1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ValueEnumerator class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DebugInfoMetadata.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/UseListOrder.h"
23 #include "llvm/IR/ValueSymbolTable.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 using namespace llvm;
28
29 namespace {
30 struct OrderMap {
31 DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
32 unsigned LastGlobalConstantID;
33 unsigned LastGlobalValueID;
34
OrderMap__anon724db1e30111::OrderMap35 OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {}
36
isGlobalConstant__anon724db1e30111::OrderMap37 bool isGlobalConstant(unsigned ID) const {
38 return ID <= LastGlobalConstantID;
39 }
isGlobalValue__anon724db1e30111::OrderMap40 bool isGlobalValue(unsigned ID) const {
41 return ID <= LastGlobalValueID && !isGlobalConstant(ID);
42 }
43
size__anon724db1e30111::OrderMap44 unsigned size() const { return IDs.size(); }
operator []__anon724db1e30111::OrderMap45 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
lookup__anon724db1e30111::OrderMap46 std::pair<unsigned, bool> lookup(const Value *V) const {
47 return IDs.lookup(V);
48 }
index__anon724db1e30111::OrderMap49 void index(const Value *V) {
50 // Explicitly sequence get-size and insert-value operations to avoid UB.
51 unsigned ID = IDs.size() + 1;
52 IDs[V].first = ID;
53 }
54 };
55 }
56
orderValue(const Value * V,OrderMap & OM)57 static void orderValue(const Value *V, OrderMap &OM) {
58 if (OM.lookup(V).first)
59 return;
60
61 if (const Constant *C = dyn_cast<Constant>(V))
62 if (C->getNumOperands() && !isa<GlobalValue>(C))
63 for (const Value *Op : C->operands())
64 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
65 orderValue(Op, OM);
66
67 // Note: we cannot cache this lookup above, since inserting into the map
68 // changes the map's size, and thus affects the other IDs.
69 OM.index(V);
70 }
71
orderModule(const Module & M)72 static OrderMap orderModule(const Module &M) {
73 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
74 // and ValueEnumerator::incorporateFunction().
75 OrderMap OM;
76
77 // In the reader, initializers of GlobalValues are set *after* all the
78 // globals have been read. Rather than awkwardly modeling this behaviour
79 // directly in predictValueUseListOrderImpl(), just assign IDs to
80 // initializers of GlobalValues before GlobalValues themselves to model this
81 // implicitly.
82 for (const GlobalVariable &G : M.globals())
83 if (G.hasInitializer())
84 if (!isa<GlobalValue>(G.getInitializer()))
85 orderValue(G.getInitializer(), OM);
86 for (const GlobalAlias &A : M.aliases())
87 if (!isa<GlobalValue>(A.getAliasee()))
88 orderValue(A.getAliasee(), OM);
89 for (const GlobalIFunc &I : M.ifuncs())
90 if (!isa<GlobalValue>(I.getResolver()))
91 orderValue(I.getResolver(), OM);
92 for (const Function &F : M) {
93 for (const Use &U : F.operands())
94 if (!isa<GlobalValue>(U.get()))
95 orderValue(U.get(), OM);
96 }
97 OM.LastGlobalConstantID = OM.size();
98
99 // Initializers of GlobalValues are processed in
100 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather
101 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
102 // by giving IDs in reverse order.
103 //
104 // Since GlobalValues never reference each other directly (just through
105 // initializers), their relative IDs only matter for determining order of
106 // uses in their initializers.
107 for (const Function &F : M)
108 orderValue(&F, OM);
109 for (const GlobalAlias &A : M.aliases())
110 orderValue(&A, OM);
111 for (const GlobalIFunc &I : M.ifuncs())
112 orderValue(&I, OM);
113 for (const GlobalVariable &G : M.globals())
114 orderValue(&G, OM);
115 OM.LastGlobalValueID = OM.size();
116
117 for (const Function &F : M) {
118 if (F.isDeclaration())
119 continue;
120 // Here we need to match the union of ValueEnumerator::incorporateFunction()
121 // and WriteFunction(). Basic blocks are implicitly declared before
122 // anything else (by declaring their size).
123 for (const BasicBlock &BB : F)
124 orderValue(&BB, OM);
125 for (const Argument &A : F.args())
126 orderValue(&A, OM);
127 for (const BasicBlock &BB : F)
128 for (const Instruction &I : BB)
129 for (const Value *Op : I.operands())
130 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
131 isa<InlineAsm>(*Op))
132 orderValue(Op, OM);
133 for (const BasicBlock &BB : F)
134 for (const Instruction &I : BB)
135 orderValue(&I, OM);
136 }
137 return OM;
138 }
139
predictValueUseListOrderImpl(const Value * V,const Function * F,unsigned ID,const OrderMap & OM,UseListOrderStack & Stack)140 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
141 unsigned ID, const OrderMap &OM,
142 UseListOrderStack &Stack) {
143 // Predict use-list order for this one.
144 typedef std::pair<const Use *, unsigned> Entry;
145 SmallVector<Entry, 64> List;
146 for (const Use &U : V->uses())
147 // Check if this user will be serialized.
148 if (OM.lookup(U.getUser()).first)
149 List.push_back(std::make_pair(&U, List.size()));
150
151 if (List.size() < 2)
152 // We may have lost some users.
153 return;
154
155 bool IsGlobalValue = OM.isGlobalValue(ID);
156 std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
157 const Use *LU = L.first;
158 const Use *RU = R.first;
159 if (LU == RU)
160 return false;
161
162 auto LID = OM.lookup(LU->getUser()).first;
163 auto RID = OM.lookup(RU->getUser()).first;
164
165 // Global values are processed in reverse order.
166 //
167 // Moreover, initializers of GlobalValues are set *after* all the globals
168 // have been read (despite having earlier IDs). Rather than awkwardly
169 // modeling this behaviour here, orderModule() has assigned IDs to
170 // initializers of GlobalValues before GlobalValues themselves.
171 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
172 return LID < RID;
173
174 // If ID is 4, then expect: 7 6 5 1 2 3.
175 if (LID < RID) {
176 if (RID <= ID)
177 if (!IsGlobalValue) // GlobalValue uses don't get reversed.
178 return true;
179 return false;
180 }
181 if (RID < LID) {
182 if (LID <= ID)
183 if (!IsGlobalValue) // GlobalValue uses don't get reversed.
184 return false;
185 return true;
186 }
187
188 // LID and RID are equal, so we have different operands of the same user.
189 // Assume operands are added in order for all instructions.
190 if (LID <= ID)
191 if (!IsGlobalValue) // GlobalValue uses don't get reversed.
192 return LU->getOperandNo() < RU->getOperandNo();
193 return LU->getOperandNo() > RU->getOperandNo();
194 });
195
196 if (std::is_sorted(
197 List.begin(), List.end(),
198 [](const Entry &L, const Entry &R) { return L.second < R.second; }))
199 // Order is already correct.
200 return;
201
202 // Store the shuffle.
203 Stack.emplace_back(V, F, List.size());
204 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
205 for (size_t I = 0, E = List.size(); I != E; ++I)
206 Stack.back().Shuffle[I] = List[I].second;
207 }
208
predictValueUseListOrder(const Value * V,const Function * F,OrderMap & OM,UseListOrderStack & Stack)209 static void predictValueUseListOrder(const Value *V, const Function *F,
210 OrderMap &OM, UseListOrderStack &Stack) {
211 auto &IDPair = OM[V];
212 assert(IDPair.first && "Unmapped value");
213 if (IDPair.second)
214 // Already predicted.
215 return;
216
217 // Do the actual prediction.
218 IDPair.second = true;
219 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
220 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
221
222 // Recursive descent into constants.
223 if (const Constant *C = dyn_cast<Constant>(V))
224 if (C->getNumOperands()) // Visit GlobalValues.
225 for (const Value *Op : C->operands())
226 if (isa<Constant>(Op)) // Visit GlobalValues.
227 predictValueUseListOrder(Op, F, OM, Stack);
228 }
229
predictUseListOrder(const Module & M)230 static UseListOrderStack predictUseListOrder(const Module &M) {
231 OrderMap OM = orderModule(M);
232
233 // Use-list orders need to be serialized after all the users have been added
234 // to a value, or else the shuffles will be incomplete. Store them per
235 // function in a stack.
236 //
237 // Aside from function order, the order of values doesn't matter much here.
238 UseListOrderStack Stack;
239
240 // We want to visit the functions backward now so we can list function-local
241 // constants in the last Function they're used in. Module-level constants
242 // have already been visited above.
243 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
244 const Function &F = *I;
245 if (F.isDeclaration())
246 continue;
247 for (const BasicBlock &BB : F)
248 predictValueUseListOrder(&BB, &F, OM, Stack);
249 for (const Argument &A : F.args())
250 predictValueUseListOrder(&A, &F, OM, Stack);
251 for (const BasicBlock &BB : F)
252 for (const Instruction &I : BB)
253 for (const Value *Op : I.operands())
254 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
255 predictValueUseListOrder(Op, &F, OM, Stack);
256 for (const BasicBlock &BB : F)
257 for (const Instruction &I : BB)
258 predictValueUseListOrder(&I, &F, OM, Stack);
259 }
260
261 // Visit globals last, since the module-level use-list block will be seen
262 // before the function bodies are processed.
263 for (const GlobalVariable &G : M.globals())
264 predictValueUseListOrder(&G, nullptr, OM, Stack);
265 for (const Function &F : M)
266 predictValueUseListOrder(&F, nullptr, OM, Stack);
267 for (const GlobalAlias &A : M.aliases())
268 predictValueUseListOrder(&A, nullptr, OM, Stack);
269 for (const GlobalIFunc &I : M.ifuncs())
270 predictValueUseListOrder(&I, nullptr, OM, Stack);
271 for (const GlobalVariable &G : M.globals())
272 if (G.hasInitializer())
273 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
274 for (const GlobalAlias &A : M.aliases())
275 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
276 for (const GlobalIFunc &I : M.ifuncs())
277 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
278 for (const Function &F : M) {
279 for (const Use &U : F.operands())
280 predictValueUseListOrder(U.get(), nullptr, OM, Stack);
281 }
282
283 return Stack;
284 }
285
isIntOrIntVectorValue(const std::pair<const Value *,unsigned> & V)286 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
287 return V.first->getType()->isIntOrIntVectorTy();
288 }
289
ValueEnumerator(const Module & M,bool ShouldPreserveUseListOrder)290 ValueEnumerator::ValueEnumerator(const Module &M,
291 bool ShouldPreserveUseListOrder)
292 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
293 if (ShouldPreserveUseListOrder)
294 UseListOrders = predictUseListOrder(M);
295
296 // Enumerate the global variables.
297 for (const GlobalVariable &GV : M.globals())
298 EnumerateValue(&GV);
299
300 // Enumerate the functions.
301 for (const Function & F : M) {
302 EnumerateValue(&F);
303 EnumerateAttributes(F.getAttributes());
304 }
305
306 // Enumerate the aliases.
307 for (const GlobalAlias &GA : M.aliases())
308 EnumerateValue(&GA);
309
310 // Enumerate the ifuncs.
311 for (const GlobalIFunc &GIF : M.ifuncs())
312 EnumerateValue(&GIF);
313
314 // Remember what is the cutoff between globalvalue's and other constants.
315 unsigned FirstConstant = Values.size();
316
317 // Enumerate the global variable initializers.
318 for (const GlobalVariable &GV : M.globals())
319 if (GV.hasInitializer())
320 EnumerateValue(GV.getInitializer());
321
322 // Enumerate the aliasees.
323 for (const GlobalAlias &GA : M.aliases())
324 EnumerateValue(GA.getAliasee());
325
326 // Enumerate the ifunc resolvers.
327 for (const GlobalIFunc &GIF : M.ifuncs())
328 EnumerateValue(GIF.getResolver());
329
330 // Enumerate any optional Function data.
331 for (const Function &F : M)
332 for (const Use &U : F.operands())
333 EnumerateValue(U.get());
334
335 // Enumerate the metadata type.
336 //
337 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
338 // only encodes the metadata type when it's used as a value.
339 EnumerateType(Type::getMetadataTy(M.getContext()));
340
341 // Insert constants and metadata that are named at module level into the slot
342 // pool so that the module symbol table can refer to them...
343 EnumerateValueSymbolTable(M.getValueSymbolTable());
344 EnumerateNamedMetadata(M);
345
346 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
347 for (const GlobalVariable &GV : M.globals()) {
348 MDs.clear();
349 GV.getAllMetadata(MDs);
350 for (const auto &I : MDs)
351 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
352 // to write metadata to the global variable's own metadata block
353 // (PR28134).
354 EnumerateMetadata(nullptr, I.second);
355 }
356
357 // Enumerate types used by function bodies and argument lists.
358 for (const Function &F : M) {
359 for (const Argument &A : F.args())
360 EnumerateType(A.getType());
361
362 // Enumerate metadata attached to this function.
363 MDs.clear();
364 F.getAllMetadata(MDs);
365 for (const auto &I : MDs)
366 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
367
368 for (const BasicBlock &BB : F)
369 for (const Instruction &I : BB) {
370 for (const Use &Op : I.operands()) {
371 auto *MD = dyn_cast<MetadataAsValue>(&Op);
372 if (!MD) {
373 EnumerateOperandType(Op);
374 continue;
375 }
376
377 // Local metadata is enumerated during function-incorporation.
378 if (isa<LocalAsMetadata>(MD->getMetadata()))
379 continue;
380
381 EnumerateMetadata(&F, MD->getMetadata());
382 }
383 EnumerateType(I.getType());
384 if (const CallInst *CI = dyn_cast<CallInst>(&I))
385 EnumerateAttributes(CI->getAttributes());
386 else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
387 EnumerateAttributes(II->getAttributes());
388
389 // Enumerate metadata attached with this instruction.
390 MDs.clear();
391 I.getAllMetadataOtherThanDebugLoc(MDs);
392 for (unsigned i = 0, e = MDs.size(); i != e; ++i)
393 EnumerateMetadata(&F, MDs[i].second);
394
395 // Don't enumerate the location directly -- it has a special record
396 // type -- but enumerate its operands.
397 if (DILocation *L = I.getDebugLoc())
398 for (const Metadata *Op : L->operands())
399 EnumerateMetadata(&F, Op);
400 }
401 }
402
403 // Optimize constant ordering.
404 OptimizeConstants(FirstConstant, Values.size());
405
406 // Organize metadata ordering.
407 organizeMetadata();
408 }
409
getInstructionID(const Instruction * Inst) const410 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
411 InstructionMapType::const_iterator I = InstructionMap.find(Inst);
412 assert(I != InstructionMap.end() && "Instruction is not mapped!");
413 return I->second;
414 }
415
getComdatID(const Comdat * C) const416 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
417 unsigned ComdatID = Comdats.idFor(C);
418 assert(ComdatID && "Comdat not found!");
419 return ComdatID;
420 }
421
setInstructionID(const Instruction * I)422 void ValueEnumerator::setInstructionID(const Instruction *I) {
423 InstructionMap[I] = InstructionCount++;
424 }
425
getValueID(const Value * V) const426 unsigned ValueEnumerator::getValueID(const Value *V) const {
427 if (auto *MD = dyn_cast<MetadataAsValue>(V))
428 return getMetadataID(MD->getMetadata());
429
430 ValueMapType::const_iterator I = ValueMap.find(V);
431 assert(I != ValueMap.end() && "Value not in slotcalculator!");
432 return I->second-1;
433 }
434
dump() const435 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
436 print(dbgs(), ValueMap, "Default");
437 dbgs() << '\n';
438 print(dbgs(), MetadataMap, "MetaData");
439 dbgs() << '\n';
440 }
441
print(raw_ostream & OS,const ValueMapType & Map,const char * Name) const442 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
443 const char *Name) const {
444
445 OS << "Map Name: " << Name << "\n";
446 OS << "Size: " << Map.size() << "\n";
447 for (ValueMapType::const_iterator I = Map.begin(),
448 E = Map.end(); I != E; ++I) {
449
450 const Value *V = I->first;
451 if (V->hasName())
452 OS << "Value: " << V->getName();
453 else
454 OS << "Value: [null]\n";
455 V->dump();
456
457 OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
458 for (const Use &U : V->uses()) {
459 if (&U != &*V->use_begin())
460 OS << ",";
461 if(U->hasName())
462 OS << " " << U->getName();
463 else
464 OS << " [null]";
465
466 }
467 OS << "\n\n";
468 }
469 }
470
print(raw_ostream & OS,const MetadataMapType & Map,const char * Name) const471 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
472 const char *Name) const {
473
474 OS << "Map Name: " << Name << "\n";
475 OS << "Size: " << Map.size() << "\n";
476 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
477 const Metadata *MD = I->first;
478 OS << "Metadata: slot = " << I->second.ID << "\n";
479 OS << "Metadata: function = " << I->second.F << "\n";
480 MD->print(OS);
481 OS << "\n";
482 }
483 }
484
485 /// OptimizeConstants - Reorder constant pool for denser encoding.
OptimizeConstants(unsigned CstStart,unsigned CstEnd)486 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
487 if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
488
489 if (ShouldPreserveUseListOrder)
490 // Optimizing constants makes the use-list order difficult to predict.
491 // Disable it for now when trying to preserve the order.
492 return;
493
494 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
495 [this](const std::pair<const Value *, unsigned> &LHS,
496 const std::pair<const Value *, unsigned> &RHS) {
497 // Sort by plane.
498 if (LHS.first->getType() != RHS.first->getType())
499 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
500 // Then by frequency.
501 return LHS.second > RHS.second;
502 });
503
504 // Ensure that integer and vector of integer constants are at the start of the
505 // constant pool. This is important so that GEP structure indices come before
506 // gep constant exprs.
507 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
508 isIntOrIntVectorValue);
509
510 // Rebuild the modified portion of ValueMap.
511 for (; CstStart != CstEnd; ++CstStart)
512 ValueMap[Values[CstStart].first] = CstStart+1;
513 }
514
515
516 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
517 /// table into the values table.
EnumerateValueSymbolTable(const ValueSymbolTable & VST)518 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
519 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
520 VI != VE; ++VI)
521 EnumerateValue(VI->getValue());
522 }
523
524 /// Insert all of the values referenced by named metadata in the specified
525 /// module.
EnumerateNamedMetadata(const Module & M)526 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
527 for (const auto &I : M.named_metadata())
528 EnumerateNamedMDNode(&I);
529 }
530
EnumerateNamedMDNode(const NamedMDNode * MD)531 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
532 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
533 EnumerateMetadata(nullptr, MD->getOperand(i));
534 }
535
getMetadataFunctionID(const Function * F) const536 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
537 return F ? getValueID(F) + 1 : 0;
538 }
539
EnumerateMetadata(const Function * F,const Metadata * MD)540 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
541 EnumerateMetadata(getMetadataFunctionID(F), MD);
542 }
543
EnumerateFunctionLocalMetadata(const Function & F,const LocalAsMetadata * Local)544 void ValueEnumerator::EnumerateFunctionLocalMetadata(
545 const Function &F, const LocalAsMetadata *Local) {
546 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
547 }
548
dropFunctionFromMetadata(MetadataMapType::value_type & FirstMD)549 void ValueEnumerator::dropFunctionFromMetadata(
550 MetadataMapType::value_type &FirstMD) {
551 SmallVector<const MDNode *, 64> Worklist;
552 auto push = [this, &Worklist](MetadataMapType::value_type &MD) {
553 auto &Entry = MD.second;
554
555 // Nothing to do if this metadata isn't tagged.
556 if (!Entry.F)
557 return;
558
559 // Drop the function tag.
560 Entry.F = 0;
561
562 // If this is has an ID and is an MDNode, then its operands have entries as
563 // well. We need to drop the function from them too.
564 if (Entry.ID)
565 if (auto *N = dyn_cast<MDNode>(MD.first))
566 Worklist.push_back(N);
567 };
568 push(FirstMD);
569 while (!Worklist.empty())
570 for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
571 if (!Op)
572 continue;
573 auto MD = MetadataMap.find(Op);
574 if (MD != MetadataMap.end())
575 push(*MD);
576 }
577 }
578
EnumerateMetadata(unsigned F,const Metadata * MD)579 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
580 // It's vital for reader efficiency that uniqued subgraphs are done in
581 // post-order; it's expensive when their operands have forward references.
582 // If a distinct node is referenced from a uniqued node, it'll be delayed
583 // until the uniqued subgraph has been completely traversed.
584 SmallVector<const MDNode *, 32> DelayedDistinctNodes;
585
586 // Start by enumerating MD, and then work through its transitive operands in
587 // post-order. This requires a depth-first search.
588 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
589 if (const MDNode *N = enumerateMetadataImpl(F, MD))
590 Worklist.push_back(std::make_pair(N, N->op_begin()));
591
592 while (!Worklist.empty()) {
593 const MDNode *N = Worklist.back().first;
594
595 // Enumerate operands until we hit a new node. We need to traverse these
596 // nodes' operands before visiting the rest of N's operands.
597 MDNode::op_iterator I = std::find_if(
598 Worklist.back().second, N->op_end(),
599 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
600 if (I != N->op_end()) {
601 auto *Op = cast<MDNode>(*I);
602 Worklist.back().second = ++I;
603
604 // Delay traversing Op if it's a distinct node and N is uniqued.
605 if (Op->isDistinct() && !N->isDistinct())
606 DelayedDistinctNodes.push_back(Op);
607 else
608 Worklist.push_back(std::make_pair(Op, Op->op_begin()));
609 continue;
610 }
611
612 // All the operands have been visited. Now assign an ID.
613 Worklist.pop_back();
614 MDs.push_back(N);
615 MetadataMap[N].ID = MDs.size();
616
617 // Flush out any delayed distinct nodes; these are all the distinct nodes
618 // that are leaves in last uniqued subgraph.
619 if (Worklist.empty() || Worklist.back().first->isDistinct()) {
620 for (const MDNode *N : DelayedDistinctNodes)
621 Worklist.push_back(std::make_pair(N, N->op_begin()));
622 DelayedDistinctNodes.clear();
623 }
624 }
625 }
626
enumerateMetadataImpl(unsigned F,const Metadata * MD)627 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
628 if (!MD)
629 return nullptr;
630
631 assert(
632 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
633 "Invalid metadata kind");
634
635 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
636 MDIndex &Entry = Insertion.first->second;
637 if (!Insertion.second) {
638 // Already mapped. If F doesn't match the function tag, drop it.
639 if (Entry.hasDifferentFunction(F))
640 dropFunctionFromMetadata(*Insertion.first);
641 return nullptr;
642 }
643
644 // Don't assign IDs to metadata nodes.
645 if (auto *N = dyn_cast<MDNode>(MD))
646 return N;
647
648 // Save the metadata.
649 MDs.push_back(MD);
650 Entry.ID = MDs.size();
651
652 // Enumerate the constant, if any.
653 if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
654 EnumerateValue(C->getValue());
655
656 return nullptr;
657 }
658
659 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
660 /// information reachable from the metadata.
EnumerateFunctionLocalMetadata(unsigned F,const LocalAsMetadata * Local)661 void ValueEnumerator::EnumerateFunctionLocalMetadata(
662 unsigned F, const LocalAsMetadata *Local) {
663 assert(F && "Expected a function");
664
665 // Check to see if it's already in!
666 MDIndex &Index = MetadataMap[Local];
667 if (Index.ID) {
668 assert(Index.F == F && "Expected the same function");
669 return;
670 }
671
672 MDs.push_back(Local);
673 Index.F = F;
674 Index.ID = MDs.size();
675
676 EnumerateValue(Local->getValue());
677 }
678
getMetadataTypeOrder(const Metadata * MD)679 static unsigned getMetadataTypeOrder(const Metadata *MD) {
680 // Strings are emitted in bulk and must come first.
681 if (isa<MDString>(MD))
682 return 0;
683
684 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it
685 // to the front since we can detect it.
686 auto *N = dyn_cast<MDNode>(MD);
687 if (!N)
688 return 1;
689
690 // The reader is fast forward references for distinct node operands, but slow
691 // when uniqued operands are unresolved.
692 return N->isDistinct() ? 2 : 3;
693 }
694
organizeMetadata()695 void ValueEnumerator::organizeMetadata() {
696 assert(MetadataMap.size() == MDs.size() &&
697 "Metadata map and vector out of sync");
698
699 if (MDs.empty())
700 return;
701
702 // Copy out the index information from MetadataMap in order to choose a new
703 // order.
704 SmallVector<MDIndex, 64> Order;
705 Order.reserve(MetadataMap.size());
706 for (const Metadata *MD : MDs)
707 Order.push_back(MetadataMap.lookup(MD));
708
709 // Partition:
710 // - by function, then
711 // - by isa<MDString>
712 // and then sort by the original/current ID. Since the IDs are guaranteed to
713 // be unique, the result of std::sort will be deterministic. There's no need
714 // for std::stable_sort.
715 std::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) {
716 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
717 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
718 });
719
720 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
721 // and fix up MetadataMap.
722 std::vector<const Metadata *> OldMDs = std::move(MDs);
723 MDs.reserve(OldMDs.size());
724 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
725 auto *MD = Order[I].get(OldMDs);
726 MDs.push_back(MD);
727 MetadataMap[MD].ID = I + 1;
728 if (isa<MDString>(MD))
729 ++NumMDStrings;
730 }
731
732 // Return early if there's nothing for the functions.
733 if (MDs.size() == Order.size())
734 return;
735
736 // Build the function metadata ranges.
737 MDRange R;
738 FunctionMDs.reserve(OldMDs.size());
739 unsigned PrevF = 0;
740 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
741 ++I) {
742 unsigned F = Order[I].F;
743 if (!PrevF) {
744 PrevF = F;
745 } else if (PrevF != F) {
746 R.Last = FunctionMDs.size();
747 std::swap(R, FunctionMDInfo[PrevF]);
748 R.First = FunctionMDs.size();
749
750 ID = MDs.size();
751 PrevF = F;
752 }
753
754 auto *MD = Order[I].get(OldMDs);
755 FunctionMDs.push_back(MD);
756 MetadataMap[MD].ID = ++ID;
757 if (isa<MDString>(MD))
758 ++R.NumStrings;
759 }
760 R.Last = FunctionMDs.size();
761 FunctionMDInfo[PrevF] = R;
762 }
763
incorporateFunctionMetadata(const Function & F)764 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
765 NumModuleMDs = MDs.size();
766
767 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
768 NumMDStrings = R.NumStrings;
769 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
770 FunctionMDs.begin() + R.Last);
771 }
772
EnumerateValue(const Value * V)773 void ValueEnumerator::EnumerateValue(const Value *V) {
774 assert(!V->getType()->isVoidTy() && "Can't insert void values!");
775 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
776
777 // Check to see if it's already in!
778 unsigned &ValueID = ValueMap[V];
779 if (ValueID) {
780 // Increment use count.
781 Values[ValueID-1].second++;
782 return;
783 }
784
785 if (auto *GO = dyn_cast<GlobalObject>(V))
786 if (const Comdat *C = GO->getComdat())
787 Comdats.insert(C);
788
789 // Enumerate the type of this value.
790 EnumerateType(V->getType());
791
792 if (const Constant *C = dyn_cast<Constant>(V)) {
793 if (isa<GlobalValue>(C)) {
794 // Initializers for globals are handled explicitly elsewhere.
795 } else if (C->getNumOperands()) {
796 // If a constant has operands, enumerate them. This makes sure that if a
797 // constant has uses (for example an array of const ints), that they are
798 // inserted also.
799
800 // We prefer to enumerate them with values before we enumerate the user
801 // itself. This makes it more likely that we can avoid forward references
802 // in the reader. We know that there can be no cycles in the constants
803 // graph that don't go through a global variable.
804 for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
805 I != E; ++I)
806 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
807 EnumerateValue(*I);
808
809 // Finally, add the value. Doing this could make the ValueID reference be
810 // dangling, don't reuse it.
811 Values.push_back(std::make_pair(V, 1U));
812 ValueMap[V] = Values.size();
813 return;
814 }
815 }
816
817 // Add the value.
818 Values.push_back(std::make_pair(V, 1U));
819 ValueID = Values.size();
820 }
821
822
EnumerateType(Type * Ty)823 void ValueEnumerator::EnumerateType(Type *Ty) {
824 unsigned *TypeID = &TypeMap[Ty];
825
826 // We've already seen this type.
827 if (*TypeID)
828 return;
829
830 // If it is a non-anonymous struct, mark the type as being visited so that we
831 // don't recursively visit it. This is safe because we allow forward
832 // references of these in the bitcode reader.
833 if (StructType *STy = dyn_cast<StructType>(Ty))
834 if (!STy->isLiteral())
835 *TypeID = ~0U;
836
837 // Enumerate all of the subtypes before we enumerate this type. This ensures
838 // that the type will be enumerated in an order that can be directly built.
839 for (Type *SubTy : Ty->subtypes())
840 EnumerateType(SubTy);
841
842 // Refresh the TypeID pointer in case the table rehashed.
843 TypeID = &TypeMap[Ty];
844
845 // Check to see if we got the pointer another way. This can happen when
846 // enumerating recursive types that hit the base case deeper than they start.
847 //
848 // If this is actually a struct that we are treating as forward ref'able,
849 // then emit the definition now that all of its contents are available.
850 if (*TypeID && *TypeID != ~0U)
851 return;
852
853 // Add this type now that its contents are all happily enumerated.
854 Types.push_back(Ty);
855
856 *TypeID = Types.size();
857 }
858
859 // Enumerate the types for the specified value. If the value is a constant,
860 // walk through it, enumerating the types of the constant.
EnumerateOperandType(const Value * V)861 void ValueEnumerator::EnumerateOperandType(const Value *V) {
862 EnumerateType(V->getType());
863
864 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
865
866 const Constant *C = dyn_cast<Constant>(V);
867 if (!C)
868 return;
869
870 // If this constant is already enumerated, ignore it, we know its type must
871 // be enumerated.
872 if (ValueMap.count(C))
873 return;
874
875 // This constant may have operands, make sure to enumerate the types in
876 // them.
877 for (const Value *Op : C->operands()) {
878 // Don't enumerate basic blocks here, this happens as operands to
879 // blockaddress.
880 if (isa<BasicBlock>(Op))
881 continue;
882
883 EnumerateOperandType(Op);
884 }
885 }
886
EnumerateAttributes(AttributeSet PAL)887 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
888 if (PAL.isEmpty()) return; // null is always 0.
889
890 // Do a lookup.
891 unsigned &Entry = AttributeMap[PAL];
892 if (Entry == 0) {
893 // Never saw this before, add it.
894 Attribute.push_back(PAL);
895 Entry = Attribute.size();
896 }
897
898 // Do lookups for all attribute groups.
899 for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
900 AttributeSet AS = PAL.getSlotAttributes(i);
901 unsigned &Entry = AttributeGroupMap[AS];
902 if (Entry == 0) {
903 AttributeGroups.push_back(AS);
904 Entry = AttributeGroups.size();
905 }
906 }
907 }
908
incorporateFunction(const Function & F)909 void ValueEnumerator::incorporateFunction(const Function &F) {
910 InstructionCount = 0;
911 NumModuleValues = Values.size();
912
913 // Add global metadata to the function block. This doesn't include
914 // LocalAsMetadata.
915 incorporateFunctionMetadata(F);
916
917 // Adding function arguments to the value table.
918 for (const auto &I : F.args())
919 EnumerateValue(&I);
920
921 FirstFuncConstantID = Values.size();
922
923 // Add all function-level constants to the value table.
924 for (const BasicBlock &BB : F) {
925 for (const Instruction &I : BB)
926 for (const Use &OI : I.operands()) {
927 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
928 EnumerateValue(OI);
929 }
930 BasicBlocks.push_back(&BB);
931 ValueMap[&BB] = BasicBlocks.size();
932 }
933
934 // Optimize the constant layout.
935 OptimizeConstants(FirstFuncConstantID, Values.size());
936
937 // Add the function's parameter attributes so they are available for use in
938 // the function's instruction.
939 EnumerateAttributes(F.getAttributes());
940
941 FirstInstID = Values.size();
942
943 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
944 // Add all of the instructions.
945 for (const BasicBlock &BB : F) {
946 for (const Instruction &I : BB) {
947 for (const Use &OI : I.operands()) {
948 if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
949 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
950 // Enumerate metadata after the instructions they might refer to.
951 FnLocalMDVector.push_back(Local);
952 }
953
954 if (!I.getType()->isVoidTy())
955 EnumerateValue(&I);
956 }
957 }
958
959 // Add all of the function-local metadata.
960 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
961 // At this point, every local values have been incorporated, we shouldn't
962 // have a metadata operand that references a value that hasn't been seen.
963 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
964 "Missing value for metadata operand");
965 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
966 }
967 }
968
purgeFunction()969 void ValueEnumerator::purgeFunction() {
970 /// Remove purged values from the ValueMap.
971 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
972 ValueMap.erase(Values[i].first);
973 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
974 MetadataMap.erase(MDs[i]);
975 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
976 ValueMap.erase(BasicBlocks[i]);
977
978 Values.resize(NumModuleValues);
979 MDs.resize(NumModuleMDs);
980 BasicBlocks.clear();
981 NumMDStrings = 0;
982 }
983
IncorporateFunctionInfoGlobalBBIDs(const Function * F,DenseMap<const BasicBlock *,unsigned> & IDMap)984 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
985 DenseMap<const BasicBlock*, unsigned> &IDMap) {
986 unsigned Counter = 0;
987 for (const BasicBlock &BB : *F)
988 IDMap[&BB] = ++Counter;
989 }
990
991 /// getGlobalBasicBlockID - This returns the function-specific ID for the
992 /// specified basic block. This is relatively expensive information, so it
993 /// should only be used by rare constructs such as address-of-label.
getGlobalBasicBlockID(const BasicBlock * BB) const994 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
995 unsigned &Idx = GlobalBasicBlockIDs[BB];
996 if (Idx != 0)
997 return Idx-1;
998
999 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1000 return getGlobalBasicBlockID(BB);
1001 }
1002
computeBitsRequiredForTypeIndicies() const1003 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1004 return Log2_32_Ceil(getTypes().size() + 1);
1005 }
1006