.
804 {
805 ScopedObjectAccess soa(self);
806 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
807 }
808
809 system_class_loader_ = CreateSystemClassLoader(this);
810
811 if (!is_zygote_) {
812 if (is_native_bridge_loaded_) {
813 PreInitializeNativeBridge(".");
814 }
815 NativeBridgeAction action = force_native_bridge_
816 ? NativeBridgeAction::kInitialize
817 : NativeBridgeAction::kUnload;
818 InitNonZygoteOrPostFork(self->GetJniEnv(),
819 /* is_system_server */ false,
820 action,
821 GetInstructionSetString(kRuntimeISA));
822 }
823
824 // Send the initialized phase event. Send it before starting daemons, as otherwise
825 // sending thread events becomes complicated.
826 {
827 ScopedObjectAccess soa(self);
828 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
829 }
830
831 StartDaemonThreads();
832
833 {
834 ScopedObjectAccess soa(self);
835 self->GetJniEnv()->AssertLocalsEmpty();
836 }
837
838 VLOG(startup) << "Runtime::Start exiting";
839 finished_starting_ = true;
840
841 if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
842 ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
843 Trace::Start(trace_config_->trace_file.c_str(),
844 -1,
845 static_cast<int>(trace_config_->trace_file_size),
846 0,
847 trace_config_->trace_output_mode,
848 trace_config_->trace_mode,
849 0);
850 }
851
852 // In case we have a profile path passed as a command line argument,
853 // register the current class path for profiling now. Note that we cannot do
854 // this before we create the JIT and having it here is the most convenient way.
855 // This is used when testing profiles with dalvikvm command as there is no
856 // framework to register the dex files for profiling.
857 if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() &&
858 !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
859 std::vector<std::string> dex_filenames;
860 Split(class_path_string_, ':', &dex_filenames);
861 RegisterAppInfo(dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath());
862 }
863
864 return true;
865 }
866
EndThreadBirth()867 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
868 DCHECK_GT(threads_being_born_, 0U);
869 threads_being_born_--;
870 if (shutting_down_started_ && threads_being_born_ == 0) {
871 shutdown_cond_->Broadcast(Thread::Current());
872 }
873 }
874
InitNonZygoteOrPostFork(JNIEnv * env,bool is_system_server,NativeBridgeAction action,const char * isa,bool profile_system_server)875 void Runtime::InitNonZygoteOrPostFork(
876 JNIEnv* env,
877 bool is_system_server,
878 NativeBridgeAction action,
879 const char* isa,
880 bool profile_system_server) {
881 is_zygote_ = false;
882
883 if (is_native_bridge_loaded_) {
884 switch (action) {
885 case NativeBridgeAction::kUnload:
886 UnloadNativeBridge();
887 is_native_bridge_loaded_ = false;
888 break;
889
890 case NativeBridgeAction::kInitialize:
891 InitializeNativeBridge(env, isa);
892 break;
893 }
894 }
895
896 // Create the thread pools.
897 heap_->CreateThreadPool();
898 // Reset the gc performance data at zygote fork so that the GCs
899 // before fork aren't attributed to an app.
900 heap_->ResetGcPerformanceInfo();
901
902 // We may want to collect profiling samples for system server, but we never want to JIT there.
903 if (is_system_server) {
904 jit_options_->SetUseJitCompilation(false);
905 jit_options_->SetSaveProfilingInfo(profile_system_server);
906 if (profile_system_server) {
907 jit_options_->SetWaitForJitNotificationsToSaveProfile(false);
908 VLOG(profiler) << "Enabling system server profiles";
909 }
910 }
911 if (!safe_mode_ &&
912 (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) &&
913 jit_ == nullptr) {
914 // Note that when running ART standalone (not zygote, nor zygote fork),
915 // the jit may have already been created.
916 CreateJit();
917 }
918
919 StartSignalCatcher();
920
921 // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
922 // this will pause the runtime (in the internal debugger implementation), so we probably want
923 // this to come last.
924 ScopedObjectAccess soa(Thread::Current());
925 GetRuntimeCallbacks()->StartDebugger();
926 }
927
StartSignalCatcher()928 void Runtime::StartSignalCatcher() {
929 if (!is_zygote_) {
930 signal_catcher_ = new SignalCatcher(stack_trace_file_, use_tombstoned_traces_);
931 }
932 }
933
IsShuttingDown(Thread * self)934 bool Runtime::IsShuttingDown(Thread* self) {
935 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
936 return IsShuttingDownLocked();
937 }
938
StartDaemonThreads()939 void Runtime::StartDaemonThreads() {
940 ScopedTrace trace(__FUNCTION__);
941 VLOG(startup) << "Runtime::StartDaemonThreads entering";
942
943 Thread* self = Thread::Current();
944
945 // Must be in the kNative state for calling native methods.
946 CHECK_EQ(self->GetState(), kNative);
947
948 JNIEnv* env = self->GetJniEnv();
949 env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
950 WellKnownClasses::java_lang_Daemons_start);
951 if (env->ExceptionCheck()) {
952 env->ExceptionDescribe();
953 LOG(FATAL) << "Error starting java.lang.Daemons";
954 }
955
956 VLOG(startup) << "Runtime::StartDaemonThreads exiting";
957 }
958
959 // Attempts to open dex files from image(s). Given the image location, try to find the oat file
960 // and open it to get the stored dex file. If the image is the first for a multi-image boot
961 // classpath, go on and also open the other images.
OpenDexFilesFromImage(const std::string & image_location,std::vector<std::unique_ptr<const DexFile>> * dex_files,size_t * failures)962 static bool OpenDexFilesFromImage(const std::string& image_location,
963 std::vector<std::unique_ptr<const DexFile>>* dex_files,
964 size_t* failures) {
965 DCHECK(dex_files != nullptr) << "OpenDexFilesFromImage: out-param is nullptr";
966
967 // Use a work-list approach, so that we can easily reuse the opening code.
968 std::vector<std::string> image_locations;
969 image_locations.push_back(image_location);
970
971 for (size_t index = 0; index < image_locations.size(); ++index) {
972 std::string system_filename;
973 bool has_system = false;
974 std::string cache_filename_unused;
975 bool dalvik_cache_exists_unused;
976 bool has_cache_unused;
977 bool is_global_cache_unused;
978 bool found_image = gc::space::ImageSpace::FindImageFilename(image_locations[index].c_str(),
979 kRuntimeISA,
980 &system_filename,
981 &has_system,
982 &cache_filename_unused,
983 &dalvik_cache_exists_unused,
984 &has_cache_unused,
985 &is_global_cache_unused);
986
987 if (!found_image || !has_system) {
988 return false;
989 }
990
991 // We are falling back to non-executable use of the oat file because patching failed, presumably
992 // due to lack of space.
993 std::string vdex_filename =
994 ImageHeader::GetVdexLocationFromImageLocation(system_filename.c_str());
995 std::string oat_filename =
996 ImageHeader::GetOatLocationFromImageLocation(system_filename.c_str());
997 std::string oat_location =
998 ImageHeader::GetOatLocationFromImageLocation(image_locations[index].c_str());
999 // Note: in the multi-image case, the image location may end in ".jar," and not ".art." Handle
1000 // that here.
1001 if (android::base::EndsWith(oat_location, ".jar")) {
1002 oat_location.replace(oat_location.length() - 3, 3, "oat");
1003 }
1004 std::string error_msg;
1005
1006 std::unique_ptr<VdexFile> vdex_file(VdexFile::Open(vdex_filename,
1007 false /* writable */,
1008 false /* low_4gb */,
1009 false, /* unquicken */
1010 &error_msg));
1011 if (vdex_file.get() == nullptr) {
1012 return false;
1013 }
1014
1015 std::unique_ptr<File> file(OS::OpenFileForReading(oat_filename.c_str()));
1016 if (file.get() == nullptr) {
1017 return false;
1018 }
1019 std::unique_ptr<ElfFile> elf_file(ElfFile::Open(file.get(),
1020 false /* writable */,
1021 false /* program_header_only */,
1022 false /* low_4gb */,
1023 &error_msg));
1024 if (elf_file.get() == nullptr) {
1025 return false;
1026 }
1027 std::unique_ptr<const OatFile> oat_file(
1028 OatFile::OpenWithElfFile(/* zip_fd */ -1,
1029 elf_file.release(),
1030 vdex_file.release(),
1031 oat_location,
1032 nullptr,
1033 &error_msg));
1034 if (oat_file == nullptr) {
1035 LOG(WARNING) << "Unable to use '" << oat_filename << "' because " << error_msg;
1036 return false;
1037 }
1038
1039 for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
1040 if (oat_dex_file == nullptr) {
1041 *failures += 1;
1042 continue;
1043 }
1044 std::unique_ptr<const DexFile> dex_file = oat_dex_file->OpenDexFile(&error_msg);
1045 if (dex_file.get() == nullptr) {
1046 *failures += 1;
1047 } else {
1048 dex_files->push_back(std::move(dex_file));
1049 }
1050 }
1051
1052 if (index == 0) {
1053 // First file. See if this is a multi-image environment, and if so, enqueue the other images.
1054 const OatHeader& boot_oat_header = oat_file->GetOatHeader();
1055 const char* boot_cp = boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
1056 if (boot_cp != nullptr) {
1057 gc::space::ImageSpace::ExtractMultiImageLocations(image_locations[0],
1058 boot_cp,
1059 &image_locations);
1060 }
1061 }
1062
1063 Runtime::Current()->GetOatFileManager().RegisterOatFile(std::move(oat_file));
1064 }
1065 return true;
1066 }
1067
1068
OpenDexFiles(const std::vector<std::string> & dex_filenames,const std::vector<std::string> & dex_locations,const std::string & image_location,std::vector<std::unique_ptr<const DexFile>> * dex_files)1069 static size_t OpenDexFiles(const std::vector<std::string>& dex_filenames,
1070 const std::vector<std::string>& dex_locations,
1071 const std::string& image_location,
1072 std::vector<std::unique_ptr<const DexFile>>* dex_files) {
1073 DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
1074 size_t failure_count = 0;
1075 if (!image_location.empty() && OpenDexFilesFromImage(image_location, dex_files, &failure_count)) {
1076 return failure_count;
1077 }
1078 const ArtDexFileLoader dex_file_loader;
1079 failure_count = 0;
1080 for (size_t i = 0; i < dex_filenames.size(); i++) {
1081 const char* dex_filename = dex_filenames[i].c_str();
1082 const char* dex_location = dex_locations[i].c_str();
1083 static constexpr bool kVerifyChecksum = true;
1084 std::string error_msg;
1085 if (!OS::FileExists(dex_filename)) {
1086 LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
1087 continue;
1088 }
1089 if (!dex_file_loader.Open(dex_filename,
1090 dex_location,
1091 Runtime::Current()->IsVerificationEnabled(),
1092 kVerifyChecksum,
1093 &error_msg,
1094 dex_files)) {
1095 LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
1096 ++failure_count;
1097 }
1098 }
1099 return failure_count;
1100 }
1101
SetSentinel(mirror::Object * sentinel)1102 void Runtime::SetSentinel(mirror::Object* sentinel) {
1103 CHECK(sentinel_.Read() == nullptr);
1104 CHECK(sentinel != nullptr);
1105 CHECK(!heap_->IsMovableObject(sentinel));
1106 sentinel_ = GcRoot<mirror::Object>(sentinel);
1107 }
1108
Init(RuntimeArgumentMap && runtime_options_in)1109 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
1110 // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
1111 // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
1112 env_snapshot_.TakeSnapshot();
1113
1114 using Opt = RuntimeArgumentMap;
1115 Opt runtime_options(std::move(runtime_options_in));
1116 ScopedTrace trace(__FUNCTION__);
1117 CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
1118
1119 // Early override for logging output.
1120 if (runtime_options.Exists(Opt::UseStderrLogger)) {
1121 android::base::SetLogger(android::base::StderrLogger);
1122 }
1123
1124 MemMap::Init();
1125
1126 // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
1127 // If we cannot reserve it, log a warning.
1128 // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
1129 // is out-of-the-way enough that it should not collide with boot image mapping.
1130 // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
1131 // leading to logspam.
1132 {
1133 constexpr uintptr_t kSentinelAddr =
1134 RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize);
1135 protected_fault_page_.reset(MemMap::MapAnonymous("Sentinel fault page",
1136 reinterpret_cast<uint8_t*>(kSentinelAddr),
1137 kPageSize,
1138 PROT_NONE,
1139 /* low_4g */ true,
1140 /* reuse */ false,
1141 /* error_msg */ nullptr));
1142 if (protected_fault_page_ == nullptr) {
1143 LOG(WARNING) << "Could not reserve sentinel fault page";
1144 } else if (reinterpret_cast<uintptr_t>(protected_fault_page_->Begin()) != kSentinelAddr) {
1145 LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
1146 protected_fault_page_.reset();
1147 }
1148 }
1149
1150 VLOG(startup) << "Runtime::Init -verbose:startup enabled";
1151
1152 QuasiAtomic::Startup();
1153
1154 oat_file_manager_ = new OatFileManager;
1155
1156 Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
1157 Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
1158 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
1159
1160 boot_class_path_string_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
1161 class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
1162 properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
1163
1164 compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
1165 patchoat_executable_ = runtime_options.ReleaseOrDefault(Opt::PatchOat);
1166 must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
1167 is_zygote_ = runtime_options.Exists(Opt::Zygote);
1168 is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
1169 dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::Dex2Oat);
1170 image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
1171 dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
1172
1173 vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
1174 exit_ = runtime_options.GetOrDefault(Opt::HookExit);
1175 abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
1176
1177 default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
1178 use_tombstoned_traces_ = runtime_options.GetOrDefault(Opt::UseTombstonedTraces);
1179 #if !defined(ART_TARGET_ANDROID)
1180 CHECK(!use_tombstoned_traces_)
1181 << "-Xusetombstonedtraces is only supported in an Android environment";
1182 #endif
1183 stack_trace_file_ = runtime_options.ReleaseOrDefault(Opt::StackTraceFile);
1184
1185 compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
1186 compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
1187 for (StringPiece option : Runtime::Current()->GetCompilerOptions()) {
1188 if (option.starts_with("--debuggable")) {
1189 SetJavaDebuggable(true);
1190 break;
1191 }
1192 }
1193 image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
1194 image_location_ = runtime_options.GetOrDefault(Opt::Image);
1195
1196 max_spins_before_thin_lock_inflation_ =
1197 runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
1198
1199 monitor_list_ = new MonitorList;
1200 monitor_pool_ = MonitorPool::Create();
1201 thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
1202 intern_table_ = new InternTable;
1203
1204 verify_ = runtime_options.GetOrDefault(Opt::Verify);
1205 allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback);
1206
1207 target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion);
1208
1209 // Check whether to enforce hidden API access checks. The checks are disabled
1210 // by default and we only enable them if:
1211 // (a) runtime was started with a flag that enables the checks, or
1212 // (b) Zygote forked a new process that is not exempt (see ZygoteHooks).
1213 bool do_hidden_api_checks = runtime_options.Exists(Opt::HiddenApiChecks);
1214 DCHECK(!is_zygote_ || !do_hidden_api_checks);
1215 // TODO pass the actual enforcement policy in, rather than just a single bit.
1216 // As is, we're encoding some logic here about which specific policy to use, which would be better
1217 // controlled by the framework.
1218 hidden_api_policy_ = do_hidden_api_checks
1219 ? hiddenapi::EnforcementPolicy::kDarkGreyAndBlackList
1220 : hiddenapi::EnforcementPolicy::kNoChecks;
1221
1222 no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
1223 force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
1224
1225 Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
1226
1227 fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
1228
1229 if (runtime_options.GetOrDefault(Opt::Interpret)) {
1230 GetInstrumentation()->ForceInterpretOnly();
1231 }
1232
1233 zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
1234 experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
1235 is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
1236 madvise_random_access_ = runtime_options.GetOrDefault(Opt::MadviseRandomAccess);
1237
1238 plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
1239 agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
1240 // TODO Add back in -agentlib
1241 // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
1242 // agents_.push_back(lib);
1243 // }
1244
1245 float foreground_heap_growth_multiplier;
1246 if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
1247 // If low memory mode, use 1.0 as the multiplier by default.
1248 foreground_heap_growth_multiplier = 1.0f;
1249 } else {
1250 foreground_heap_growth_multiplier =
1251 runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) +
1252 kExtraDefaultHeapGrowthMultiplier;
1253 }
1254 XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
1255 heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
1256 runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
1257 runtime_options.GetOrDefault(Opt::HeapMinFree),
1258 runtime_options.GetOrDefault(Opt::HeapMaxFree),
1259 runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
1260 foreground_heap_growth_multiplier,
1261 runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
1262 runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
1263 runtime_options.GetOrDefault(Opt::Image),
1264 runtime_options.GetOrDefault(Opt::ImageInstructionSet),
1265 // Override the collector type to CC if the read barrier config.
1266 kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
1267 kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
1268 : runtime_options.GetOrDefault(Opt::BackgroundGc),
1269 runtime_options.GetOrDefault(Opt::LargeObjectSpace),
1270 runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
1271 runtime_options.GetOrDefault(Opt::ParallelGCThreads),
1272 runtime_options.GetOrDefault(Opt::ConcGCThreads),
1273 runtime_options.Exists(Opt::LowMemoryMode),
1274 runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
1275 runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
1276 runtime_options.Exists(Opt::IgnoreMaxFootprint),
1277 runtime_options.GetOrDefault(Opt::UseTLAB),
1278 xgc_option.verify_pre_gc_heap_,
1279 xgc_option.verify_pre_sweeping_heap_,
1280 xgc_option.verify_post_gc_heap_,
1281 xgc_option.verify_pre_gc_rosalloc_,
1282 xgc_option.verify_pre_sweeping_rosalloc_,
1283 xgc_option.verify_post_gc_rosalloc_,
1284 xgc_option.gcstress_,
1285 xgc_option.measure_,
1286 runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
1287 runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs));
1288
1289 if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
1290 LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
1291 return false;
1292 }
1293
1294 dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
1295
1296 jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions);
1297 jdwp_provider_ = runtime_options.GetOrDefault(Opt::JdwpProvider);
1298 switch (jdwp_provider_) {
1299 case JdwpProvider::kNone: {
1300 VLOG(jdwp) << "Disabling all JDWP support.";
1301 if (!jdwp_options_.empty()) {
1302 bool has_transport = jdwp_options_.find("transport") != std::string::npos;
1303 const char* transport_internal = !has_transport ? "transport=dt_android_adb," : "";
1304 std::string adb_connection_args =
1305 std::string(" -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_;
1306 LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable "
1307 << "jdwp with one of:" << std::endl
1308 << " -XjdwpProvider:internal "
1309 << "-XjdwpOptions:" << transport_internal << jdwp_options_ << std::endl
1310 << " -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so "
1311 << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl
1312 << (has_transport ? "" : adb_connection_args);
1313 }
1314 break;
1315 }
1316 case JdwpProvider::kInternal: {
1317 if (runtime_options.Exists(Opt::JdwpOptions)) {
1318 JDWP::JdwpOptions ops;
1319 if (!JDWP::ParseJdwpOptions(runtime_options.GetOrDefault(Opt::JdwpOptions), &ops)) {
1320 LOG(ERROR) << "failed to parse jdwp options!";
1321 return false;
1322 }
1323 Dbg::ConfigureJdwp(ops);
1324 }
1325 break;
1326 }
1327 case JdwpProvider::kAdbConnection: {
1328 constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so"
1329 : "libadbconnection.so";
1330 plugins_.push_back(Plugin::Create(plugin_name));
1331 }
1332 }
1333 callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
1334 callbacks_->AddClassLoadCallback(Dbg::GetClassLoadCallback());
1335
1336 jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
1337 if (IsAotCompiler()) {
1338 // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
1339 // this case.
1340 // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
1341 // null and we don't create the jit.
1342 jit_options_->SetUseJitCompilation(false);
1343 jit_options_->SetSaveProfilingInfo(false);
1344 }
1345
1346 // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
1347 // can't be trimmed as easily.
1348 const bool use_malloc = IsAotCompiler();
1349 arena_pool_.reset(new ArenaPool(use_malloc, /* low_4gb */ false));
1350 jit_arena_pool_.reset(
1351 new ArenaPool(/* use_malloc */ false, /* low_4gb */ false, "CompilerMetadata"));
1352
1353 if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
1354 // 4gb, no malloc. Explanation in header.
1355 low_4gb_arena_pool_.reset(new ArenaPool(/* use_malloc */ false, /* low_4gb */ true));
1356 }
1357 linear_alloc_.reset(CreateLinearAlloc());
1358
1359 BlockSignals();
1360 InitPlatformSignalHandlers();
1361
1362 // Change the implicit checks flags based on runtime architecture.
1363 switch (kRuntimeISA) {
1364 case InstructionSet::kArm:
1365 case InstructionSet::kThumb2:
1366 case InstructionSet::kX86:
1367 case InstructionSet::kArm64:
1368 case InstructionSet::kX86_64:
1369 case InstructionSet::kMips:
1370 case InstructionSet::kMips64:
1371 implicit_null_checks_ = true;
1372 // Installing stack protection does not play well with valgrind.
1373 implicit_so_checks_ = !(RUNNING_ON_MEMORY_TOOL && kMemoryToolIsValgrind);
1374 break;
1375 default:
1376 // Keep the defaults.
1377 break;
1378 }
1379
1380 if (!no_sig_chain_) {
1381 // Dex2Oat's Runtime does not need the signal chain or the fault handler.
1382 if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
1383 fault_manager.Init();
1384
1385 // These need to be in a specific order. The null point check handler must be
1386 // after the suspend check and stack overflow check handlers.
1387 //
1388 // Note: the instances attach themselves to the fault manager and are handled by it. The manager
1389 // will delete the instance on Shutdown().
1390 if (implicit_suspend_checks_) {
1391 new SuspensionHandler(&fault_manager);
1392 }
1393
1394 if (implicit_so_checks_) {
1395 new StackOverflowHandler(&fault_manager);
1396 }
1397
1398 if (implicit_null_checks_) {
1399 new NullPointerHandler(&fault_manager);
1400 }
1401
1402 if (kEnableJavaStackTraceHandler) {
1403 new JavaStackTraceHandler(&fault_manager);
1404 }
1405 }
1406 }
1407
1408 std::string error_msg;
1409 java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
1410 if (java_vm_.get() == nullptr) {
1411 LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
1412 return false;
1413 }
1414
1415 // Add the JniEnv handler.
1416 // TODO Refactor this stuff.
1417 java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
1418
1419 Thread::Startup();
1420
1421 // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
1422 // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
1423 // thread, we do not get a java peer.
1424 Thread* self = Thread::Attach("main", false, nullptr, false);
1425 CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
1426 CHECK(self != nullptr);
1427
1428 self->SetCanCallIntoJava(!IsAotCompiler());
1429
1430 // Set us to runnable so tools using a runtime can allocate and GC by default
1431 self->TransitionFromSuspendedToRunnable();
1432
1433 // Now we're attached, we can take the heap locks and validate the heap.
1434 GetHeap()->EnableObjectValidation();
1435
1436 CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
1437 if (UNLIKELY(IsAotCompiler())) {
1438 class_linker_ = new AotClassLinker(intern_table_);
1439 } else {
1440 class_linker_ = new ClassLinker(intern_table_);
1441 }
1442 if (GetHeap()->HasBootImageSpace()) {
1443 bool result = class_linker_->InitFromBootImage(&error_msg);
1444 if (!result) {
1445 LOG(ERROR) << "Could not initialize from image: " << error_msg;
1446 return false;
1447 }
1448 if (kIsDebugBuild) {
1449 for (auto image_space : GetHeap()->GetBootImageSpaces()) {
1450 image_space->VerifyImageAllocations();
1451 }
1452 }
1453 if (boot_class_path_string_.empty()) {
1454 // The bootclasspath is not explicitly specified: construct it from the loaded dex files.
1455 const std::vector<const DexFile*>& boot_class_path = GetClassLinker()->GetBootClassPath();
1456 std::vector<std::string> dex_locations;
1457 dex_locations.reserve(boot_class_path.size());
1458 for (const DexFile* dex_file : boot_class_path) {
1459 dex_locations.push_back(dex_file->GetLocation());
1460 }
1461 boot_class_path_string_ = android::base::Join(dex_locations, ':');
1462 }
1463 {
1464 ScopedTrace trace2("AddImageStringsToTable");
1465 GetInternTable()->AddImagesStringsToTable(heap_->GetBootImageSpaces());
1466 }
1467 if (IsJavaDebuggable()) {
1468 // Now that we have loaded the boot image, deoptimize its methods if we are running
1469 // debuggable, as the code may have been compiled non-debuggable.
1470 DeoptimizeBootImage();
1471 }
1472 } else {
1473 std::vector<std::string> dex_filenames;
1474 Split(boot_class_path_string_, ':', &dex_filenames);
1475
1476 std::vector<std::string> dex_locations;
1477 if (!runtime_options.Exists(Opt::BootClassPathLocations)) {
1478 dex_locations = dex_filenames;
1479 } else {
1480 dex_locations = runtime_options.GetOrDefault(Opt::BootClassPathLocations);
1481 CHECK_EQ(dex_filenames.size(), dex_locations.size());
1482 }
1483
1484 std::vector<std::unique_ptr<const DexFile>> boot_class_path;
1485 if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1486 boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1487 } else {
1488 OpenDexFiles(dex_filenames,
1489 dex_locations,
1490 runtime_options.GetOrDefault(Opt::Image),
1491 &boot_class_path);
1492 }
1493 instruction_set_ = runtime_options.GetOrDefault(Opt::ImageInstructionSet);
1494 if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
1495 LOG(ERROR) << "Could not initialize without image: " << error_msg;
1496 return false;
1497 }
1498
1499 // TODO: Should we move the following to InitWithoutImage?
1500 SetInstructionSet(instruction_set_);
1501 for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
1502 CalleeSaveType type = CalleeSaveType(i);
1503 if (!HasCalleeSaveMethod(type)) {
1504 SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
1505 }
1506 }
1507 }
1508
1509 CHECK(class_linker_ != nullptr);
1510
1511 verifier::MethodVerifier::Init();
1512
1513 if (runtime_options.Exists(Opt::MethodTrace)) {
1514 trace_config_.reset(new TraceConfig());
1515 trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
1516 trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
1517 trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
1518 trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
1519 Trace::TraceOutputMode::kStreaming :
1520 Trace::TraceOutputMode::kFile;
1521 }
1522
1523 // TODO: move this to just be an Trace::Start argument
1524 Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
1525
1526 // Pre-allocate an OutOfMemoryError for the double-OOME case.
1527 self->ThrowNewException("Ljava/lang/OutOfMemoryError;",
1528 "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
1529 "no stack trace available");
1530 pre_allocated_OutOfMemoryError_ = GcRoot<mirror::Throwable>(self->GetException());
1531 self->ClearException();
1532
1533 // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
1534 // ahead of checking the application's class loader.
1535 self->ThrowNewException("Ljava/lang/NoClassDefFoundError;",
1536 "Class not found using the boot class loader; no stack trace available");
1537 pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(self->GetException());
1538 self->ClearException();
1539
1540 // Runtime initialization is largely done now.
1541 // We load plugins first since that can modify the runtime state slightly.
1542 // Load all plugins
1543 for (auto& plugin : plugins_) {
1544 std::string err;
1545 if (!plugin.Load(&err)) {
1546 LOG(FATAL) << plugin << " failed to load: " << err;
1547 }
1548 }
1549
1550 // Look for a native bridge.
1551 //
1552 // The intended flow here is, in the case of a running system:
1553 //
1554 // Runtime::Init() (zygote):
1555 // LoadNativeBridge -> dlopen from cmd line parameter.
1556 // |
1557 // V
1558 // Runtime::Start() (zygote):
1559 // No-op wrt native bridge.
1560 // |
1561 // | start app
1562 // V
1563 // DidForkFromZygote(action)
1564 // action = kUnload -> dlclose native bridge.
1565 // action = kInitialize -> initialize library
1566 //
1567 //
1568 // The intended flow here is, in the case of a simple dalvikvm call:
1569 //
1570 // Runtime::Init():
1571 // LoadNativeBridge -> dlopen from cmd line parameter.
1572 // |
1573 // V
1574 // Runtime::Start():
1575 // DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
1576 // No-op wrt native bridge.
1577 {
1578 std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
1579 is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
1580 }
1581
1582 // Startup agents
1583 // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
1584 for (auto& agent_spec : agent_specs_) {
1585 // TODO Check err
1586 int res = 0;
1587 std::string err = "";
1588 ti::LoadError error;
1589 std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err);
1590
1591 if (agent != nullptr) {
1592 agents_.push_back(std::move(agent));
1593 continue;
1594 }
1595
1596 switch (error) {
1597 case ti::LoadError::kInitializationError:
1598 LOG(FATAL) << "Unable to initialize agent!";
1599 UNREACHABLE();
1600
1601 case ti::LoadError::kLoadingError:
1602 LOG(ERROR) << "Unable to load an agent: " << err;
1603 continue;
1604
1605 case ti::LoadError::kNoError:
1606 break;
1607 }
1608 LOG(FATAL) << "Unreachable";
1609 UNREACHABLE();
1610 }
1611 {
1612 ScopedObjectAccess soa(self);
1613 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
1614 }
1615
1616 VLOG(startup) << "Runtime::Init exiting";
1617
1618 // Set OnlyUseSystemOatFiles only after boot classpath has been set up.
1619 if (runtime_options.Exists(Opt::OnlyUseSystemOatFiles)) {
1620 oat_file_manager_->SetOnlyUseSystemOatFiles();
1621 }
1622
1623 return true;
1624 }
1625
EnsureJvmtiPlugin(Runtime * runtime,std::vector<Plugin> * plugins,std::string * error_msg)1626 static bool EnsureJvmtiPlugin(Runtime* runtime,
1627 std::vector<Plugin>* plugins,
1628 std::string* error_msg) {
1629 constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
1630
1631 // Is the plugin already loaded?
1632 for (const Plugin& p : *plugins) {
1633 if (p.GetLibrary() == plugin_name) {
1634 return true;
1635 }
1636 }
1637
1638 // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed.
1639 DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable())
1640 << "Being debuggable requires that jdwp (i.e. debugging) is allowed.";
1641 // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are
1642 // specifically allowed.
1643 if (!Dbg::IsJdwpAllowed()) {
1644 *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable";
1645 return false;
1646 }
1647
1648 Plugin new_plugin = Plugin::Create(plugin_name);
1649
1650 if (!new_plugin.Load(error_msg)) {
1651 return false;
1652 }
1653
1654 plugins->push_back(std::move(new_plugin));
1655 return true;
1656 }
1657
1658 // Attach a new agent and add it to the list of runtime agents
1659 //
1660 // TODO: once we decide on the threading model for agents,
1661 // revisit this and make sure we're doing this on the right thread
1662 // (and we synchronize access to any shared data structures like "agents_")
1663 //
AttachAgent(JNIEnv * env,const std::string & agent_arg,jobject class_loader)1664 void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) {
1665 std::string error_msg;
1666 if (!EnsureJvmtiPlugin(this, &plugins_, &error_msg)) {
1667 LOG(WARNING) << "Could not load plugin: " << error_msg;
1668 ScopedObjectAccess soa(Thread::Current());
1669 ThrowIOException("%s", error_msg.c_str());
1670 return;
1671 }
1672
1673 ti::AgentSpec agent_spec(agent_arg);
1674
1675 int res = 0;
1676 ti::LoadError error;
1677 std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg);
1678
1679 if (agent != nullptr) {
1680 agents_.push_back(std::move(agent));
1681 } else {
1682 LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg;
1683 ScopedObjectAccess soa(Thread::Current());
1684 ThrowIOException("%s", error_msg.c_str());
1685 }
1686 }
1687
InitNativeMethods()1688 void Runtime::InitNativeMethods() {
1689 VLOG(startup) << "Runtime::InitNativeMethods entering";
1690 Thread* self = Thread::Current();
1691 JNIEnv* env = self->GetJniEnv();
1692
1693 // Must be in the kNative state for calling native methods (JNI_OnLoad code).
1694 CHECK_EQ(self->GetState(), kNative);
1695
1696 // Set up the native methods provided by the runtime itself.
1697 RegisterRuntimeNativeMethods(env);
1698
1699 // Initialize classes used in JNI. The initialization requires runtime native
1700 // methods to be loaded first.
1701 WellKnownClasses::Init(env);
1702
1703 // Then set up libjavacore / libopenjdk, which are just a regular JNI libraries with
1704 // a regular JNI_OnLoad. Most JNI libraries can just use System.loadLibrary, but
1705 // libcore can't because it's the library that implements System.loadLibrary!
1706 {
1707 std::string error_msg;
1708 if (!java_vm_->LoadNativeLibrary(env, "libjavacore.so", nullptr, &error_msg)) {
1709 LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
1710 }
1711 }
1712 {
1713 constexpr const char* kOpenJdkLibrary = kIsDebugBuild
1714 ? "libopenjdkd.so"
1715 : "libopenjdk.so";
1716 std::string error_msg;
1717 if (!java_vm_->LoadNativeLibrary(env, kOpenJdkLibrary, nullptr, &error_msg)) {
1718 LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
1719 }
1720 }
1721
1722 // Initialize well known classes that may invoke runtime native methods.
1723 WellKnownClasses::LateInit(env);
1724
1725 VLOG(startup) << "Runtime::InitNativeMethods exiting";
1726 }
1727
ReclaimArenaPoolMemory()1728 void Runtime::ReclaimArenaPoolMemory() {
1729 arena_pool_->LockReclaimMemory();
1730 }
1731
InitThreadGroups(Thread * self)1732 void Runtime::InitThreadGroups(Thread* self) {
1733 JNIEnvExt* env = self->GetJniEnv();
1734 ScopedJniEnvLocalRefState env_state(env);
1735 main_thread_group_ =
1736 env->NewGlobalRef(env->GetStaticObjectField(
1737 WellKnownClasses::java_lang_ThreadGroup,
1738 WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
1739 CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1740 system_thread_group_ =
1741 env->NewGlobalRef(env->GetStaticObjectField(
1742 WellKnownClasses::java_lang_ThreadGroup,
1743 WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
1744 CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1745 }
1746
GetMainThreadGroup() const1747 jobject Runtime::GetMainThreadGroup() const {
1748 CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1749 return main_thread_group_;
1750 }
1751
GetSystemThreadGroup() const1752 jobject Runtime::GetSystemThreadGroup() const {
1753 CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1754 return system_thread_group_;
1755 }
1756
GetSystemClassLoader() const1757 jobject Runtime::GetSystemClassLoader() const {
1758 CHECK(system_class_loader_ != nullptr || IsAotCompiler());
1759 return system_class_loader_;
1760 }
1761
RegisterRuntimeNativeMethods(JNIEnv * env)1762 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
1763 register_dalvik_system_DexFile(env);
1764 register_dalvik_system_VMDebug(env);
1765 register_dalvik_system_VMRuntime(env);
1766 register_dalvik_system_VMStack(env);
1767 register_dalvik_system_ZygoteHooks(env);
1768 register_java_lang_Class(env);
1769 register_java_lang_Object(env);
1770 register_java_lang_invoke_MethodHandleImpl(env);
1771 register_java_lang_ref_FinalizerReference(env);
1772 register_java_lang_reflect_Array(env);
1773 register_java_lang_reflect_Constructor(env);
1774 register_java_lang_reflect_Executable(env);
1775 register_java_lang_reflect_Field(env);
1776 register_java_lang_reflect_Method(env);
1777 register_java_lang_reflect_Parameter(env);
1778 register_java_lang_reflect_Proxy(env);
1779 register_java_lang_ref_Reference(env);
1780 register_java_lang_String(env);
1781 register_java_lang_StringFactory(env);
1782 register_java_lang_System(env);
1783 register_java_lang_Thread(env);
1784 register_java_lang_Throwable(env);
1785 register_java_lang_VMClassLoader(env);
1786 register_java_util_concurrent_atomic_AtomicLong(env);
1787 register_libcore_util_CharsetUtils(env);
1788 register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
1789 register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
1790 register_sun_misc_Unsafe(env);
1791 }
1792
operator <<(std::ostream & os,const DeoptimizationKind & kind)1793 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
1794 os << GetDeoptimizationKindName(kind);
1795 return os;
1796 }
1797
DumpDeoptimizations(std::ostream & os)1798 void Runtime::DumpDeoptimizations(std::ostream& os) {
1799 for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
1800 if (deoptimization_counts_[i] != 0) {
1801 os << "Number of "
1802 << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
1803 << " deoptimizations: "
1804 << deoptimization_counts_[i]
1805 << "\n";
1806 }
1807 }
1808 }
1809
DumpForSigQuit(std::ostream & os)1810 void Runtime::DumpForSigQuit(std::ostream& os) {
1811 GetClassLinker()->DumpForSigQuit(os);
1812 GetInternTable()->DumpForSigQuit(os);
1813 GetJavaVM()->DumpForSigQuit(os);
1814 GetHeap()->DumpForSigQuit(os);
1815 oat_file_manager_->DumpForSigQuit(os);
1816 if (GetJit() != nullptr) {
1817 GetJit()->DumpForSigQuit(os);
1818 } else {
1819 os << "Running non JIT\n";
1820 }
1821 DumpDeoptimizations(os);
1822 TrackedAllocators::Dump(os);
1823 os << "\n";
1824
1825 thread_list_->DumpForSigQuit(os);
1826 BaseMutex::DumpAll(os);
1827
1828 // Inform anyone else who is interested in SigQuit.
1829 {
1830 ScopedObjectAccess soa(Thread::Current());
1831 callbacks_->SigQuit();
1832 }
1833 }
1834
DumpLockHolders(std::ostream & os)1835 void Runtime::DumpLockHolders(std::ostream& os) {
1836 uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
1837 pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
1838 pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
1839 pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
1840 if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
1841 os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
1842 << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
1843 << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
1844 << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
1845 }
1846 }
1847
SetStatsEnabled(bool new_state)1848 void Runtime::SetStatsEnabled(bool new_state) {
1849 Thread* self = Thread::Current();
1850 MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
1851 if (new_state == true) {
1852 GetStats()->Clear(~0);
1853 // TODO: wouldn't it make more sense to clear _all_ threads' stats?
1854 self->GetStats()->Clear(~0);
1855 if (stats_enabled_ != new_state) {
1856 GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
1857 }
1858 } else if (stats_enabled_ != new_state) {
1859 GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
1860 }
1861 stats_enabled_ = new_state;
1862 }
1863
ResetStats(int kinds)1864 void Runtime::ResetStats(int kinds) {
1865 GetStats()->Clear(kinds & 0xffff);
1866 // TODO: wouldn't it make more sense to clear _all_ threads' stats?
1867 Thread::Current()->GetStats()->Clear(kinds >> 16);
1868 }
1869
GetStat(int kind)1870 int32_t Runtime::GetStat(int kind) {
1871 RuntimeStats* stats;
1872 if (kind < (1<<16)) {
1873 stats = GetStats();
1874 } else {
1875 stats = Thread::Current()->GetStats();
1876 kind >>= 16;
1877 }
1878 switch (kind) {
1879 case KIND_ALLOCATED_OBJECTS:
1880 return stats->allocated_objects;
1881 case KIND_ALLOCATED_BYTES:
1882 return stats->allocated_bytes;
1883 case KIND_FREED_OBJECTS:
1884 return stats->freed_objects;
1885 case KIND_FREED_BYTES:
1886 return stats->freed_bytes;
1887 case KIND_GC_INVOCATIONS:
1888 return stats->gc_for_alloc_count;
1889 case KIND_CLASS_INIT_COUNT:
1890 return stats->class_init_count;
1891 case KIND_CLASS_INIT_TIME:
1892 // Convert ns to us, reduce to 32 bits.
1893 return static_cast<int>(stats->class_init_time_ns / 1000);
1894 case KIND_EXT_ALLOCATED_OBJECTS:
1895 case KIND_EXT_ALLOCATED_BYTES:
1896 case KIND_EXT_FREED_OBJECTS:
1897 case KIND_EXT_FREED_BYTES:
1898 return 0; // backward compatibility
1899 default:
1900 LOG(FATAL) << "Unknown statistic " << kind;
1901 return -1; // unreachable
1902 }
1903 }
1904
BlockSignals()1905 void Runtime::BlockSignals() {
1906 SignalSet signals;
1907 signals.Add(SIGPIPE);
1908 // SIGQUIT is used to dump the runtime's state (including stack traces).
1909 signals.Add(SIGQUIT);
1910 // SIGUSR1 is used to initiate a GC.
1911 signals.Add(SIGUSR1);
1912 signals.Block();
1913 }
1914
AttachCurrentThread(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)1915 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
1916 bool create_peer) {
1917 ScopedTrace trace(__FUNCTION__);
1918 Thread* self = Thread::Attach(thread_name, as_daemon, thread_group, create_peer);
1919 // Run ThreadGroup.add to notify the group that this thread is now started.
1920 if (self != nullptr && create_peer && !IsAotCompiler()) {
1921 ScopedObjectAccess soa(self);
1922 self->NotifyThreadGroup(soa, thread_group);
1923 }
1924 return self != nullptr;
1925 }
1926
DetachCurrentThread()1927 void Runtime::DetachCurrentThread() {
1928 ScopedTrace trace(__FUNCTION__);
1929 Thread* self = Thread::Current();
1930 if (self == nullptr) {
1931 LOG(FATAL) << "attempting to detach thread that is not attached";
1932 }
1933 if (self->HasManagedStack()) {
1934 LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
1935 }
1936 thread_list_->Unregister(self);
1937 }
1938
GetPreAllocatedOutOfMemoryError()1939 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() {
1940 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_.Read();
1941 if (oome == nullptr) {
1942 LOG(ERROR) << "Failed to return pre-allocated OOME";
1943 }
1944 return oome;
1945 }
1946
GetPreAllocatedNoClassDefFoundError()1947 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
1948 mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
1949 if (ncdfe == nullptr) {
1950 LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
1951 }
1952 return ncdfe;
1953 }
1954
VisitConstantRoots(RootVisitor * visitor)1955 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
1956 // Visit the classes held as static in mirror classes, these can be visited concurrently and only
1957 // need to be visited once per GC since they never change.
1958 mirror::Class::VisitRoots(visitor);
1959 mirror::Constructor::VisitRoots(visitor);
1960 mirror::Reference::VisitRoots(visitor);
1961 mirror::Method::VisitRoots(visitor);
1962 mirror::StackTraceElement::VisitRoots(visitor);
1963 mirror::String::VisitRoots(visitor);
1964 mirror::Throwable::VisitRoots(visitor);
1965 mirror::Field::VisitRoots(visitor);
1966 mirror::MethodType::VisitRoots(visitor);
1967 mirror::MethodHandleImpl::VisitRoots(visitor);
1968 mirror::MethodHandlesLookup::VisitRoots(visitor);
1969 mirror::EmulatedStackFrame::VisitRoots(visitor);
1970 mirror::ClassExt::VisitRoots(visitor);
1971 mirror::CallSite::VisitRoots(visitor);
1972 mirror::VarHandle::VisitRoots(visitor);
1973 mirror::FieldVarHandle::VisitRoots(visitor);
1974 mirror::ArrayElementVarHandle::VisitRoots(visitor);
1975 mirror::ByteArrayViewVarHandle::VisitRoots(visitor);
1976 mirror::ByteBufferViewVarHandle::VisitRoots(visitor);
1977 // Visit all the primitive array types classes.
1978 mirror::PrimitiveArray<uint8_t>::VisitRoots(visitor); // BooleanArray
1979 mirror::PrimitiveArray<int8_t>::VisitRoots(visitor); // ByteArray
1980 mirror::PrimitiveArray<uint16_t>::VisitRoots(visitor); // CharArray
1981 mirror::PrimitiveArray<double>::VisitRoots(visitor); // DoubleArray
1982 mirror::PrimitiveArray<float>::VisitRoots(visitor); // FloatArray
1983 mirror::PrimitiveArray<int32_t>::VisitRoots(visitor); // IntArray
1984 mirror::PrimitiveArray<int64_t>::VisitRoots(visitor); // LongArray
1985 mirror::PrimitiveArray<int16_t>::VisitRoots(visitor); // ShortArray
1986 // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
1987 // null.
1988 BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
1989 const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
1990 if (HasResolutionMethod()) {
1991 resolution_method_->VisitRoots(buffered_visitor, pointer_size);
1992 }
1993 if (HasImtConflictMethod()) {
1994 imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
1995 }
1996 if (imt_unimplemented_method_ != nullptr) {
1997 imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
1998 }
1999 for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
2000 auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
2001 if (m != nullptr) {
2002 m->VisitRoots(buffered_visitor, pointer_size);
2003 }
2004 }
2005 }
2006
VisitConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2007 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2008 intern_table_->VisitRoots(visitor, flags);
2009 class_linker_->VisitRoots(visitor, flags);
2010 heap_->VisitAllocationRecords(visitor);
2011 if ((flags & kVisitRootFlagNewRoots) == 0) {
2012 // Guaranteed to have no new roots in the constant roots.
2013 VisitConstantRoots(visitor);
2014 }
2015 Dbg::VisitRoots(visitor);
2016 }
2017
VisitTransactionRoots(RootVisitor * visitor)2018 void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
2019 for (auto& transaction : preinitialization_transactions_) {
2020 transaction->VisitRoots(visitor);
2021 }
2022 }
2023
VisitNonThreadRoots(RootVisitor * visitor)2024 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
2025 java_vm_->VisitRoots(visitor);
2026 sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2027 pre_allocated_OutOfMemoryError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2028 pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2029 verifier::MethodVerifier::VisitStaticRoots(visitor);
2030 VisitTransactionRoots(visitor);
2031 }
2032
VisitNonConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2033 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2034 VisitThreadRoots(visitor, flags);
2035 VisitNonThreadRoots(visitor);
2036 }
2037
VisitThreadRoots(RootVisitor * visitor,VisitRootFlags flags)2038 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
2039 thread_list_->VisitRoots(visitor, flags);
2040 }
2041
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)2042 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
2043 VisitNonConcurrentRoots(visitor, flags);
2044 VisitConcurrentRoots(visitor, flags);
2045 }
2046
VisitImageRoots(RootVisitor * visitor)2047 void Runtime::VisitImageRoots(RootVisitor* visitor) {
2048 for (auto* space : GetHeap()->GetContinuousSpaces()) {
2049 if (space->IsImageSpace()) {
2050 auto* image_space = space->AsImageSpace();
2051 const auto& image_header = image_space->GetImageHeader();
2052 for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
2053 auto* obj = image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i));
2054 if (obj != nullptr) {
2055 auto* after_obj = obj;
2056 visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
2057 CHECK_EQ(after_obj, obj);
2058 }
2059 }
2060 }
2061 }
2062 }
2063
CreateRuntimeMethod(ClassLinker * class_linker,LinearAlloc * linear_alloc)2064 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc) {
2065 const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
2066 const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
2067 const size_t method_size = ArtMethod::Size(image_pointer_size);
2068 LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
2069 Thread::Current(),
2070 linear_alloc,
2071 1);
2072 ArtMethod* method = &method_array->At(0, method_size, method_alignment);
2073 CHECK(method != nullptr);
2074 method->SetDexMethodIndex(dex::kDexNoIndex);
2075 CHECK(method->IsRuntimeMethod());
2076 return method;
2077 }
2078
CreateImtConflictMethod(LinearAlloc * linear_alloc)2079 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
2080 ClassLinker* const class_linker = GetClassLinker();
2081 ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
2082 // When compiling, the code pointer will get set later when the image is loaded.
2083 const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2084 if (IsAotCompiler()) {
2085 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2086 } else {
2087 method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
2088 }
2089 // Create empty conflict table.
2090 method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count*/0u, linear_alloc),
2091 pointer_size);
2092 return method;
2093 }
2094
SetImtConflictMethod(ArtMethod * method)2095 void Runtime::SetImtConflictMethod(ArtMethod* method) {
2096 CHECK(method != nullptr);
2097 CHECK(method->IsRuntimeMethod());
2098 imt_conflict_method_ = method;
2099 }
2100
CreateResolutionMethod()2101 ArtMethod* Runtime::CreateResolutionMethod() {
2102 auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2103 // When compiling, the code pointer will get set later when the image is loaded.
2104 if (IsAotCompiler()) {
2105 PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2106 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2107 } else {
2108 method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
2109 }
2110 return method;
2111 }
2112
CreateCalleeSaveMethod()2113 ArtMethod* Runtime::CreateCalleeSaveMethod() {
2114 auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2115 PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2116 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2117 DCHECK_NE(instruction_set_, InstructionSet::kNone);
2118 DCHECK(method->IsRuntimeMethod());
2119 return method;
2120 }
2121
DisallowNewSystemWeaks()2122 void Runtime::DisallowNewSystemWeaks() {
2123 CHECK(!kUseReadBarrier);
2124 monitor_list_->DisallowNewMonitors();
2125 intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
2126 java_vm_->DisallowNewWeakGlobals();
2127 heap_->DisallowNewAllocationRecords();
2128 if (GetJit() != nullptr) {
2129 GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
2130 }
2131
2132 // All other generic system-weak holders.
2133 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2134 holder->Disallow();
2135 }
2136 }
2137
AllowNewSystemWeaks()2138 void Runtime::AllowNewSystemWeaks() {
2139 CHECK(!kUseReadBarrier);
2140 monitor_list_->AllowNewMonitors();
2141 intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal); // TODO: Do this in the sweeping.
2142 java_vm_->AllowNewWeakGlobals();
2143 heap_->AllowNewAllocationRecords();
2144 if (GetJit() != nullptr) {
2145 GetJit()->GetCodeCache()->AllowInlineCacheAccess();
2146 }
2147
2148 // All other generic system-weak holders.
2149 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2150 holder->Allow();
2151 }
2152 }
2153
BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint)2154 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
2155 // This is used for the read barrier case that uses the thread-local
2156 // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
2157 // (see ThreadList::RunCheckpoint).
2158 monitor_list_->BroadcastForNewMonitors();
2159 intern_table_->BroadcastForNewInterns();
2160 java_vm_->BroadcastForNewWeakGlobals();
2161 heap_->BroadcastForNewAllocationRecords();
2162 if (GetJit() != nullptr) {
2163 GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
2164 }
2165
2166 // All other generic system-weak holders.
2167 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2168 holder->Broadcast(broadcast_for_checkpoint);
2169 }
2170 }
2171
SetInstructionSet(InstructionSet instruction_set)2172 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
2173 instruction_set_ = instruction_set;
2174 if ((instruction_set_ == InstructionSet::kThumb2) || (instruction_set_ == InstructionSet::kArm)) {
2175 for (int i = 0; i != kCalleeSaveSize; ++i) {
2176 CalleeSaveType type = static_cast<CalleeSaveType>(i);
2177 callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type);
2178 }
2179 } else if (instruction_set_ == InstructionSet::kMips) {
2180 for (int i = 0; i != kCalleeSaveSize; ++i) {
2181 CalleeSaveType type = static_cast<CalleeSaveType>(i);
2182 callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type);
2183 }
2184 } else if (instruction_set_ == InstructionSet::kMips64) {
2185 for (int i = 0; i != kCalleeSaveSize; ++i) {
2186 CalleeSaveType type = static_cast<CalleeSaveType>(i);
2187 callee_save_method_frame_infos_[i] = mips64::Mips64CalleeSaveMethodFrameInfo(type);
2188 }
2189 } else if (instruction_set_ == InstructionSet::kX86) {
2190 for (int i = 0; i != kCalleeSaveSize; ++i) {
2191 CalleeSaveType type = static_cast<CalleeSaveType>(i);
2192 callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type);
2193 }
2194 } else if (instruction_set_ == InstructionSet::kX86_64) {
2195 for (int i = 0; i != kCalleeSaveSize; ++i) {
2196 CalleeSaveType type = static_cast<CalleeSaveType>(i);
2197 callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type);
2198 }
2199 } else if (instruction_set_ == InstructionSet::kArm64) {
2200 for (int i = 0; i != kCalleeSaveSize; ++i) {
2201 CalleeSaveType type = static_cast<CalleeSaveType>(i);
2202 callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type);
2203 }
2204 } else {
2205 UNIMPLEMENTED(FATAL) << instruction_set_;
2206 }
2207 }
2208
ClearInstructionSet()2209 void Runtime::ClearInstructionSet() {
2210 instruction_set_ = InstructionSet::kNone;
2211 }
2212
SetCalleeSaveMethod(ArtMethod * method,CalleeSaveType type)2213 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
2214 DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
2215 CHECK(method != nullptr);
2216 callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
2217 }
2218
ClearCalleeSaveMethods()2219 void Runtime::ClearCalleeSaveMethods() {
2220 for (size_t i = 0; i < kCalleeSaveSize; ++i) {
2221 callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
2222 }
2223 }
2224
RegisterAppInfo(const std::vector<std::string> & code_paths,const std::string & profile_output_filename)2225 void Runtime::RegisterAppInfo(const std::vector<std::string>& code_paths,
2226 const std::string& profile_output_filename) {
2227 if (jit_.get() == nullptr) {
2228 // We are not JITing. Nothing to do.
2229 return;
2230 }
2231
2232 VLOG(profiler) << "Register app with " << profile_output_filename
2233 << " " << android::base::Join(code_paths, ':');
2234
2235 if (profile_output_filename.empty()) {
2236 LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
2237 return;
2238 }
2239 if (!OS::FileExists(profile_output_filename.c_str(), false /*check_file_type*/)) {
2240 LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exits.";
2241 return;
2242 }
2243 if (code_paths.empty()) {
2244 LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
2245 return;
2246 }
2247
2248 jit_->StartProfileSaver(profile_output_filename, code_paths);
2249 }
2250
2251 // Transaction support.
IsActiveTransaction() const2252 bool Runtime::IsActiveTransaction() const {
2253 return !preinitialization_transactions_.empty() && !GetTransaction()->IsRollingBack();
2254 }
2255
EnterTransactionMode()2256 void Runtime::EnterTransactionMode() {
2257 DCHECK(IsAotCompiler());
2258 DCHECK(!IsActiveTransaction());
2259 preinitialization_transactions_.push_back(std::make_unique<Transaction>());
2260 }
2261
EnterTransactionMode(bool strict,mirror::Class * root)2262 void Runtime::EnterTransactionMode(bool strict, mirror::Class* root) {
2263 DCHECK(IsAotCompiler());
2264 preinitialization_transactions_.push_back(std::make_unique<Transaction>(strict, root));
2265 }
2266
ExitTransactionMode()2267 void Runtime::ExitTransactionMode() {
2268 DCHECK(IsAotCompiler());
2269 DCHECK(IsActiveTransaction());
2270 preinitialization_transactions_.pop_back();
2271 }
2272
RollbackAndExitTransactionMode()2273 void Runtime::RollbackAndExitTransactionMode() {
2274 DCHECK(IsAotCompiler());
2275 DCHECK(IsActiveTransaction());
2276 preinitialization_transactions_.back()->Rollback();
2277 preinitialization_transactions_.pop_back();
2278 }
2279
IsTransactionAborted() const2280 bool Runtime::IsTransactionAborted() const {
2281 if (!IsActiveTransaction()) {
2282 return false;
2283 } else {
2284 DCHECK(IsAotCompiler());
2285 return GetTransaction()->IsAborted();
2286 }
2287 }
2288
RollbackAllTransactions()2289 void Runtime::RollbackAllTransactions() {
2290 // If transaction is aborted, all transactions will be kept in the list.
2291 // Rollback and exit all of them.
2292 while (IsActiveTransaction()) {
2293 RollbackAndExitTransactionMode();
2294 }
2295 }
2296
IsActiveStrictTransactionMode() const2297 bool Runtime::IsActiveStrictTransactionMode() const {
2298 return IsActiveTransaction() && GetTransaction()->IsStrict();
2299 }
2300
GetTransaction() const2301 const std::unique_ptr<Transaction>& Runtime::GetTransaction() const {
2302 DCHECK(!preinitialization_transactions_.empty());
2303 return preinitialization_transactions_.back();
2304 }
2305
AbortTransactionAndThrowAbortError(Thread * self,const std::string & abort_message)2306 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
2307 DCHECK(IsAotCompiler());
2308 DCHECK(IsActiveTransaction());
2309 // Throwing an exception may cause its class initialization. If we mark the transaction
2310 // aborted before that, we may warn with a false alarm. Throwing the exception before
2311 // marking the transaction aborted avoids that.
2312 // But now the transaction can be nested, and abort the transaction will relax the constraints
2313 // for constructing stack trace.
2314 GetTransaction()->Abort(abort_message);
2315 GetTransaction()->ThrowAbortError(self, &abort_message);
2316 }
2317
ThrowTransactionAbortError(Thread * self)2318 void Runtime::ThrowTransactionAbortError(Thread* self) {
2319 DCHECK(IsAotCompiler());
2320 DCHECK(IsActiveTransaction());
2321 // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
2322 GetTransaction()->ThrowAbortError(self, nullptr);
2323 }
2324
RecordWriteFieldBoolean(mirror::Object * obj,MemberOffset field_offset,uint8_t value,bool is_volatile) const2325 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
2326 uint8_t value, bool is_volatile) const {
2327 DCHECK(IsAotCompiler());
2328 DCHECK(IsActiveTransaction());
2329 GetTransaction()->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
2330 }
2331
RecordWriteFieldByte(mirror::Object * obj,MemberOffset field_offset,int8_t value,bool is_volatile) const2332 void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
2333 int8_t value, bool is_volatile) const {
2334 DCHECK(IsAotCompiler());
2335 DCHECK(IsActiveTransaction());
2336 GetTransaction()->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
2337 }
2338
RecordWriteFieldChar(mirror::Object * obj,MemberOffset field_offset,uint16_t value,bool is_volatile) const2339 void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
2340 uint16_t value, bool is_volatile) const {
2341 DCHECK(IsAotCompiler());
2342 DCHECK(IsActiveTransaction());
2343 GetTransaction()->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
2344 }
2345
RecordWriteFieldShort(mirror::Object * obj,MemberOffset field_offset,int16_t value,bool is_volatile) const2346 void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
2347 int16_t value, bool is_volatile) const {
2348 DCHECK(IsAotCompiler());
2349 DCHECK(IsActiveTransaction());
2350 GetTransaction()->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
2351 }
2352
RecordWriteField32(mirror::Object * obj,MemberOffset field_offset,uint32_t value,bool is_volatile) const2353 void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
2354 uint32_t value, bool is_volatile) const {
2355 DCHECK(IsAotCompiler());
2356 DCHECK(IsActiveTransaction());
2357 GetTransaction()->RecordWriteField32(obj, field_offset, value, is_volatile);
2358 }
2359
RecordWriteField64(mirror::Object * obj,MemberOffset field_offset,uint64_t value,bool is_volatile) const2360 void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
2361 uint64_t value, bool is_volatile) const {
2362 DCHECK(IsAotCompiler());
2363 DCHECK(IsActiveTransaction());
2364 GetTransaction()->RecordWriteField64(obj, field_offset, value, is_volatile);
2365 }
2366
RecordWriteFieldReference(mirror::Object * obj,MemberOffset field_offset,ObjPtr<mirror::Object> value,bool is_volatile) const2367 void Runtime::RecordWriteFieldReference(mirror::Object* obj,
2368 MemberOffset field_offset,
2369 ObjPtr<mirror::Object> value,
2370 bool is_volatile) const {
2371 DCHECK(IsAotCompiler());
2372 DCHECK(IsActiveTransaction());
2373 GetTransaction()->RecordWriteFieldReference(obj,
2374 field_offset,
2375 value.Ptr(),
2376 is_volatile);
2377 }
2378
RecordWriteArray(mirror::Array * array,size_t index,uint64_t value) const2379 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
2380 DCHECK(IsAotCompiler());
2381 DCHECK(IsActiveTransaction());
2382 GetTransaction()->RecordWriteArray(array, index, value);
2383 }
2384
RecordStrongStringInsertion(ObjPtr<mirror::String> s) const2385 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const {
2386 DCHECK(IsAotCompiler());
2387 DCHECK(IsActiveTransaction());
2388 GetTransaction()->RecordStrongStringInsertion(s);
2389 }
2390
RecordWeakStringInsertion(ObjPtr<mirror::String> s) const2391 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const {
2392 DCHECK(IsAotCompiler());
2393 DCHECK(IsActiveTransaction());
2394 GetTransaction()->RecordWeakStringInsertion(s);
2395 }
2396
RecordStrongStringRemoval(ObjPtr<mirror::String> s) const2397 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const {
2398 DCHECK(IsAotCompiler());
2399 DCHECK(IsActiveTransaction());
2400 GetTransaction()->RecordStrongStringRemoval(s);
2401 }
2402
RecordWeakStringRemoval(ObjPtr<mirror::String> s) const2403 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const {
2404 DCHECK(IsAotCompiler());
2405 DCHECK(IsActiveTransaction());
2406 GetTransaction()->RecordWeakStringRemoval(s);
2407 }
2408
RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,dex::StringIndex string_idx) const2409 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
2410 dex::StringIndex string_idx) const {
2411 DCHECK(IsAotCompiler());
2412 DCHECK(IsActiveTransaction());
2413 GetTransaction()->RecordResolveString(dex_cache, string_idx);
2414 }
2415
SetFaultMessage(const std::string & message)2416 void Runtime::SetFaultMessage(const std::string& message) {
2417 MutexLock mu(Thread::Current(), fault_message_lock_);
2418 fault_message_ = message;
2419 }
2420
AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string> * argv) const2421 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
2422 const {
2423 if (GetInstrumentation()->InterpretOnly()) {
2424 argv->push_back("--compiler-filter=quicken");
2425 }
2426
2427 // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
2428 // architecture support, dex2oat may be compiled as a different instruction-set than that
2429 // currently being executed.
2430 std::string instruction_set("--instruction-set=");
2431 instruction_set += GetInstructionSetString(kRuntimeISA);
2432 argv->push_back(instruction_set);
2433
2434 std::unique_ptr<const InstructionSetFeatures> features(InstructionSetFeatures::FromCppDefines());
2435 std::string feature_string("--instruction-set-features=");
2436 feature_string += features->GetFeatureString();
2437 argv->push_back(feature_string);
2438 }
2439
CreateJit()2440 void Runtime::CreateJit() {
2441 CHECK(!IsAotCompiler());
2442 if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
2443 DCHECK(!jit_options_->UseJitCompilation());
2444 }
2445 std::string error_msg;
2446 jit_.reset(jit::Jit::Create(jit_options_.get(), &error_msg));
2447 if (jit_.get() == nullptr) {
2448 LOG(WARNING) << "Failed to create JIT " << error_msg;
2449 return;
2450 }
2451 }
2452
CanRelocate() const2453 bool Runtime::CanRelocate() const {
2454 return !IsAotCompiler() || compiler_callbacks_->IsRelocationPossible();
2455 }
2456
IsCompilingBootImage() const2457 bool Runtime::IsCompilingBootImage() const {
2458 return IsCompiler() && compiler_callbacks_->IsBootImage();
2459 }
2460
SetResolutionMethod(ArtMethod * method)2461 void Runtime::SetResolutionMethod(ArtMethod* method) {
2462 CHECK(method != nullptr);
2463 CHECK(method->IsRuntimeMethod()) << method;
2464 resolution_method_ = method;
2465 }
2466
SetImtUnimplementedMethod(ArtMethod * method)2467 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
2468 CHECK(method != nullptr);
2469 CHECK(method->IsRuntimeMethod());
2470 imt_unimplemented_method_ = method;
2471 }
2472
FixupConflictTables()2473 void Runtime::FixupConflictTables() {
2474 // We can only do this after the class linker is created.
2475 const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2476 if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
2477 imt_unimplemented_method_->SetImtConflictTable(
2478 ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
2479 pointer_size);
2480 }
2481 if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
2482 imt_conflict_method_->SetImtConflictTable(
2483 ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
2484 pointer_size);
2485 }
2486 }
2487
DisableVerifier()2488 void Runtime::DisableVerifier() {
2489 verify_ = verifier::VerifyMode::kNone;
2490 }
2491
IsVerificationEnabled() const2492 bool Runtime::IsVerificationEnabled() const {
2493 return verify_ == verifier::VerifyMode::kEnable ||
2494 verify_ == verifier::VerifyMode::kSoftFail;
2495 }
2496
IsVerificationSoftFail() const2497 bool Runtime::IsVerificationSoftFail() const {
2498 return verify_ == verifier::VerifyMode::kSoftFail;
2499 }
2500
IsAsyncDeoptimizeable(uintptr_t code) const2501 bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
2502 // We only support async deopt (ie the compiled code is not explicitly asking for
2503 // deopt, but something else like the debugger) in debuggable JIT code.
2504 // We could look at the oat file where `code` is being defined,
2505 // and check whether it's been compiled debuggable, but we decided to
2506 // only rely on the JIT for debuggable apps.
2507 return IsJavaDebuggable() &&
2508 GetJit() != nullptr &&
2509 GetJit()->GetCodeCache()->ContainsPc(reinterpret_cast<const void*>(code));
2510 }
2511
CreateLinearAlloc()2512 LinearAlloc* Runtime::CreateLinearAlloc() {
2513 // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
2514 // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
2515 // when we have 64 bit ArtMethod pointers.
2516 return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
2517 ? new LinearAlloc(low_4gb_arena_pool_.get())
2518 : new LinearAlloc(arena_pool_.get());
2519 }
2520
GetHashTableMinLoadFactor() const2521 double Runtime::GetHashTableMinLoadFactor() const {
2522 return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
2523 }
2524
GetHashTableMaxLoadFactor() const2525 double Runtime::GetHashTableMaxLoadFactor() const {
2526 return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
2527 }
2528
UpdateProcessState(ProcessState process_state)2529 void Runtime::UpdateProcessState(ProcessState process_state) {
2530 ProcessState old_process_state = process_state_;
2531 process_state_ = process_state;
2532 GetHeap()->UpdateProcessState(old_process_state, process_state);
2533 }
2534
RegisterSensitiveThread() const2535 void Runtime::RegisterSensitiveThread() const {
2536 Thread::SetJitSensitiveThread();
2537 }
2538
2539 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
UseJitCompilation() const2540 bool Runtime::UseJitCompilation() const {
2541 return (jit_ != nullptr) && jit_->UseJitCompilation();
2542 }
2543
TakeSnapshot()2544 void Runtime::EnvSnapshot::TakeSnapshot() {
2545 char** env = GetEnviron();
2546 for (size_t i = 0; env[i] != nullptr; ++i) {
2547 name_value_pairs_.emplace_back(new std::string(env[i]));
2548 }
2549 // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
2550 // for quick use by GetSnapshot. This avoids allocation and copying cost at Exec.
2551 c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
2552 for (size_t i = 0; env[i] != nullptr; ++i) {
2553 c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
2554 }
2555 c_env_vector_[name_value_pairs_.size()] = nullptr;
2556 }
2557
GetSnapshot() const2558 char** Runtime::EnvSnapshot::GetSnapshot() const {
2559 return c_env_vector_.get();
2560 }
2561
AddSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)2562 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2563 gc::ScopedGCCriticalSection gcs(Thread::Current(),
2564 gc::kGcCauseAddRemoveSystemWeakHolder,
2565 gc::kCollectorTypeAddRemoveSystemWeakHolder);
2566 // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
2567 // a critical section.
2568 system_weak_holders_.push_back(holder);
2569 }
2570
RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)2571 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2572 gc::ScopedGCCriticalSection gcs(Thread::Current(),
2573 gc::kGcCauseAddRemoveSystemWeakHolder,
2574 gc::kCollectorTypeAddRemoveSystemWeakHolder);
2575 auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
2576 if (it != system_weak_holders_.end()) {
2577 system_weak_holders_.erase(it);
2578 }
2579 }
2580
GetRuntimeCallbacks()2581 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
2582 return callbacks_.get();
2583 }
2584
2585 // Used to patch boot image method entry point to interpreter bridge.
2586 class UpdateEntryPointsClassVisitor : public ClassVisitor {
2587 public:
UpdateEntryPointsClassVisitor(instrumentation::Instrumentation * instrumentation)2588 explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
2589 : instrumentation_(instrumentation) {}
2590
operator ()(ObjPtr<mirror::Class> klass)2591 bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES(Locks::mutator_lock_) {
2592 auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
2593 for (auto& m : klass->GetMethods(pointer_size)) {
2594 const void* code = m.GetEntryPointFromQuickCompiledCode();
2595 if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
2596 !m.IsNative() &&
2597 !m.IsProxyMethod()) {
2598 instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
2599 }
2600 }
2601 return true;
2602 }
2603
2604 private:
2605 instrumentation::Instrumentation* const instrumentation_;
2606 };
2607
SetJavaDebuggable(bool value)2608 void Runtime::SetJavaDebuggable(bool value) {
2609 is_java_debuggable_ = value;
2610 // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
2611 }
2612
DeoptimizeBootImage()2613 void Runtime::DeoptimizeBootImage() {
2614 // If we've already started and we are setting this runtime to debuggable,
2615 // we patch entry points of methods in boot image to interpreter bridge, as
2616 // boot image code may be AOT compiled as not debuggable.
2617 if (!GetInstrumentation()->IsForcedInterpretOnly()) {
2618 ScopedObjectAccess soa(Thread::Current());
2619 UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
2620 GetClassLinker()->VisitClasses(&visitor);
2621 }
2622 }
2623 } // namespace art
2624