• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jcarith.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Developed 1997-2009 by Guido Vollbeding.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2015, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README.ijg
9  * file.
10  *
11  * This file contains portable arithmetic entropy encoding routines for JPEG
12  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
13  *
14  * Both sequential and progressive modes are supported in this single module.
15  *
16  * Suspension is not currently supported in this module.
17  */
18 
19 #define JPEG_INTERNALS
20 #include "jinclude.h"
21 #include "jpeglib.h"
22 
23 
24 /* Expanded entropy encoder object for arithmetic encoding. */
25 
26 typedef struct {
27   struct jpeg_entropy_encoder pub; /* public fields */
28 
29   JLONG c; /* C register, base of coding interval, layout as in sec. D.1.3 */
30   JLONG a;               /* A register, normalized size of coding interval */
31   JLONG sc;        /* counter for stacked 0xFF values which might overflow */
32   JLONG zc;          /* counter for pending 0x00 output values which might *
33                           * be discarded at the end ("Pacman" termination) */
34   int ct;  /* bit shift counter, determines when next byte will be written */
35   int buffer;                /* buffer for most recent output byte != 0xFF */
36 
37   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
38   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
39 
40   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
41   int next_restart_num;         /* next restart number to write (0-7) */
42 
43   /* Pointers to statistics areas (these workspaces have image lifespan) */
44   unsigned char *dc_stats[NUM_ARITH_TBLS];
45   unsigned char *ac_stats[NUM_ARITH_TBLS];
46 
47   /* Statistics bin for coding with fixed probability 0.5 */
48   unsigned char fixed_bin[4];
49 } arith_entropy_encoder;
50 
51 typedef arith_entropy_encoder *arith_entropy_ptr;
52 
53 /* The following two definitions specify the allocation chunk size
54  * for the statistics area.
55  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
56  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
57  *
58  * We use a compact representation with 1 byte per statistics bin,
59  * thus the numbers directly represent byte sizes.
60  * This 1 byte per statistics bin contains the meaning of the MPS
61  * (more probable symbol) in the highest bit (mask 0x80), and the
62  * index into the probability estimation state machine table
63  * in the lower bits (mask 0x7F).
64  */
65 
66 #define DC_STAT_BINS 64
67 #define AC_STAT_BINS 256
68 
69 /* NOTE: Uncomment the following #define if you want to use the
70  * given formula for calculating the AC conditioning parameter Kx
71  * for spectral selection progressive coding in section G.1.3.2
72  * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
73  * Although the spec and P&M authors claim that this "has proven
74  * to give good results for 8 bit precision samples", I'm not
75  * convinced yet that this is really beneficial.
76  * Early tests gave only very marginal compression enhancements
77  * (a few - around 5 or so - bytes even for very large files),
78  * which would turn out rather negative if we'd suppress the
79  * DAC (Define Arithmetic Conditioning) marker segments for
80  * the default parameters in the future.
81  * Note that currently the marker writing module emits 12-byte
82  * DAC segments for a full-component scan in a color image.
83  * This is not worth worrying about IMHO. However, since the
84  * spec defines the default values to be used if the tables
85  * are omitted (unlike Huffman tables, which are required
86  * anyway), one might optimize this behaviour in the future,
87  * and then it would be disadvantageous to use custom tables if
88  * they don't provide sufficient gain to exceed the DAC size.
89  *
90  * On the other hand, I'd consider it as a reasonable result
91  * that the conditioning has no significant influence on the
92  * compression performance. This means that the basic
93  * statistical model is already rather stable.
94  *
95  * Thus, at the moment, we use the default conditioning values
96  * anyway, and do not use the custom formula.
97  *
98 #define CALCULATE_SPECTRAL_CONDITIONING
99  */
100 
101 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG.
102  * We assume that int right shift is unsigned if JLONG right shift is,
103  * which should be safe.
104  */
105 
106 #ifdef RIGHT_SHIFT_IS_UNSIGNED
107 #define ISHIFT_TEMPS    int ishift_temp;
108 #define IRIGHT_SHIFT(x,shft)  \
109         ((ishift_temp = (x)) < 0 ? \
110          (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
111          (ishift_temp >> (shft)))
112 #else
113 #define ISHIFT_TEMPS
114 #define IRIGHT_SHIFT(x,shft)    ((x) >> (shft))
115 #endif
116 
117 
118 LOCAL(void)
emit_byte(int val,j_compress_ptr cinfo)119 emit_byte (int val, j_compress_ptr cinfo)
120 /* Write next output byte; we do not support suspension in this module. */
121 {
122   struct jpeg_destination_mgr *dest = cinfo->dest;
123 
124   *dest->next_output_byte++ = (JOCTET) val;
125   if (--dest->free_in_buffer == 0)
126     if (! (*dest->empty_output_buffer) (cinfo))
127       ERREXIT(cinfo, JERR_CANT_SUSPEND);
128 }
129 
130 
131 /*
132  * Finish up at the end of an arithmetic-compressed scan.
133  */
134 
135 METHODDEF(void)
finish_pass(j_compress_ptr cinfo)136 finish_pass (j_compress_ptr cinfo)
137 {
138   arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
139   JLONG temp;
140 
141   /* Section D.1.8: Termination of encoding */
142 
143   /* Find the e->c in the coding interval with the largest
144    * number of trailing zero bits */
145   if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
146     e->c = temp + 0x8000L;
147   else
148     e->c = temp;
149   /* Send remaining bytes to output */
150   e->c <<= e->ct;
151   if (e->c & 0xF8000000L) {
152     /* One final overflow has to be handled */
153     if (e->buffer >= 0) {
154       if (e->zc)
155         do emit_byte(0x00, cinfo);
156         while (--e->zc);
157       emit_byte(e->buffer + 1, cinfo);
158       if (e->buffer + 1 == 0xFF)
159         emit_byte(0x00, cinfo);
160     }
161     e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
162     e->sc = 0;
163   } else {
164     if (e->buffer == 0)
165       ++e->zc;
166     else if (e->buffer >= 0) {
167       if (e->zc)
168         do emit_byte(0x00, cinfo);
169         while (--e->zc);
170       emit_byte(e->buffer, cinfo);
171     }
172     if (e->sc) {
173       if (e->zc)
174         do emit_byte(0x00, cinfo);
175         while (--e->zc);
176       do {
177         emit_byte(0xFF, cinfo);
178         emit_byte(0x00, cinfo);
179       } while (--e->sc);
180     }
181   }
182   /* Output final bytes only if they are not 0x00 */
183   if (e->c & 0x7FFF800L) {
184     if (e->zc)  /* output final pending zero bytes */
185       do emit_byte(0x00, cinfo);
186       while (--e->zc);
187     emit_byte((e->c >> 19) & 0xFF, cinfo);
188     if (((e->c >> 19) & 0xFF) == 0xFF)
189       emit_byte(0x00, cinfo);
190     if (e->c & 0x7F800L) {
191       emit_byte((e->c >> 11) & 0xFF, cinfo);
192       if (((e->c >> 11) & 0xFF) == 0xFF)
193         emit_byte(0x00, cinfo);
194     }
195   }
196 }
197 
198 
199 /*
200  * The core arithmetic encoding routine (common in JPEG and JBIG).
201  * This needs to go as fast as possible.
202  * Machine-dependent optimization facilities
203  * are not utilized in this portable implementation.
204  * However, this code should be fairly efficient and
205  * may be a good base for further optimizations anyway.
206  *
207  * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
208  *
209  * Note: I've added full "Pacman" termination support to the
210  * byte output routines, which is equivalent to the optional
211  * Discard_final_zeros procedure (Figure D.15) in the spec.
212  * Thus, we always produce the shortest possible output
213  * stream compliant to the spec (no trailing zero bytes,
214  * except for FF stuffing).
215  *
216  * I've also introduced a new scheme for accessing
217  * the probability estimation state machine table,
218  * derived from Markus Kuhn's JBIG implementation.
219  */
220 
221 LOCAL(void)
arith_encode(j_compress_ptr cinfo,unsigned char * st,int val)222 arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
223 {
224   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
225   register unsigned char nl, nm;
226   register JLONG qe, temp;
227   register int sv;
228 
229   /* Fetch values from our compact representation of Table D.2:
230    * Qe values and probability estimation state machine
231    */
232   sv = *st;
233   qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
234   nl = qe & 0xFF; qe >>= 8;     /* Next_Index_LPS + Switch_MPS */
235   nm = qe & 0xFF; qe >>= 8;     /* Next_Index_MPS */
236 
237   /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
238   e->a -= qe;
239   if (val != (sv >> 7)) {
240     /* Encode the less probable symbol */
241     if (e->a >= qe) {
242       /* If the interval size (qe) for the less probable symbol (LPS)
243        * is larger than the interval size for the MPS, then exchange
244        * the two symbols for coding efficiency, otherwise code the LPS
245        * as usual: */
246       e->c += e->a;
247       e->a = qe;
248     }
249     *st = (sv & 0x80) ^ nl;     /* Estimate_after_LPS */
250   } else {
251     /* Encode the more probable symbol */
252     if (e->a >= 0x8000L)
253       return;  /* A >= 0x8000 -> ready, no renormalization required */
254     if (e->a < qe) {
255       /* If the interval size (qe) for the less probable symbol (LPS)
256        * is larger than the interval size for the MPS, then exchange
257        * the two symbols for coding efficiency: */
258       e->c += e->a;
259       e->a = qe;
260     }
261     *st = (sv & 0x80) ^ nm;     /* Estimate_after_MPS */
262   }
263 
264   /* Renormalization & data output per section D.1.6 */
265   do {
266     e->a <<= 1;
267     e->c <<= 1;
268     if (--e->ct == 0) {
269       /* Another byte is ready for output */
270       temp = e->c >> 19;
271       if (temp > 0xFF) {
272         /* Handle overflow over all stacked 0xFF bytes */
273         if (e->buffer >= 0) {
274           if (e->zc)
275             do emit_byte(0x00, cinfo);
276             while (--e->zc);
277           emit_byte(e->buffer + 1, cinfo);
278           if (e->buffer + 1 == 0xFF)
279             emit_byte(0x00, cinfo);
280         }
281         e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
282         e->sc = 0;
283         /* Note: The 3 spacer bits in the C register guarantee
284          * that the new buffer byte can't be 0xFF here
285          * (see page 160 in the P&M JPEG book). */
286         e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
287       } else if (temp == 0xFF) {
288         ++e->sc;  /* stack 0xFF byte (which might overflow later) */
289       } else {
290         /* Output all stacked 0xFF bytes, they will not overflow any more */
291         if (e->buffer == 0)
292           ++e->zc;
293         else if (e->buffer >= 0) {
294           if (e->zc)
295             do emit_byte(0x00, cinfo);
296             while (--e->zc);
297           emit_byte(e->buffer, cinfo);
298         }
299         if (e->sc) {
300           if (e->zc)
301             do emit_byte(0x00, cinfo);
302             while (--e->zc);
303           do {
304             emit_byte(0xFF, cinfo);
305             emit_byte(0x00, cinfo);
306           } while (--e->sc);
307         }
308         e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
309       }
310       e->c &= 0x7FFFFL;
311       e->ct += 8;
312     }
313   } while (e->a < 0x8000L);
314 }
315 
316 
317 /*
318  * Emit a restart marker & resynchronize predictions.
319  */
320 
321 LOCAL(void)
emit_restart(j_compress_ptr cinfo,int restart_num)322 emit_restart (j_compress_ptr cinfo, int restart_num)
323 {
324   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
325   int ci;
326   jpeg_component_info *compptr;
327 
328   finish_pass(cinfo);
329 
330   emit_byte(0xFF, cinfo);
331   emit_byte(JPEG_RST0 + restart_num, cinfo);
332 
333   /* Re-initialize statistics areas */
334   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
335     compptr = cinfo->cur_comp_info[ci];
336     /* DC needs no table for refinement scan */
337     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
338       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
339       /* Reset DC predictions to 0 */
340       entropy->last_dc_val[ci] = 0;
341       entropy->dc_context[ci] = 0;
342     }
343     /* AC needs no table when not present */
344     if (cinfo->progressive_mode == 0 || cinfo->Se) {
345       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
346     }
347   }
348 
349   /* Reset arithmetic encoding variables */
350   entropy->c = 0;
351   entropy->a = 0x10000L;
352   entropy->sc = 0;
353   entropy->zc = 0;
354   entropy->ct = 11;
355   entropy->buffer = -1;  /* empty */
356 }
357 
358 
359 /*
360  * MCU encoding for DC initial scan (either spectral selection,
361  * or first pass of successive approximation).
362  */
363 
364 METHODDEF(boolean)
encode_mcu_DC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)365 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
366 {
367   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
368   JBLOCKROW block;
369   unsigned char *st;
370   int blkn, ci, tbl;
371   int v, v2, m;
372   ISHIFT_TEMPS
373 
374   /* Emit restart marker if needed */
375   if (cinfo->restart_interval) {
376     if (entropy->restarts_to_go == 0) {
377       emit_restart(cinfo, entropy->next_restart_num);
378       entropy->restarts_to_go = cinfo->restart_interval;
379       entropy->next_restart_num++;
380       entropy->next_restart_num &= 7;
381     }
382     entropy->restarts_to_go--;
383   }
384 
385   /* Encode the MCU data blocks */
386   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
387     block = MCU_data[blkn];
388     ci = cinfo->MCU_membership[blkn];
389     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
390 
391     /* Compute the DC value after the required point transform by Al.
392      * This is simply an arithmetic right shift.
393      */
394     m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
395 
396     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
397 
398     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
399     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
400 
401     /* Figure F.4: Encode_DC_DIFF */
402     if ((v = m - entropy->last_dc_val[ci]) == 0) {
403       arith_encode(cinfo, st, 0);
404       entropy->dc_context[ci] = 0;      /* zero diff category */
405     } else {
406       entropy->last_dc_val[ci] = m;
407       arith_encode(cinfo, st, 1);
408       /* Figure F.6: Encoding nonzero value v */
409       /* Figure F.7: Encoding the sign of v */
410       if (v > 0) {
411         arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
412         st += 2;                        /* Table F.4: SP = S0 + 2 */
413         entropy->dc_context[ci] = 4;    /* small positive diff category */
414       } else {
415         v = -v;
416         arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
417         st += 3;                        /* Table F.4: SN = S0 + 3 */
418         entropy->dc_context[ci] = 8;    /* small negative diff category */
419       }
420       /* Figure F.8: Encoding the magnitude category of v */
421       m = 0;
422       if (v -= 1) {
423         arith_encode(cinfo, st, 1);
424         m = 1;
425         v2 = v;
426         st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
427         while (v2 >>= 1) {
428           arith_encode(cinfo, st, 1);
429           m <<= 1;
430           st += 1;
431         }
432       }
433       arith_encode(cinfo, st, 0);
434       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
435       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
436         entropy->dc_context[ci] = 0;    /* zero diff category */
437       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
438         entropy->dc_context[ci] += 8;   /* large diff category */
439       /* Figure F.9: Encoding the magnitude bit pattern of v */
440       st += 14;
441       while (m >>= 1)
442         arith_encode(cinfo, st, (m & v) ? 1 : 0);
443     }
444   }
445 
446   return TRUE;
447 }
448 
449 
450 /*
451  * MCU encoding for AC initial scan (either spectral selection,
452  * or first pass of successive approximation).
453  */
454 
455 METHODDEF(boolean)
encode_mcu_AC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)456 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
457 {
458   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
459   JBLOCKROW block;
460   unsigned char *st;
461   int tbl, k, ke;
462   int v, v2, m;
463 
464   /* Emit restart marker if needed */
465   if (cinfo->restart_interval) {
466     if (entropy->restarts_to_go == 0) {
467       emit_restart(cinfo, entropy->next_restart_num);
468       entropy->restarts_to_go = cinfo->restart_interval;
469       entropy->next_restart_num++;
470       entropy->next_restart_num &= 7;
471     }
472     entropy->restarts_to_go--;
473   }
474 
475   /* Encode the MCU data block */
476   block = MCU_data[0];
477   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
478 
479   /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
480 
481   /* Establish EOB (end-of-block) index */
482   for (ke = cinfo->Se; ke > 0; ke--)
483     /* We must apply the point transform by Al.  For AC coefficients this
484      * is an integer division with rounding towards 0.  To do this portably
485      * in C, we shift after obtaining the absolute value.
486      */
487     if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
488       if (v >>= cinfo->Al) break;
489     } else {
490       v = -v;
491       if (v >>= cinfo->Al) break;
492     }
493 
494   /* Figure F.5: Encode_AC_Coefficients */
495   for (k = cinfo->Ss; k <= ke; k++) {
496     st = entropy->ac_stats[tbl] + 3 * (k - 1);
497     arith_encode(cinfo, st, 0);         /* EOB decision */
498     for (;;) {
499       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
500         if (v >>= cinfo->Al) {
501           arith_encode(cinfo, st + 1, 1);
502           arith_encode(cinfo, entropy->fixed_bin, 0);
503           break;
504         }
505       } else {
506         v = -v;
507         if (v >>= cinfo->Al) {
508           arith_encode(cinfo, st + 1, 1);
509           arith_encode(cinfo, entropy->fixed_bin, 1);
510           break;
511         }
512       }
513       arith_encode(cinfo, st + 1, 0); st += 3; k++;
514     }
515     st += 2;
516     /* Figure F.8: Encoding the magnitude category of v */
517     m = 0;
518     if (v -= 1) {
519       arith_encode(cinfo, st, 1);
520       m = 1;
521       v2 = v;
522       if (v2 >>= 1) {
523         arith_encode(cinfo, st, 1);
524         m <<= 1;
525         st = entropy->ac_stats[tbl] +
526              (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
527         while (v2 >>= 1) {
528           arith_encode(cinfo, st, 1);
529           m <<= 1;
530           st += 1;
531         }
532       }
533     }
534     arith_encode(cinfo, st, 0);
535     /* Figure F.9: Encoding the magnitude bit pattern of v */
536     st += 14;
537     while (m >>= 1)
538       arith_encode(cinfo, st, (m & v) ? 1 : 0);
539   }
540   /* Encode EOB decision only if k <= cinfo->Se */
541   if (k <= cinfo->Se) {
542     st = entropy->ac_stats[tbl] + 3 * (k - 1);
543     arith_encode(cinfo, st, 1);
544   }
545 
546   return TRUE;
547 }
548 
549 
550 /*
551  * MCU encoding for DC successive approximation refinement scan.
552  */
553 
554 METHODDEF(boolean)
encode_mcu_DC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)555 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
556 {
557   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
558   unsigned char *st;
559   int Al, blkn;
560 
561   /* Emit restart marker if needed */
562   if (cinfo->restart_interval) {
563     if (entropy->restarts_to_go == 0) {
564       emit_restart(cinfo, entropy->next_restart_num);
565       entropy->restarts_to_go = cinfo->restart_interval;
566       entropy->next_restart_num++;
567       entropy->next_restart_num &= 7;
568     }
569     entropy->restarts_to_go--;
570   }
571 
572   st = entropy->fixed_bin;      /* use fixed probability estimation */
573   Al = cinfo->Al;
574 
575   /* Encode the MCU data blocks */
576   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
577     /* We simply emit the Al'th bit of the DC coefficient value. */
578     arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
579   }
580 
581   return TRUE;
582 }
583 
584 
585 /*
586  * MCU encoding for AC successive approximation refinement scan.
587  */
588 
589 METHODDEF(boolean)
encode_mcu_AC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)590 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
591 {
592   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
593   JBLOCKROW block;
594   unsigned char *st;
595   int tbl, k, ke, kex;
596   int v;
597 
598   /* Emit restart marker if needed */
599   if (cinfo->restart_interval) {
600     if (entropy->restarts_to_go == 0) {
601       emit_restart(cinfo, entropy->next_restart_num);
602       entropy->restarts_to_go = cinfo->restart_interval;
603       entropy->next_restart_num++;
604       entropy->next_restart_num &= 7;
605     }
606     entropy->restarts_to_go--;
607   }
608 
609   /* Encode the MCU data block */
610   block = MCU_data[0];
611   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
612 
613   /* Section G.1.3.3: Encoding of AC coefficients */
614 
615   /* Establish EOB (end-of-block) index */
616   for (ke = cinfo->Se; ke > 0; ke--)
617     /* We must apply the point transform by Al.  For AC coefficients this
618      * is an integer division with rounding towards 0.  To do this portably
619      * in C, we shift after obtaining the absolute value.
620      */
621     if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
622       if (v >>= cinfo->Al) break;
623     } else {
624       v = -v;
625       if (v >>= cinfo->Al) break;
626     }
627 
628   /* Establish EOBx (previous stage end-of-block) index */
629   for (kex = ke; kex > 0; kex--)
630     if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) {
631       if (v >>= cinfo->Ah) break;
632     } else {
633       v = -v;
634       if (v >>= cinfo->Ah) break;
635     }
636 
637   /* Figure G.10: Encode_AC_Coefficients_SA */
638   for (k = cinfo->Ss; k <= ke; k++) {
639     st = entropy->ac_stats[tbl] + 3 * (k - 1);
640     if (k > kex)
641       arith_encode(cinfo, st, 0);       /* EOB decision */
642     for (;;) {
643       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
644         if (v >>= cinfo->Al) {
645           if (v >> 1)                   /* previously nonzero coef */
646             arith_encode(cinfo, st + 2, (v & 1));
647           else {                        /* newly nonzero coef */
648             arith_encode(cinfo, st + 1, 1);
649             arith_encode(cinfo, entropy->fixed_bin, 0);
650           }
651           break;
652         }
653       } else {
654         v = -v;
655         if (v >>= cinfo->Al) {
656           if (v >> 1)                   /* previously nonzero coef */
657             arith_encode(cinfo, st + 2, (v & 1));
658           else {                        /* newly nonzero coef */
659             arith_encode(cinfo, st + 1, 1);
660             arith_encode(cinfo, entropy->fixed_bin, 1);
661           }
662           break;
663         }
664       }
665       arith_encode(cinfo, st + 1, 0); st += 3; k++;
666     }
667   }
668   /* Encode EOB decision only if k <= cinfo->Se */
669   if (k <= cinfo->Se) {
670     st = entropy->ac_stats[tbl] + 3 * (k - 1);
671     arith_encode(cinfo, st, 1);
672   }
673 
674   return TRUE;
675 }
676 
677 
678 /*
679  * Encode and output one MCU's worth of arithmetic-compressed coefficients.
680  */
681 
682 METHODDEF(boolean)
encode_mcu(j_compress_ptr cinfo,JBLOCKROW * MCU_data)683 encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
684 {
685   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
686   jpeg_component_info *compptr;
687   JBLOCKROW block;
688   unsigned char *st;
689   int blkn, ci, tbl, k, ke;
690   int v, v2, m;
691 
692   /* Emit restart marker if needed */
693   if (cinfo->restart_interval) {
694     if (entropy->restarts_to_go == 0) {
695       emit_restart(cinfo, entropy->next_restart_num);
696       entropy->restarts_to_go = cinfo->restart_interval;
697       entropy->next_restart_num++;
698       entropy->next_restart_num &= 7;
699     }
700     entropy->restarts_to_go--;
701   }
702 
703   /* Encode the MCU data blocks */
704   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
705     block = MCU_data[blkn];
706     ci = cinfo->MCU_membership[blkn];
707     compptr = cinfo->cur_comp_info[ci];
708 
709     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
710 
711     tbl = compptr->dc_tbl_no;
712 
713     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
714     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
715 
716     /* Figure F.4: Encode_DC_DIFF */
717     if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
718       arith_encode(cinfo, st, 0);
719       entropy->dc_context[ci] = 0;      /* zero diff category */
720     } else {
721       entropy->last_dc_val[ci] = (*block)[0];
722       arith_encode(cinfo, st, 1);
723       /* Figure F.6: Encoding nonzero value v */
724       /* Figure F.7: Encoding the sign of v */
725       if (v > 0) {
726         arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
727         st += 2;                        /* Table F.4: SP = S0 + 2 */
728         entropy->dc_context[ci] = 4;    /* small positive diff category */
729       } else {
730         v = -v;
731         arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
732         st += 3;                        /* Table F.4: SN = S0 + 3 */
733         entropy->dc_context[ci] = 8;    /* small negative diff category */
734       }
735       /* Figure F.8: Encoding the magnitude category of v */
736       m = 0;
737       if (v -= 1) {
738         arith_encode(cinfo, st, 1);
739         m = 1;
740         v2 = v;
741         st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
742         while (v2 >>= 1) {
743           arith_encode(cinfo, st, 1);
744           m <<= 1;
745           st += 1;
746         }
747       }
748       arith_encode(cinfo, st, 0);
749       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
750       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
751         entropy->dc_context[ci] = 0;    /* zero diff category */
752       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
753         entropy->dc_context[ci] += 8;   /* large diff category */
754       /* Figure F.9: Encoding the magnitude bit pattern of v */
755       st += 14;
756       while (m >>= 1)
757         arith_encode(cinfo, st, (m & v) ? 1 : 0);
758     }
759 
760     /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
761 
762     tbl = compptr->ac_tbl_no;
763 
764     /* Establish EOB (end-of-block) index */
765     for (ke = DCTSIZE2 - 1; ke > 0; ke--)
766       if ((*block)[jpeg_natural_order[ke]]) break;
767 
768     /* Figure F.5: Encode_AC_Coefficients */
769     for (k = 1; k <= ke; k++) {
770       st = entropy->ac_stats[tbl] + 3 * (k - 1);
771       arith_encode(cinfo, st, 0);       /* EOB decision */
772       while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
773         arith_encode(cinfo, st + 1, 0); st += 3; k++;
774       }
775       arith_encode(cinfo, st + 1, 1);
776       /* Figure F.6: Encoding nonzero value v */
777       /* Figure F.7: Encoding the sign of v */
778       if (v > 0) {
779         arith_encode(cinfo, entropy->fixed_bin, 0);
780       } else {
781         v = -v;
782         arith_encode(cinfo, entropy->fixed_bin, 1);
783       }
784       st += 2;
785       /* Figure F.8: Encoding the magnitude category of v */
786       m = 0;
787       if (v -= 1) {
788         arith_encode(cinfo, st, 1);
789         m = 1;
790         v2 = v;
791         if (v2 >>= 1) {
792           arith_encode(cinfo, st, 1);
793           m <<= 1;
794           st = entropy->ac_stats[tbl] +
795                (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
796           while (v2 >>= 1) {
797             arith_encode(cinfo, st, 1);
798             m <<= 1;
799             st += 1;
800           }
801         }
802       }
803       arith_encode(cinfo, st, 0);
804       /* Figure F.9: Encoding the magnitude bit pattern of v */
805       st += 14;
806       while (m >>= 1)
807         arith_encode(cinfo, st, (m & v) ? 1 : 0);
808     }
809     /* Encode EOB decision only if k <= DCTSIZE2 - 1 */
810     if (k <= DCTSIZE2 - 1) {
811       st = entropy->ac_stats[tbl] + 3 * (k - 1);
812       arith_encode(cinfo, st, 1);
813     }
814   }
815 
816   return TRUE;
817 }
818 
819 
820 /*
821  * Initialize for an arithmetic-compressed scan.
822  */
823 
824 METHODDEF(void)
start_pass(j_compress_ptr cinfo,boolean gather_statistics)825 start_pass (j_compress_ptr cinfo, boolean gather_statistics)
826 {
827   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
828   int ci, tbl;
829   jpeg_component_info *compptr;
830 
831   if (gather_statistics)
832     /* Make sure to avoid that in the master control logic!
833      * We are fully adaptive here and need no extra
834      * statistics gathering pass!
835      */
836     ERREXIT(cinfo, JERR_NOT_COMPILED);
837 
838   /* We assume jcmaster.c already validated the progressive scan parameters. */
839 
840   /* Select execution routines */
841   if (cinfo->progressive_mode) {
842     if (cinfo->Ah == 0) {
843       if (cinfo->Ss == 0)
844         entropy->pub.encode_mcu = encode_mcu_DC_first;
845       else
846         entropy->pub.encode_mcu = encode_mcu_AC_first;
847     } else {
848       if (cinfo->Ss == 0)
849         entropy->pub.encode_mcu = encode_mcu_DC_refine;
850       else
851         entropy->pub.encode_mcu = encode_mcu_AC_refine;
852     }
853   } else
854     entropy->pub.encode_mcu = encode_mcu;
855 
856   /* Allocate & initialize requested statistics areas */
857   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
858     compptr = cinfo->cur_comp_info[ci];
859     /* DC needs no table for refinement scan */
860     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
861       tbl = compptr->dc_tbl_no;
862       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
863         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
864       if (entropy->dc_stats[tbl] == NULL)
865         entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
866           ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
867       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
868       /* Initialize DC predictions to 0 */
869       entropy->last_dc_val[ci] = 0;
870       entropy->dc_context[ci] = 0;
871     }
872     /* AC needs no table when not present */
873     if (cinfo->progressive_mode == 0 || cinfo->Se) {
874       tbl = compptr->ac_tbl_no;
875       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
876         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
877       if (entropy->ac_stats[tbl] == NULL)
878         entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
879           ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
880       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
881 #ifdef CALCULATE_SPECTRAL_CONDITIONING
882       if (cinfo->progressive_mode)
883         /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
884         cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
885 #endif
886     }
887   }
888 
889   /* Initialize arithmetic encoding variables */
890   entropy->c = 0;
891   entropy->a = 0x10000L;
892   entropy->sc = 0;
893   entropy->zc = 0;
894   entropy->ct = 11;
895   entropy->buffer = -1;  /* empty */
896 
897   /* Initialize restart stuff */
898   entropy->restarts_to_go = cinfo->restart_interval;
899   entropy->next_restart_num = 0;
900 }
901 
902 
903 /*
904  * Module initialization routine for arithmetic entropy encoding.
905  */
906 
907 GLOBAL(void)
jinit_arith_encoder(j_compress_ptr cinfo)908 jinit_arith_encoder (j_compress_ptr cinfo)
909 {
910   arith_entropy_ptr entropy;
911   int i;
912 
913   entropy = (arith_entropy_ptr)
914     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
915                                 sizeof(arith_entropy_encoder));
916   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
917   entropy->pub.start_pass = start_pass;
918   entropy->pub.finish_pass = finish_pass;
919 
920   /* Mark tables unallocated */
921   for (i = 0; i < NUM_ARITH_TBLS; i++) {
922     entropy->dc_stats[i] = NULL;
923     entropy->ac_stats[i] = NULL;
924   }
925 
926   /* Initialize index for fixed probability estimation */
927   entropy->fixed_bin[0] = 113;
928 }
929