• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
18 #define ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
19 
20 #include <stdint.h>
21 
22 #include <iosfwd>
23 #include <limits>
24 #include <string>
25 
26 #include <android-base/logging.h>
27 
28 #include "base/bit_utils.h"
29 #include "base/macros.h"
30 #include "base/mutex.h"
31 #include "gc_root.h"
32 #include "obj_ptr.h"
33 #include "offsets.h"
34 #include "read_barrier_option.h"
35 
36 namespace art {
37 
38 class RootInfo;
39 
40 namespace mirror {
41 class Object;
42 }  // namespace mirror
43 
44 class MemMap;
45 
46 // Maintain a table of indirect references.  Used for local/global JNI references.
47 //
48 // The table contains object references, where the strong (local/global) references are part of the
49 // GC root set (but not the weak global references). When an object is added we return an
50 // IndirectRef that is not a valid pointer but can be used to find the original value in O(1) time.
51 // Conversions to and from indirect references are performed on upcalls and downcalls, so they need
52 // to be very fast.
53 //
54 // To be efficient for JNI local variable storage, we need to provide operations that allow us to
55 // operate on segments of the table, where segments are pushed and popped as if on a stack. For
56 // example, deletion of an entry should only succeed if it appears in the current segment, and we
57 // want to be able to strip off the current segment quickly when a method returns. Additions to the
58 // table must be made in the current segment even if space is available in an earlier area.
59 //
60 // A new segment is created when we call into native code from interpreted code, or when we handle
61 // the JNI PushLocalFrame function.
62 //
63 // The GC must be able to scan the entire table quickly.
64 //
65 // In summary, these must be very fast:
66 //  - adding or removing a segment
67 //  - adding references to a new segment
68 //  - converting an indirect reference back to an Object
69 // These can be a little slower, but must still be pretty quick:
70 //  - adding references to a "mature" segment
71 //  - removing individual references
72 //  - scanning the entire table straight through
73 //
74 // If there's more than one segment, we don't guarantee that the table will fill completely before
75 // we fail due to lack of space. We do ensure that the current segment will pack tightly, which
76 // should satisfy JNI requirements (e.g. EnsureLocalCapacity).
77 //
78 // Only SynchronizedGet is synchronized.
79 
80 // Indirect reference definition.  This must be interchangeable with JNI's jobject, and it's
81 // convenient to let null be null, so we use void*.
82 //
83 // We need a (potentially) large table index and a 2-bit reference type (global, local, weak
84 // global). We also reserve some bits to be used to detect stale indirect references: we put a
85 // serial number in the extra bits, and keep a copy of the serial number in the table. This requires
86 // more memory and additional memory accesses on add/get, but is moving-GC safe. It will catch
87 // additional problems, e.g.: create iref1 for obj, delete iref1, create iref2 for same obj,
88 // lookup iref1. A pattern based on object bits will miss this.
89 typedef void* IndirectRef;
90 
91 // Indirect reference kind, used as the two low bits of IndirectRef.
92 //
93 // For convenience these match up with enum jobjectRefType from jni.h.
94 enum IndirectRefKind {
95   kHandleScopeOrInvalid = 0,           // <<stack indirect reference table or invalid reference>>
96   kLocal                = 1,           // <<local reference>>
97   kGlobal               = 2,           // <<global reference>>
98   kWeakGlobal           = 3,           // <<weak global reference>>
99   kLastKind             = kWeakGlobal
100 };
101 std::ostream& operator<<(std::ostream& os, const IndirectRefKind& rhs);
102 const char* GetIndirectRefKindString(const IndirectRefKind& kind);
103 
104 // Table definition.
105 //
106 // For the global reference table, the expected common operations are adding a new entry and
107 // removing a recently-added entry (usually the most-recently-added entry).  For JNI local
108 // references, the common operations are adding a new entry and removing an entire table segment.
109 //
110 // If we delete entries from the middle of the list, we will be left with "holes".  We track the
111 // number of holes so that, when adding new elements, we can quickly decide to do a trivial append
112 // or go slot-hunting.
113 //
114 // When the top-most entry is removed, any holes immediately below it are also removed. Thus,
115 // deletion of an entry may reduce "top_index" by more than one.
116 //
117 // To get the desired behavior for JNI locals, we need to know the bottom and top of the current
118 // "segment". The top is managed internally, and the bottom is passed in as a function argument.
119 // When we call a native method or push a local frame, the current top index gets pushed on, and
120 // serves as the new bottom. When we pop a frame off, the value from the stack becomes the new top
121 // index, and the value stored in the previous frame becomes the new bottom.
122 //
123 // Holes are being locally cached for the segment. Otherwise we'd have to pass bottom index and
124 // number of holes, which restricts us to 16 bits for the top index. The value is cached within the
125 // table. To avoid code in generated JNI transitions, which implicitly form segments, the code for
126 // adding and removing references needs to detect the change of a segment. Helper fields are used
127 // for this detection.
128 //
129 // Common alternative implementation: make IndirectRef a pointer to the actual reference slot.
130 // Instead of getting a table and doing a lookup, the lookup can be done instantly. Operations like
131 // determining the type and deleting the reference are more expensive because the table must be
132 // hunted for (i.e. you have to do a pointer comparison to see which table it's in), you can't move
133 // the table when expanding it (so realloc() is out), and tricks like serial number checking to
134 // detect stale references aren't possible (though we may be able to get similar benefits with other
135 // approaches).
136 //
137 // TODO: consider a "lastDeleteIndex" for quick hole-filling when an add immediately follows a
138 // delete; must invalidate after segment pop might be worth only using it for JNI globals.
139 //
140 // TODO: may want completely different add/remove algorithms for global and local refs to improve
141 // performance.  A large circular buffer might reduce the amortized cost of adding global
142 // references.
143 
144 // The state of the current segment. We only store the index. Splitting it for index and hole
145 // count restricts the range too much.
146 struct IRTSegmentState {
147   uint32_t top_index;
148 };
149 
150 // Use as initial value for "cookie", and when table has only one segment.
151 static constexpr IRTSegmentState kIRTFirstSegment = { 0 };
152 
153 // Try to choose kIRTPrevCount so that sizeof(IrtEntry) is a power of 2.
154 // Contains multiple entries but only one active one, this helps us detect use after free errors
155 // since the serial stored in the indirect ref wont match.
156 static constexpr size_t kIRTPrevCount = kIsDebugBuild ? 7 : 3;
157 
158 class IrtEntry {
159  public:
160   void Add(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
161 
GetReference()162   GcRoot<mirror::Object>* GetReference() {
163     DCHECK_LT(serial_, kIRTPrevCount);
164     return &references_[serial_];
165   }
166 
GetReference()167   const GcRoot<mirror::Object>* GetReference() const {
168     DCHECK_LT(serial_, kIRTPrevCount);
169     return &references_[serial_];
170   }
171 
GetSerial()172   uint32_t GetSerial() const {
173     return serial_;
174   }
175 
176   void SetReference(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
177 
178  private:
179   uint32_t serial_;
180   GcRoot<mirror::Object> references_[kIRTPrevCount];
181 };
182 static_assert(sizeof(IrtEntry) == (1 + kIRTPrevCount) * sizeof(uint32_t),
183               "Unexpected sizeof(IrtEntry)");
184 static_assert(IsPowerOfTwo(sizeof(IrtEntry)), "Unexpected sizeof(IrtEntry)");
185 
186 class IrtIterator {
187  public:
IrtIterator(IrtEntry * table,size_t i,size_t capacity)188   IrtIterator(IrtEntry* table, size_t i, size_t capacity) REQUIRES_SHARED(Locks::mutator_lock_)
189       : table_(table), i_(i), capacity_(capacity) {
190     // capacity_ is used in some target; has warning with unused attribute.
191     UNUSED(capacity_);
192   }
193 
194   IrtIterator& operator++() REQUIRES_SHARED(Locks::mutator_lock_) {
195     ++i_;
196     return *this;
197   }
198 
REQUIRES_SHARED(Locks::mutator_lock_)199   GcRoot<mirror::Object>* operator*() REQUIRES_SHARED(Locks::mutator_lock_) {
200     // This does not have a read barrier as this is used to visit roots.
201     return table_[i_].GetReference();
202   }
203 
equals(const IrtIterator & rhs)204   bool equals(const IrtIterator& rhs) const {
205     return (i_ == rhs.i_ && table_ == rhs.table_);
206   }
207 
208  private:
209   IrtEntry* const table_;
210   size_t i_;
211   const size_t capacity_;
212 };
213 
214 bool inline operator==(const IrtIterator& lhs, const IrtIterator& rhs) {
215   return lhs.equals(rhs);
216 }
217 
218 bool inline operator!=(const IrtIterator& lhs, const IrtIterator& rhs) {
219   return !lhs.equals(rhs);
220 }
221 
222 class IndirectReferenceTable {
223  public:
224   enum class ResizableCapacity {
225     kNo,
226     kYes
227   };
228 
229   // WARNING: Construction of the IndirectReferenceTable may fail.
230   // error_msg must not be null. If error_msg is set by the constructor, then
231   // construction has failed and the IndirectReferenceTable will be in an
232   // invalid state. Use IsValid to check whether the object is in an invalid
233   // state.
234   IndirectReferenceTable(size_t max_count,
235                          IndirectRefKind kind,
236                          ResizableCapacity resizable,
237                          std::string* error_msg);
238 
239   ~IndirectReferenceTable();
240 
241   /*
242    * Checks whether construction of the IndirectReferenceTable succeeded.
243    *
244    * This object must only be used if IsValid() returns true. It is safe to
245    * call IsValid from multiple threads without locking or other explicit
246    * synchronization.
247    */
248   bool IsValid() const;
249 
250   // Add a new entry. "obj" must be a valid non-null object reference. This function will
251   // return null if an error happened (with an appropriate error message set).
252   IndirectRef Add(IRTSegmentState previous_state,
253                   ObjPtr<mirror::Object> obj,
254                   std::string* error_msg)
255       REQUIRES_SHARED(Locks::mutator_lock_);
256 
257   // Given an IndirectRef in the table, return the Object it refers to.
258   //
259   // This function may abort under error conditions.
260   template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
261   ObjPtr<mirror::Object> Get(IndirectRef iref) const REQUIRES_SHARED(Locks::mutator_lock_)
262       ALWAYS_INLINE;
263 
264   // Synchronized get which reads a reference, acquiring a lock if necessary.
265   template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
SynchronizedGet(IndirectRef iref)266   ObjPtr<mirror::Object> SynchronizedGet(IndirectRef iref) const
267       REQUIRES_SHARED(Locks::mutator_lock_) {
268     return Get<kReadBarrierOption>(iref);
269   }
270 
271   // Updates an existing indirect reference to point to a new object.
272   void Update(IndirectRef iref, ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
273 
274   // Remove an existing entry.
275   //
276   // If the entry is not between the current top index and the bottom index
277   // specified by the cookie, we don't remove anything.  This is the behavior
278   // required by JNI's DeleteLocalRef function.
279   //
280   // Returns "false" if nothing was removed.
281   bool Remove(IRTSegmentState previous_state, IndirectRef iref);
282 
283   void AssertEmpty() REQUIRES_SHARED(Locks::mutator_lock_);
284 
285   void Dump(std::ostream& os) const
286       REQUIRES_SHARED(Locks::mutator_lock_)
287       REQUIRES(!Locks::alloc_tracker_lock_);
288 
289   // Return the #of entries in the entire table.  This includes holes, and
290   // so may be larger than the actual number of "live" entries.
Capacity()291   size_t Capacity() const {
292     return segment_state_.top_index;
293   }
294 
295   // Ensure that at least free_capacity elements are available, or return false.
296   bool EnsureFreeCapacity(size_t free_capacity, std::string* error_msg)
297       REQUIRES_SHARED(Locks::mutator_lock_);
298   // See implementation of EnsureFreeCapacity. We'll only state here how much is trivially free,
299   // without recovering holes. Thus this is a conservative estimate.
300   size_t FreeCapacity() const;
301 
302   // Note IrtIterator does not have a read barrier as it's used to visit roots.
begin()303   IrtIterator begin() {
304     return IrtIterator(table_, 0, Capacity());
305   }
306 
end()307   IrtIterator end() {
308     return IrtIterator(table_, Capacity(), Capacity());
309   }
310 
311   void VisitRoots(RootVisitor* visitor, const RootInfo& root_info)
312       REQUIRES_SHARED(Locks::mutator_lock_);
313 
GetSegmentState()314   IRTSegmentState GetSegmentState() const {
315     return segment_state_;
316   }
317 
318   void SetSegmentState(IRTSegmentState new_state);
319 
SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED)320   static Offset SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED) {
321     // Note: Currently segment_state_ is at offset 0. We're testing the expected value in
322     //       jni_internal_test to make sure it stays correct. It is not OFFSETOF_MEMBER, as that
323     //       is not pointer-size-safe.
324     return Offset(0);
325   }
326 
327   // Release pages past the end of the table that may have previously held references.
328   void Trim() REQUIRES_SHARED(Locks::mutator_lock_);
329 
330   // Determine what kind of indirect reference this is. Opposite of EncodeIndirectRefKind.
GetIndirectRefKind(IndirectRef iref)331   ALWAYS_INLINE static inline IndirectRefKind GetIndirectRefKind(IndirectRef iref) {
332     return DecodeIndirectRefKind(reinterpret_cast<uintptr_t>(iref));
333   }
334 
335  private:
336   static constexpr size_t kSerialBits = MinimumBitsToStore(kIRTPrevCount);
337   static constexpr uint32_t kShiftedSerialMask = (1u << kSerialBits) - 1;
338 
339   static constexpr size_t kKindBits = MinimumBitsToStore(
340       static_cast<uint32_t>(IndirectRefKind::kLastKind));
341   static constexpr uint32_t kKindMask = (1u << kKindBits) - 1;
342 
EncodeIndex(uint32_t table_index)343   static constexpr uintptr_t EncodeIndex(uint32_t table_index) {
344     static_assert(sizeof(IndirectRef) == sizeof(uintptr_t), "Unexpected IndirectRef size");
345     DCHECK_LE(MinimumBitsToStore(table_index), BitSizeOf<uintptr_t>() - kSerialBits - kKindBits);
346     return (static_cast<uintptr_t>(table_index) << kKindBits << kSerialBits);
347   }
DecodeIndex(uintptr_t uref)348   static constexpr uint32_t DecodeIndex(uintptr_t uref) {
349     return static_cast<uint32_t>((uref >> kKindBits) >> kSerialBits);
350   }
351 
EncodeIndirectRefKind(IndirectRefKind kind)352   static constexpr uintptr_t EncodeIndirectRefKind(IndirectRefKind kind) {
353     return static_cast<uintptr_t>(kind);
354   }
DecodeIndirectRefKind(uintptr_t uref)355   static constexpr IndirectRefKind DecodeIndirectRefKind(uintptr_t uref) {
356     return static_cast<IndirectRefKind>(uref & kKindMask);
357   }
358 
EncodeSerial(uint32_t serial)359   static constexpr uintptr_t EncodeSerial(uint32_t serial) {
360     DCHECK_LE(MinimumBitsToStore(serial), kSerialBits);
361     return serial << kKindBits;
362   }
DecodeSerial(uintptr_t uref)363   static constexpr uint32_t DecodeSerial(uintptr_t uref) {
364     return static_cast<uint32_t>(uref >> kKindBits) & kShiftedSerialMask;
365   }
366 
EncodeIndirectRef(uint32_t table_index,uint32_t serial)367   constexpr uintptr_t EncodeIndirectRef(uint32_t table_index, uint32_t serial) const {
368     DCHECK_LT(table_index, max_entries_);
369     return EncodeIndex(table_index) | EncodeSerial(serial) | EncodeIndirectRefKind(kind_);
370   }
371 
372   static void ConstexprChecks();
373 
374   // Extract the table index from an indirect reference.
ExtractIndex(IndirectRef iref)375   ALWAYS_INLINE static uint32_t ExtractIndex(IndirectRef iref) {
376     return DecodeIndex(reinterpret_cast<uintptr_t>(iref));
377   }
378 
ToIndirectRef(uint32_t table_index)379   IndirectRef ToIndirectRef(uint32_t table_index) const {
380     DCHECK_LT(table_index, max_entries_);
381     uint32_t serial = table_[table_index].GetSerial();
382     return reinterpret_cast<IndirectRef>(EncodeIndirectRef(table_index, serial));
383   }
384 
385   // Resize the backing table. Currently must be larger than the current size.
386   bool Resize(size_t new_size, std::string* error_msg);
387 
388   void RecoverHoles(IRTSegmentState from);
389 
390   // Abort if check_jni is not enabled. Otherwise, just log as an error.
391   static void AbortIfNoCheckJNI(const std::string& msg);
392 
393   /* extra debugging checks */
394   bool GetChecked(IndirectRef) const REQUIRES_SHARED(Locks::mutator_lock_);
395   bool CheckEntry(const char*, IndirectRef, uint32_t) const;
396 
397   /// semi-public - read/write by jni down calls.
398   IRTSegmentState segment_state_;
399 
400   // Mem map where we store the indirect refs.
401   std::unique_ptr<MemMap> table_mem_map_;
402   // bottom of the stack. Do not directly access the object references
403   // in this as they are roots. Use Get() that has a read barrier.
404   IrtEntry* table_;
405   // bit mask, ORed into all irefs.
406   const IndirectRefKind kind_;
407 
408   // max #of entries allowed (modulo resizing).
409   size_t max_entries_;
410 
411   // Some values to retain old behavior with holes. Description of the algorithm is in the .cc
412   // file.
413   // TODO: Consider other data structures for compact tables, e.g., free lists.
414   size_t current_num_holes_;
415   IRTSegmentState last_known_previous_state_;
416 
417   // Whether the table's capacity may be resized. As there are no locks used, it is the caller's
418   // responsibility to ensure thread-safety.
419   ResizableCapacity resizable_;
420 };
421 
422 }  // namespace art
423 
424 #endif  // ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
425