• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "monitor.h"
18 
19 #include <vector>
20 
21 #include "android-base/stringprintf.h"
22 
23 #include "art_method-inl.h"
24 #include "base/logging.h"  // For VLOG.
25 #include "base/mutex.h"
26 #include "base/quasi_atomic.h"
27 #include "base/stl_util.h"
28 #include "base/systrace.h"
29 #include "base/time_utils.h"
30 #include "class_linker.h"
31 #include "dex/dex_file-inl.h"
32 #include "dex/dex_file_types.h"
33 #include "dex/dex_instruction-inl.h"
34 #include "lock_word-inl.h"
35 #include "mirror/class-inl.h"
36 #include "mirror/object-inl.h"
37 #include "object_callbacks.h"
38 #include "scoped_thread_state_change-inl.h"
39 #include "stack.h"
40 #include "thread.h"
41 #include "thread_list.h"
42 #include "verifier/method_verifier.h"
43 #include "well_known_classes.h"
44 
45 namespace art {
46 
47 using android::base::StringPrintf;
48 
49 static constexpr uint64_t kDebugThresholdFudgeFactor = kIsDebugBuild ? 10 : 1;
50 static constexpr uint64_t kLongWaitMs = 100 * kDebugThresholdFudgeFactor;
51 
52 /*
53  * Every Object has a monitor associated with it, but not every Object is actually locked.  Even
54  * the ones that are locked do not need a full-fledged monitor until a) there is actual contention
55  * or b) wait() is called on the Object.
56  *
57  * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s
58  * "Thin locks: featherweight synchronization for Java" (ACM 1998).  Things are even easier for us,
59  * though, because we have a full 32 bits to work with.
60  *
61  * The two states of an Object's lock are referred to as "thin" and "fat".  A lock may transition
62  * from the "thin" state to the "fat" state and this transition is referred to as inflation. Once
63  * a lock has been inflated it remains in the "fat" state indefinitely.
64  *
65  * The lock value itself is stored in mirror::Object::monitor_ and the representation is described
66  * in the LockWord value type.
67  *
68  * Monitors provide:
69  *  - mutually exclusive access to resources
70  *  - a way for multiple threads to wait for notification
71  *
72  * In effect, they fill the role of both mutexes and condition variables.
73  *
74  * Only one thread can own the monitor at any time.  There may be several threads waiting on it
75  * (the wait call unlocks it).  One or more waiting threads may be getting interrupted or notified
76  * at any given time.
77  */
78 
79 uint32_t Monitor::lock_profiling_threshold_ = 0;
80 uint32_t Monitor::stack_dump_lock_profiling_threshold_ = 0;
81 
Init(uint32_t lock_profiling_threshold,uint32_t stack_dump_lock_profiling_threshold)82 void Monitor::Init(uint32_t lock_profiling_threshold,
83                    uint32_t stack_dump_lock_profiling_threshold) {
84   // It isn't great to always include the debug build fudge factor for command-
85   // line driven arguments, but it's easier to adjust here than in the build.
86   lock_profiling_threshold_ =
87       lock_profiling_threshold * kDebugThresholdFudgeFactor;
88   stack_dump_lock_profiling_threshold_ =
89       stack_dump_lock_profiling_threshold * kDebugThresholdFudgeFactor;
90 }
91 
Monitor(Thread * self,Thread * owner,mirror::Object * obj,int32_t hash_code)92 Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code)
93     : monitor_lock_("a monitor lock", kMonitorLock),
94       monitor_contenders_("monitor contenders", monitor_lock_),
95       num_waiters_(0),
96       owner_(owner),
97       lock_count_(0),
98       obj_(GcRoot<mirror::Object>(obj)),
99       wait_set_(nullptr),
100       hash_code_(hash_code),
101       locking_method_(nullptr),
102       locking_dex_pc_(0),
103       monitor_id_(MonitorPool::ComputeMonitorId(this, self)) {
104 #ifdef __LP64__
105   DCHECK(false) << "Should not be reached in 64b";
106   next_free_ = nullptr;
107 #endif
108   // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
109   // with the owner unlocking the thin-lock.
110   CHECK(owner == nullptr || owner == self || owner->IsSuspended());
111   // The identity hash code is set for the life time of the monitor.
112 }
113 
Monitor(Thread * self,Thread * owner,mirror::Object * obj,int32_t hash_code,MonitorId id)114 Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code,
115                  MonitorId id)
116     : monitor_lock_("a monitor lock", kMonitorLock),
117       monitor_contenders_("monitor contenders", monitor_lock_),
118       num_waiters_(0),
119       owner_(owner),
120       lock_count_(0),
121       obj_(GcRoot<mirror::Object>(obj)),
122       wait_set_(nullptr),
123       hash_code_(hash_code),
124       locking_method_(nullptr),
125       locking_dex_pc_(0),
126       monitor_id_(id) {
127 #ifdef __LP64__
128   next_free_ = nullptr;
129 #endif
130   // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
131   // with the owner unlocking the thin-lock.
132   CHECK(owner == nullptr || owner == self || owner->IsSuspended());
133   // The identity hash code is set for the life time of the monitor.
134 }
135 
GetHashCode()136 int32_t Monitor::GetHashCode() {
137   while (!HasHashCode()) {
138     if (hash_code_.CompareAndSetWeakRelaxed(0, mirror::Object::GenerateIdentityHashCode())) {
139       break;
140     }
141   }
142   DCHECK(HasHashCode());
143   return hash_code_.LoadRelaxed();
144 }
145 
Install(Thread * self)146 bool Monitor::Install(Thread* self) {
147   MutexLock mu(self, monitor_lock_);  // Uncontended mutex acquisition as monitor isn't yet public.
148   CHECK(owner_ == nullptr || owner_ == self || owner_->IsSuspended());
149   // Propagate the lock state.
150   LockWord lw(GetObject()->GetLockWord(false));
151   switch (lw.GetState()) {
152     case LockWord::kThinLocked: {
153       CHECK_EQ(owner_->GetThreadId(), lw.ThinLockOwner());
154       lock_count_ = lw.ThinLockCount();
155       break;
156     }
157     case LockWord::kHashCode: {
158       CHECK_EQ(hash_code_.LoadRelaxed(), static_cast<int32_t>(lw.GetHashCode()));
159       break;
160     }
161     case LockWord::kFatLocked: {
162       // The owner_ is suspended but another thread beat us to install a monitor.
163       return false;
164     }
165     case LockWord::kUnlocked: {
166       LOG(FATAL) << "Inflating unlocked lock word";
167       break;
168     }
169     default: {
170       LOG(FATAL) << "Invalid monitor state " << lw.GetState();
171       return false;
172     }
173   }
174   LockWord fat(this, lw.GCState());
175   // Publish the updated lock word, which may race with other threads.
176   bool success = GetObject()->CasLockWordWeakRelease(lw, fat);
177   // Lock profiling.
178   if (success && owner_ != nullptr && lock_profiling_threshold_ != 0) {
179     // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on
180     // abort.
181     locking_method_ = owner_->GetCurrentMethod(&locking_dex_pc_, false);
182     if (locking_method_ != nullptr && UNLIKELY(locking_method_->IsProxyMethod())) {
183       // Grab another frame. Proxy methods are not helpful for lock profiling. This should be rare
184       // enough that it's OK to walk the stack twice.
185       struct NextMethodVisitor FINAL : public StackVisitor {
186         explicit NextMethodVisitor(Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_)
187             : StackVisitor(thread,
188                            nullptr,
189                            StackVisitor::StackWalkKind::kIncludeInlinedFrames,
190                            false),
191               count_(0),
192               method_(nullptr),
193               dex_pc_(0) {}
194         bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
195           ArtMethod* m = GetMethod();
196           if (m->IsRuntimeMethod()) {
197             // Continue if this is a runtime method.
198             return true;
199           }
200           count_++;
201           if (count_ == 2u) {
202             method_ = m;
203             dex_pc_ = GetDexPc(false);
204             return false;
205           }
206           return true;
207         }
208         size_t count_;
209         ArtMethod* method_;
210         uint32_t dex_pc_;
211       };
212       NextMethodVisitor nmv(owner_);
213       nmv.WalkStack();
214       locking_method_ = nmv.method_;
215       locking_dex_pc_ = nmv.dex_pc_;
216     }
217     DCHECK(locking_method_ == nullptr || !locking_method_->IsProxyMethod());
218   }
219   return success;
220 }
221 
~Monitor()222 Monitor::~Monitor() {
223   // Deflated monitors have a null object.
224 }
225 
AppendToWaitSet(Thread * thread)226 void Monitor::AppendToWaitSet(Thread* thread) {
227   DCHECK(owner_ == Thread::Current());
228   DCHECK(thread != nullptr);
229   DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext();
230   if (wait_set_ == nullptr) {
231     wait_set_ = thread;
232     return;
233   }
234 
235   // push_back.
236   Thread* t = wait_set_;
237   while (t->GetWaitNext() != nullptr) {
238     t = t->GetWaitNext();
239   }
240   t->SetWaitNext(thread);
241 }
242 
RemoveFromWaitSet(Thread * thread)243 void Monitor::RemoveFromWaitSet(Thread *thread) {
244   DCHECK(owner_ == Thread::Current());
245   DCHECK(thread != nullptr);
246   if (wait_set_ == nullptr) {
247     return;
248   }
249   if (wait_set_ == thread) {
250     wait_set_ = thread->GetWaitNext();
251     thread->SetWaitNext(nullptr);
252     return;
253   }
254 
255   Thread* t = wait_set_;
256   while (t->GetWaitNext() != nullptr) {
257     if (t->GetWaitNext() == thread) {
258       t->SetWaitNext(thread->GetWaitNext());
259       thread->SetWaitNext(nullptr);
260       return;
261     }
262     t = t->GetWaitNext();
263   }
264 }
265 
SetObject(mirror::Object * object)266 void Monitor::SetObject(mirror::Object* object) {
267   obj_ = GcRoot<mirror::Object>(object);
268 }
269 
270 // Note: Adapted from CurrentMethodVisitor in thread.cc. We must not resolve here.
271 
272 struct NthCallerWithDexPcVisitor FINAL : public StackVisitor {
NthCallerWithDexPcVisitorart::FINAL273   explicit NthCallerWithDexPcVisitor(Thread* thread, size_t frame)
274       REQUIRES_SHARED(Locks::mutator_lock_)
275       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
276         method_(nullptr),
277         dex_pc_(0),
278         current_frame_number_(0),
279         wanted_frame_number_(frame) {}
VisitFrameart::FINAL280   bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
281     ArtMethod* m = GetMethod();
282     if (m == nullptr || m->IsRuntimeMethod()) {
283       // Runtime method, upcall, or resolution issue. Skip.
284       return true;
285     }
286 
287     // Is this the requested frame?
288     if (current_frame_number_ == wanted_frame_number_) {
289       method_ = m;
290       dex_pc_ = GetDexPc(false /* abort_on_error*/);
291       return false;
292     }
293 
294     // Look for more.
295     current_frame_number_++;
296     return true;
297   }
298 
299   ArtMethod* method_;
300   uint32_t dex_pc_;
301 
302  private:
303   size_t current_frame_number_;
304   const size_t wanted_frame_number_;
305 };
306 
307 // This function is inlined and just helps to not have the VLOG and ATRACE check at all the
308 // potential tracing points.
AtraceMonitorLock(Thread * self,mirror::Object * obj,bool is_wait)309 void Monitor::AtraceMonitorLock(Thread* self, mirror::Object* obj, bool is_wait) {
310   if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging) && ATRACE_ENABLED())) {
311     AtraceMonitorLockImpl(self, obj, is_wait);
312   }
313 }
314 
AtraceMonitorLockImpl(Thread * self,mirror::Object * obj,bool is_wait)315 void Monitor::AtraceMonitorLockImpl(Thread* self, mirror::Object* obj, bool is_wait) {
316   // Wait() requires a deeper call stack to be useful. Otherwise you'll see "Waiting at
317   // Object.java". Assume that we'll wait a nontrivial amount, so it's OK to do a longer
318   // stack walk than if !is_wait.
319   NthCallerWithDexPcVisitor visitor(self, is_wait ? 1U : 0U);
320   visitor.WalkStack(false);
321   const char* prefix = is_wait ? "Waiting on " : "Locking ";
322 
323   const char* filename;
324   int32_t line_number;
325   TranslateLocation(visitor.method_, visitor.dex_pc_, &filename, &line_number);
326 
327   // It would be nice to have a stable "ID" for the object here. However, the only stable thing
328   // would be the identity hashcode. But we cannot use IdentityHashcode here: For one, there are
329   // times when it is unsafe to make that call (see stack dumping for an explanation). More
330   // importantly, we would have to give up on thin-locking when adding systrace locks, as the
331   // identity hashcode is stored in the lockword normally (so can't be used with thin-locks).
332   //
333   // Because of thin-locks we also cannot use the monitor id (as there is no monitor). Monitor ids
334   // also do not have to be stable, as the monitor may be deflated.
335   std::string tmp = StringPrintf("%s %d at %s:%d",
336       prefix,
337       (obj == nullptr ? -1 : static_cast<int32_t>(reinterpret_cast<uintptr_t>(obj))),
338       (filename != nullptr ? filename : "null"),
339       line_number);
340   ATRACE_BEGIN(tmp.c_str());
341 }
342 
AtraceMonitorUnlock()343 void Monitor::AtraceMonitorUnlock() {
344   if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging))) {
345     ATRACE_END();
346   }
347 }
348 
PrettyContentionInfo(const std::string & owner_name,pid_t owner_tid,ArtMethod * owners_method,uint32_t owners_dex_pc,size_t num_waiters)349 std::string Monitor::PrettyContentionInfo(const std::string& owner_name,
350                                           pid_t owner_tid,
351                                           ArtMethod* owners_method,
352                                           uint32_t owners_dex_pc,
353                                           size_t num_waiters) {
354   Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
355   const char* owners_filename;
356   int32_t owners_line_number = 0;
357   if (owners_method != nullptr) {
358     TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number);
359   }
360   std::ostringstream oss;
361   oss << "monitor contention with owner " << owner_name << " (" << owner_tid << ")";
362   if (owners_method != nullptr) {
363     oss << " at " << owners_method->PrettyMethod();
364     oss << "(" << owners_filename << ":" << owners_line_number << ")";
365   }
366   oss << " waiters=" << num_waiters;
367   return oss.str();
368 }
369 
TryLockLocked(Thread * self)370 bool Monitor::TryLockLocked(Thread* self) {
371   if (owner_ == nullptr) {  // Unowned.
372     owner_ = self;
373     CHECK_EQ(lock_count_, 0);
374     // When debugging, save the current monitor holder for future
375     // acquisition failures to use in sampled logging.
376     if (lock_profiling_threshold_ != 0) {
377       locking_method_ = self->GetCurrentMethod(&locking_dex_pc_);
378       // We don't expect a proxy method here.
379       DCHECK(locking_method_ == nullptr || !locking_method_->IsProxyMethod());
380     }
381   } else if (owner_ == self) {  // Recursive.
382     lock_count_++;
383   } else {
384     return false;
385   }
386   AtraceMonitorLock(self, GetObject(), false /* is_wait */);
387   return true;
388 }
389 
TryLock(Thread * self)390 bool Monitor::TryLock(Thread* self) {
391   MutexLock mu(self, monitor_lock_);
392   return TryLockLocked(self);
393 }
394 
395 // Asserts that a mutex isn't held when the class comes into and out of scope.
396 class ScopedAssertNotHeld {
397  public:
ScopedAssertNotHeld(Thread * self,Mutex & mu)398   ScopedAssertNotHeld(Thread* self, Mutex& mu) : self_(self), mu_(mu) {
399     mu_.AssertNotHeld(self_);
400   }
401 
~ScopedAssertNotHeld()402   ~ScopedAssertNotHeld() {
403     mu_.AssertNotHeld(self_);
404   }
405 
406  private:
407   Thread* const self_;
408   Mutex& mu_;
409   DISALLOW_COPY_AND_ASSIGN(ScopedAssertNotHeld);
410 };
411 
412 template <LockReason reason>
Lock(Thread * self)413 void Monitor::Lock(Thread* self) {
414   ScopedAssertNotHeld sanh(self, monitor_lock_);
415   bool called_monitors_callback = false;
416   monitor_lock_.Lock(self);
417   while (true) {
418     if (TryLockLocked(self)) {
419       break;
420     }
421     // Contended.
422     const bool log_contention = (lock_profiling_threshold_ != 0);
423     uint64_t wait_start_ms = log_contention ? MilliTime() : 0;
424     ArtMethod* owners_method = locking_method_;
425     uint32_t owners_dex_pc = locking_dex_pc_;
426     // Do this before releasing the lock so that we don't get deflated.
427     size_t num_waiters = num_waiters_;
428     ++num_waiters_;
429 
430     // If systrace logging is enabled, first look at the lock owner. Acquiring the monitor's
431     // lock and then re-acquiring the mutator lock can deadlock.
432     bool started_trace = false;
433     if (ATRACE_ENABLED()) {
434       if (owner_ != nullptr) {  // Did the owner_ give the lock up?
435         std::ostringstream oss;
436         std::string name;
437         owner_->GetThreadName(name);
438         oss << PrettyContentionInfo(name,
439                                     owner_->GetTid(),
440                                     owners_method,
441                                     owners_dex_pc,
442                                     num_waiters);
443         // Add info for contending thread.
444         uint32_t pc;
445         ArtMethod* m = self->GetCurrentMethod(&pc);
446         const char* filename;
447         int32_t line_number;
448         TranslateLocation(m, pc, &filename, &line_number);
449         oss << " blocking from "
450             << ArtMethod::PrettyMethod(m) << "(" << (filename != nullptr ? filename : "null")
451             << ":" << line_number << ")";
452         ATRACE_BEGIN(oss.str().c_str());
453         started_trace = true;
454       }
455     }
456 
457     monitor_lock_.Unlock(self);  // Let go of locks in order.
458     // Call the contended locking cb once and only once. Also only call it if we are locking for
459     // the first time, not during a Wait wakeup.
460     if (reason == LockReason::kForLock && !called_monitors_callback) {
461       called_monitors_callback = true;
462       Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocking(this);
463     }
464     self->SetMonitorEnterObject(GetObject());
465     {
466       ScopedThreadSuspension tsc(self, kBlocked);  // Change to blocked and give up mutator_lock_.
467       uint32_t original_owner_thread_id = 0u;
468       {
469         // Reacquire monitor_lock_ without mutator_lock_ for Wait.
470         MutexLock mu2(self, monitor_lock_);
471         if (owner_ != nullptr) {  // Did the owner_ give the lock up?
472           original_owner_thread_id = owner_->GetThreadId();
473           monitor_contenders_.Wait(self);  // Still contended so wait.
474         }
475       }
476       if (original_owner_thread_id != 0u) {
477         // Woken from contention.
478         if (log_contention) {
479           uint64_t wait_ms = MilliTime() - wait_start_ms;
480           uint32_t sample_percent;
481           if (wait_ms >= lock_profiling_threshold_) {
482             sample_percent = 100;
483           } else {
484             sample_percent = 100 * wait_ms / lock_profiling_threshold_;
485           }
486           if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
487             // Reacquire mutator_lock_ for logging.
488             ScopedObjectAccess soa(self);
489 
490             bool owner_alive = false;
491             pid_t original_owner_tid = 0;
492             std::string original_owner_name;
493 
494             const bool should_dump_stacks = stack_dump_lock_profiling_threshold_ > 0 &&
495                 wait_ms > stack_dump_lock_profiling_threshold_;
496             std::string owner_stack_dump;
497 
498             // Acquire thread-list lock to find thread and keep it from dying until we've got all
499             // the info we need.
500             {
501               Locks::thread_list_lock_->ExclusiveLock(Thread::Current());
502 
503               // Re-find the owner in case the thread got killed.
504               Thread* original_owner = Runtime::Current()->GetThreadList()->FindThreadByThreadId(
505                   original_owner_thread_id);
506 
507               if (original_owner != nullptr) {
508                 owner_alive = true;
509                 original_owner_tid = original_owner->GetTid();
510                 original_owner->GetThreadName(original_owner_name);
511 
512                 if (should_dump_stacks) {
513                   // Very long contention. Dump stacks.
514                   struct CollectStackTrace : public Closure {
515                     void Run(art::Thread* thread) OVERRIDE
516                         REQUIRES_SHARED(art::Locks::mutator_lock_) {
517                       thread->DumpJavaStack(oss);
518                     }
519 
520                     std::ostringstream oss;
521                   };
522                   CollectStackTrace owner_trace;
523                   // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its
524                   // execution.
525                   original_owner->RequestSynchronousCheckpoint(&owner_trace);
526                   owner_stack_dump = owner_trace.oss.str();
527                 } else {
528                   Locks::thread_list_lock_->ExclusiveUnlock(Thread::Current());
529                 }
530               } else {
531                 Locks::thread_list_lock_->ExclusiveUnlock(Thread::Current());
532               }
533               // This is all the data we need. Now drop the thread-list lock, it's OK for the
534               // owner to go away now.
535             }
536 
537             // If we found the owner (and thus have owner data), go and log now.
538             if (owner_alive) {
539               // Give the detailed traces for really long contention.
540               if (should_dump_stacks) {
541                 // This must be here (and not above) because we cannot hold the thread-list lock
542                 // while running the checkpoint.
543                 std::ostringstream self_trace_oss;
544                 self->DumpJavaStack(self_trace_oss);
545 
546                 uint32_t pc;
547                 ArtMethod* m = self->GetCurrentMethod(&pc);
548 
549                 LOG(WARNING) << "Long "
550                     << PrettyContentionInfo(original_owner_name,
551                                             original_owner_tid,
552                                             owners_method,
553                                             owners_dex_pc,
554                                             num_waiters)
555                     << " in " << ArtMethod::PrettyMethod(m) << " for "
556                     << PrettyDuration(MsToNs(wait_ms)) << "\n"
557                     << "Current owner stack:\n" << owner_stack_dump
558                     << "Contender stack:\n" << self_trace_oss.str();
559               } else if (wait_ms > kLongWaitMs && owners_method != nullptr) {
560                 uint32_t pc;
561                 ArtMethod* m = self->GetCurrentMethod(&pc);
562                 // TODO: We should maybe check that original_owner is still a live thread.
563                 LOG(WARNING) << "Long "
564                     << PrettyContentionInfo(original_owner_name,
565                                             original_owner_tid,
566                                             owners_method,
567                                             owners_dex_pc,
568                                             num_waiters)
569                     << " in " << ArtMethod::PrettyMethod(m) << " for "
570                     << PrettyDuration(MsToNs(wait_ms));
571               }
572               LogContentionEvent(self,
573                                 wait_ms,
574                                 sample_percent,
575                                 owners_method,
576                                 owners_dex_pc);
577             }
578           }
579         }
580       }
581     }
582     if (started_trace) {
583       ATRACE_END();
584     }
585     self->SetMonitorEnterObject(nullptr);
586     monitor_lock_.Lock(self);  // Reacquire locks in order.
587     --num_waiters_;
588   }
589   monitor_lock_.Unlock(self);
590   // We need to pair this with a single contended locking call. NB we match the RI behavior and call
591   // this even if MonitorEnter failed.
592   if (called_monitors_callback) {
593     CHECK(reason == LockReason::kForLock);
594     Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this);
595   }
596 }
597 
598 template void Monitor::Lock<LockReason::kForLock>(Thread* self);
599 template void Monitor::Lock<LockReason::kForWait>(Thread* self);
600 
601 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
602                                               __attribute__((format(printf, 1, 2)));
603 
ThrowIllegalMonitorStateExceptionF(const char * fmt,...)604 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
605     REQUIRES_SHARED(Locks::mutator_lock_) {
606   va_list args;
607   va_start(args, fmt);
608   Thread* self = Thread::Current();
609   self->ThrowNewExceptionV("Ljava/lang/IllegalMonitorStateException;", fmt, args);
610   if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) {
611     std::ostringstream ss;
612     self->Dump(ss);
613     LOG(Runtime::Current()->IsStarted() ? ::android::base::INFO : ::android::base::ERROR)
614         << self->GetException()->Dump() << "\n" << ss.str();
615   }
616   va_end(args);
617 }
618 
ThreadToString(Thread * thread)619 static std::string ThreadToString(Thread* thread) {
620   if (thread == nullptr) {
621     return "nullptr";
622   }
623   std::ostringstream oss;
624   // TODO: alternatively, we could just return the thread's name.
625   oss << *thread;
626   return oss.str();
627 }
628 
FailedUnlock(mirror::Object * o,uint32_t expected_owner_thread_id,uint32_t found_owner_thread_id,Monitor * monitor)629 void Monitor::FailedUnlock(mirror::Object* o,
630                            uint32_t expected_owner_thread_id,
631                            uint32_t found_owner_thread_id,
632                            Monitor* monitor) {
633   // Acquire thread list lock so threads won't disappear from under us.
634   std::string current_owner_string;
635   std::string expected_owner_string;
636   std::string found_owner_string;
637   uint32_t current_owner_thread_id = 0u;
638   {
639     MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
640     ThreadList* const thread_list = Runtime::Current()->GetThreadList();
641     Thread* expected_owner = thread_list->FindThreadByThreadId(expected_owner_thread_id);
642     Thread* found_owner = thread_list->FindThreadByThreadId(found_owner_thread_id);
643 
644     // Re-read owner now that we hold lock.
645     Thread* current_owner = (monitor != nullptr) ? monitor->GetOwner() : nullptr;
646     if (current_owner != nullptr) {
647       current_owner_thread_id = current_owner->GetThreadId();
648     }
649     // Get short descriptions of the threads involved.
650     current_owner_string = ThreadToString(current_owner);
651     expected_owner_string = expected_owner != nullptr ? ThreadToString(expected_owner) : "unnamed";
652     found_owner_string = found_owner != nullptr ? ThreadToString(found_owner) : "unnamed";
653   }
654 
655   if (current_owner_thread_id == 0u) {
656     if (found_owner_thread_id == 0u) {
657       ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
658                                          " on thread '%s'",
659                                          mirror::Object::PrettyTypeOf(o).c_str(),
660                                          expected_owner_string.c_str());
661     } else {
662       // Race: the original read found an owner but now there is none
663       ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
664                                          " (where now the monitor appears unowned) on thread '%s'",
665                                          found_owner_string.c_str(),
666                                          mirror::Object::PrettyTypeOf(o).c_str(),
667                                          expected_owner_string.c_str());
668     }
669   } else {
670     if (found_owner_thread_id == 0u) {
671       // Race: originally there was no owner, there is now
672       ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
673                                          " (originally believed to be unowned) on thread '%s'",
674                                          current_owner_string.c_str(),
675                                          mirror::Object::PrettyTypeOf(o).c_str(),
676                                          expected_owner_string.c_str());
677     } else {
678       if (found_owner_thread_id != current_owner_thread_id) {
679         // Race: originally found and current owner have changed
680         ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
681                                            " owned by '%s') on object of type '%s' on thread '%s'",
682                                            found_owner_string.c_str(),
683                                            current_owner_string.c_str(),
684                                            mirror::Object::PrettyTypeOf(o).c_str(),
685                                            expected_owner_string.c_str());
686       } else {
687         ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
688                                            " on thread '%s",
689                                            current_owner_string.c_str(),
690                                            mirror::Object::PrettyTypeOf(o).c_str(),
691                                            expected_owner_string.c_str());
692       }
693     }
694   }
695 }
696 
Unlock(Thread * self)697 bool Monitor::Unlock(Thread* self) {
698   DCHECK(self != nullptr);
699   uint32_t owner_thread_id = 0u;
700   {
701     MutexLock mu(self, monitor_lock_);
702     Thread* owner = owner_;
703     if (owner != nullptr) {
704       owner_thread_id = owner->GetThreadId();
705     }
706     if (owner == self) {
707       // We own the monitor, so nobody else can be in here.
708       AtraceMonitorUnlock();
709       if (lock_count_ == 0) {
710         owner_ = nullptr;
711         locking_method_ = nullptr;
712         locking_dex_pc_ = 0;
713         // Wake a contender.
714         monitor_contenders_.Signal(self);
715       } else {
716         --lock_count_;
717       }
718       return true;
719     }
720   }
721   // We don't own this, so we're not allowed to unlock it.
722   // The JNI spec says that we should throw IllegalMonitorStateException in this case.
723   FailedUnlock(GetObject(), self->GetThreadId(), owner_thread_id, this);
724   return false;
725 }
726 
Wait(Thread * self,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)727 void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
728                    bool interruptShouldThrow, ThreadState why) {
729   DCHECK(self != nullptr);
730   DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping);
731 
732   monitor_lock_.Lock(self);
733 
734   // Make sure that we hold the lock.
735   if (owner_ != self) {
736     monitor_lock_.Unlock(self);
737     ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
738     return;
739   }
740 
741   // We need to turn a zero-length timed wait into a regular wait because
742   // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
743   if (why == kTimedWaiting && (ms == 0 && ns == 0)) {
744     why = kWaiting;
745   }
746 
747   // Enforce the timeout range.
748   if (ms < 0 || ns < 0 || ns > 999999) {
749     monitor_lock_.Unlock(self);
750     self->ThrowNewExceptionF("Ljava/lang/IllegalArgumentException;",
751                              "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns);
752     return;
753   }
754 
755   /*
756    * Add ourselves to the set of threads waiting on this monitor, and
757    * release our hold.  We need to let it go even if we're a few levels
758    * deep in a recursive lock, and we need to restore that later.
759    *
760    * We append to the wait set ahead of clearing the count and owner
761    * fields so the subroutine can check that the calling thread owns
762    * the monitor.  Aside from that, the order of member updates is
763    * not order sensitive as we hold the pthread mutex.
764    */
765   AppendToWaitSet(self);
766   ++num_waiters_;
767   int prev_lock_count = lock_count_;
768   lock_count_ = 0;
769   owner_ = nullptr;
770   ArtMethod* saved_method = locking_method_;
771   locking_method_ = nullptr;
772   uintptr_t saved_dex_pc = locking_dex_pc_;
773   locking_dex_pc_ = 0;
774 
775   AtraceMonitorUnlock();  // For the implict Unlock() just above. This will only end the deepest
776                           // nesting, but that is enough for the visualization, and corresponds to
777                           // the single Lock() we do afterwards.
778   AtraceMonitorLock(self, GetObject(), true /* is_wait */);
779 
780   bool was_interrupted = false;
781   bool timed_out = false;
782   {
783     // Update thread state. If the GC wakes up, it'll ignore us, knowing
784     // that we won't touch any references in this state, and we'll check
785     // our suspend mode before we transition out.
786     ScopedThreadSuspension sts(self, why);
787 
788     // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
789     MutexLock mu(self, *self->GetWaitMutex());
790 
791     // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
792     // non-null a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
793     // up.
794     DCHECK(self->GetWaitMonitor() == nullptr);
795     self->SetWaitMonitor(this);
796 
797     // Release the monitor lock.
798     monitor_contenders_.Signal(self);
799     monitor_lock_.Unlock(self);
800 
801     // Handle the case where the thread was interrupted before we called wait().
802     if (self->IsInterrupted()) {
803       was_interrupted = true;
804     } else {
805       // Wait for a notification or a timeout to occur.
806       if (why == kWaiting) {
807         self->GetWaitConditionVariable()->Wait(self);
808       } else {
809         DCHECK(why == kTimedWaiting || why == kSleeping) << why;
810         timed_out = self->GetWaitConditionVariable()->TimedWait(self, ms, ns);
811       }
812       was_interrupted = self->IsInterrupted();
813     }
814   }
815 
816   {
817     // We reset the thread's wait_monitor_ field after transitioning back to runnable so
818     // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
819     // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
820     // are waiting on "null".)
821     MutexLock mu(self, *self->GetWaitMutex());
822     DCHECK(self->GetWaitMonitor() != nullptr);
823     self->SetWaitMonitor(nullptr);
824   }
825 
826   // Allocate the interrupted exception not holding the monitor lock since it may cause a GC.
827   // If the GC requires acquiring the monitor for enqueuing cleared references, this would
828   // cause a deadlock if the monitor is held.
829   if (was_interrupted && interruptShouldThrow) {
830     /*
831      * We were interrupted while waiting, or somebody interrupted an
832      * un-interruptible thread earlier and we're bailing out immediately.
833      *
834      * The doc sayeth: "The interrupted status of the current thread is
835      * cleared when this exception is thrown."
836      */
837     self->SetInterrupted(false);
838     self->ThrowNewException("Ljava/lang/InterruptedException;", nullptr);
839   }
840 
841   AtraceMonitorUnlock();  // End Wait().
842 
843   // We just slept, tell the runtime callbacks about this.
844   Runtime::Current()->GetRuntimeCallbacks()->MonitorWaitFinished(this, timed_out);
845 
846   // Re-acquire the monitor and lock.
847   Lock<LockReason::kForWait>(self);
848   monitor_lock_.Lock(self);
849   self->GetWaitMutex()->AssertNotHeld(self);
850 
851   /*
852    * We remove our thread from wait set after restoring the count
853    * and owner fields so the subroutine can check that the calling
854    * thread owns the monitor. Aside from that, the order of member
855    * updates is not order sensitive as we hold the pthread mutex.
856    */
857   owner_ = self;
858   lock_count_ = prev_lock_count;
859   locking_method_ = saved_method;
860   locking_dex_pc_ = saved_dex_pc;
861   --num_waiters_;
862   RemoveFromWaitSet(self);
863 
864   monitor_lock_.Unlock(self);
865 }
866 
Notify(Thread * self)867 void Monitor::Notify(Thread* self) {
868   DCHECK(self != nullptr);
869   MutexLock mu(self, monitor_lock_);
870   // Make sure that we hold the lock.
871   if (owner_ != self) {
872     ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
873     return;
874   }
875   // Signal the first waiting thread in the wait set.
876   while (wait_set_ != nullptr) {
877     Thread* thread = wait_set_;
878     wait_set_ = thread->GetWaitNext();
879     thread->SetWaitNext(nullptr);
880 
881     // Check to see if the thread is still waiting.
882     MutexLock wait_mu(self, *thread->GetWaitMutex());
883     if (thread->GetWaitMonitor() != nullptr) {
884       thread->GetWaitConditionVariable()->Signal(self);
885       return;
886     }
887   }
888 }
889 
NotifyAll(Thread * self)890 void Monitor::NotifyAll(Thread* self) {
891   DCHECK(self != nullptr);
892   MutexLock mu(self, monitor_lock_);
893   // Make sure that we hold the lock.
894   if (owner_ != self) {
895     ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
896     return;
897   }
898   // Signal all threads in the wait set.
899   while (wait_set_ != nullptr) {
900     Thread* thread = wait_set_;
901     wait_set_ = thread->GetWaitNext();
902     thread->SetWaitNext(nullptr);
903     thread->Notify();
904   }
905 }
906 
Deflate(Thread * self,mirror::Object * obj)907 bool Monitor::Deflate(Thread* self, mirror::Object* obj) {
908   DCHECK(obj != nullptr);
909   // Don't need volatile since we only deflate with mutators suspended.
910   LockWord lw(obj->GetLockWord(false));
911   // If the lock isn't an inflated monitor, then we don't need to deflate anything.
912   if (lw.GetState() == LockWord::kFatLocked) {
913     Monitor* monitor = lw.FatLockMonitor();
914     DCHECK(monitor != nullptr);
915     MutexLock mu(self, monitor->monitor_lock_);
916     // Can't deflate if we have anybody waiting on the CV.
917     if (monitor->num_waiters_ > 0) {
918       return false;
919     }
920     Thread* owner = monitor->owner_;
921     if (owner != nullptr) {
922       // Can't deflate if we are locked and have a hash code.
923       if (monitor->HasHashCode()) {
924         return false;
925       }
926       // Can't deflate if our lock count is too high.
927       if (static_cast<uint32_t>(monitor->lock_count_) > LockWord::kThinLockMaxCount) {
928         return false;
929       }
930       // Deflate to a thin lock.
931       LockWord new_lw = LockWord::FromThinLockId(owner->GetThreadId(),
932                                                  monitor->lock_count_,
933                                                  lw.GCState());
934       // Assume no concurrent read barrier state changes as mutators are suspended.
935       obj->SetLockWord(new_lw, false);
936       VLOG(monitor) << "Deflated " << obj << " to thin lock " << owner->GetTid() << " / "
937           << monitor->lock_count_;
938     } else if (monitor->HasHashCode()) {
939       LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.GCState());
940       // Assume no concurrent read barrier state changes as mutators are suspended.
941       obj->SetLockWord(new_lw, false);
942       VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode();
943     } else {
944       // No lock and no hash, just put an empty lock word inside the object.
945       LockWord new_lw = LockWord::FromDefault(lw.GCState());
946       // Assume no concurrent read barrier state changes as mutators are suspended.
947       obj->SetLockWord(new_lw, false);
948       VLOG(monitor) << "Deflated" << obj << " to empty lock word";
949     }
950     // The monitor is deflated, mark the object as null so that we know to delete it during the
951     // next GC.
952     monitor->obj_ = GcRoot<mirror::Object>(nullptr);
953   }
954   return true;
955 }
956 
Inflate(Thread * self,Thread * owner,mirror::Object * obj,int32_t hash_code)957 void Monitor::Inflate(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) {
958   DCHECK(self != nullptr);
959   DCHECK(obj != nullptr);
960   // Allocate and acquire a new monitor.
961   Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code);
962   DCHECK(m != nullptr);
963   if (m->Install(self)) {
964     if (owner != nullptr) {
965       VLOG(monitor) << "monitor: thread" << owner->GetThreadId()
966           << " created monitor " << m << " for object " << obj;
967     } else {
968       VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code
969           << " created monitor " << m << " for object " << obj;
970     }
971     Runtime::Current()->GetMonitorList()->Add(m);
972     CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked);
973   } else {
974     MonitorPool::ReleaseMonitor(self, m);
975   }
976 }
977 
InflateThinLocked(Thread * self,Handle<mirror::Object> obj,LockWord lock_word,uint32_t hash_code)978 void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word,
979                                 uint32_t hash_code) {
980   DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked);
981   uint32_t owner_thread_id = lock_word.ThinLockOwner();
982   if (owner_thread_id == self->GetThreadId()) {
983     // We own the monitor, we can easily inflate it.
984     Inflate(self, self, obj.Get(), hash_code);
985   } else {
986     ThreadList* thread_list = Runtime::Current()->GetThreadList();
987     // Suspend the owner, inflate. First change to blocked and give up mutator_lock_.
988     self->SetMonitorEnterObject(obj.Get());
989     bool timed_out;
990     Thread* owner;
991     {
992       ScopedThreadSuspension sts(self, kWaitingForLockInflation);
993       owner = thread_list->SuspendThreadByThreadId(owner_thread_id,
994                                                    SuspendReason::kInternal,
995                                                    &timed_out);
996     }
997     if (owner != nullptr) {
998       // We succeeded in suspending the thread, check the lock's status didn't change.
999       lock_word = obj->GetLockWord(true);
1000       if (lock_word.GetState() == LockWord::kThinLocked &&
1001           lock_word.ThinLockOwner() == owner_thread_id) {
1002         // Go ahead and inflate the lock.
1003         Inflate(self, owner, obj.Get(), hash_code);
1004       }
1005       bool resumed = thread_list->Resume(owner, SuspendReason::kInternal);
1006       DCHECK(resumed);
1007     }
1008     self->SetMonitorEnterObject(nullptr);
1009   }
1010 }
1011 
1012 // Fool annotalysis into thinking that the lock on obj is acquired.
FakeLock(mirror::Object * obj)1013 static mirror::Object* FakeLock(mirror::Object* obj)
1014     EXCLUSIVE_LOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
1015   return obj;
1016 }
1017 
1018 // Fool annotalysis into thinking that the lock on obj is release.
FakeUnlock(mirror::Object * obj)1019 static mirror::Object* FakeUnlock(mirror::Object* obj)
1020     UNLOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
1021   return obj;
1022 }
1023 
MonitorEnter(Thread * self,mirror::Object * obj,bool trylock)1024 mirror::Object* Monitor::MonitorEnter(Thread* self, mirror::Object* obj, bool trylock) {
1025   DCHECK(self != nullptr);
1026   DCHECK(obj != nullptr);
1027   self->AssertThreadSuspensionIsAllowable();
1028   obj = FakeLock(obj);
1029   uint32_t thread_id = self->GetThreadId();
1030   size_t contention_count = 0;
1031   StackHandleScope<1> hs(self);
1032   Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1033   while (true) {
1034     // We initially read the lockword with ordinary Java/relaxed semantics. When stronger
1035     // semantics are needed, we address it below. Since GetLockWord bottoms out to a relaxed load,
1036     // we can fix it later, in an infrequently executed case, with a fence.
1037     LockWord lock_word = h_obj->GetLockWord(false);
1038     switch (lock_word.GetState()) {
1039       case LockWord::kUnlocked: {
1040         // No ordering required for preceding lockword read, since we retest.
1041         LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.GCState()));
1042         if (h_obj->CasLockWordWeakAcquire(lock_word, thin_locked)) {
1043           AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */);
1044           return h_obj.Get();  // Success!
1045         }
1046         continue;  // Go again.
1047       }
1048       case LockWord::kThinLocked: {
1049         uint32_t owner_thread_id = lock_word.ThinLockOwner();
1050         if (owner_thread_id == thread_id) {
1051           // No ordering required for initial lockword read.
1052           // We own the lock, increase the recursion count.
1053           uint32_t new_count = lock_word.ThinLockCount() + 1;
1054           if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) {
1055             LockWord thin_locked(LockWord::FromThinLockId(thread_id,
1056                                                           new_count,
1057                                                           lock_word.GCState()));
1058             // Only this thread pays attention to the count. Thus there is no need for stronger
1059             // than relaxed memory ordering.
1060             if (!kUseReadBarrier) {
1061               h_obj->SetLockWord(thin_locked, false /* volatile */);
1062               AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */);
1063               return h_obj.Get();  // Success!
1064             } else {
1065               // Use CAS to preserve the read barrier state.
1066               if (h_obj->CasLockWordWeakRelaxed(lock_word, thin_locked)) {
1067                 AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */);
1068                 return h_obj.Get();  // Success!
1069               }
1070             }
1071             continue;  // Go again.
1072           } else {
1073             // We'd overflow the recursion count, so inflate the monitor.
1074             InflateThinLocked(self, h_obj, lock_word, 0);
1075           }
1076         } else {
1077           if (trylock) {
1078             return nullptr;
1079           }
1080           // Contention.
1081           contention_count++;
1082           Runtime* runtime = Runtime::Current();
1083           if (contention_count <= runtime->GetMaxSpinsBeforeThinLockInflation()) {
1084             // TODO: Consider switching the thread state to kWaitingForLockInflation when we are
1085             // yielding.  Use sched_yield instead of NanoSleep since NanoSleep can wait much longer
1086             // than the parameter you pass in. This can cause thread suspension to take excessively
1087             // long and make long pauses. See b/16307460.
1088             // TODO: We should literally spin first, without sched_yield. Sched_yield either does
1089             // nothing (at significant expense), or guarantees that we wait at least microseconds.
1090             // If the owner is running, I would expect the median lock hold time to be hundreds
1091             // of nanoseconds or less.
1092             sched_yield();
1093           } else {
1094             contention_count = 0;
1095             // No ordering required for initial lockword read. Install rereads it anyway.
1096             InflateThinLocked(self, h_obj, lock_word, 0);
1097           }
1098         }
1099         continue;  // Start from the beginning.
1100       }
1101       case LockWord::kFatLocked: {
1102         // We should have done an acquire read of the lockword initially, to ensure
1103         // visibility of the monitor data structure. Use an explicit fence instead.
1104         QuasiAtomic::ThreadFenceAcquire();
1105         Monitor* mon = lock_word.FatLockMonitor();
1106         if (trylock) {
1107           return mon->TryLock(self) ? h_obj.Get() : nullptr;
1108         } else {
1109           mon->Lock(self);
1110           return h_obj.Get();  // Success!
1111         }
1112       }
1113       case LockWord::kHashCode:
1114         // Inflate with the existing hashcode.
1115         // Again no ordering required for initial lockword read, since we don't rely
1116         // on the visibility of any prior computation.
1117         Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode());
1118         continue;  // Start from the beginning.
1119       default: {
1120         LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1121         UNREACHABLE();
1122       }
1123     }
1124   }
1125 }
1126 
MonitorExit(Thread * self,mirror::Object * obj)1127 bool Monitor::MonitorExit(Thread* self, mirror::Object* obj) {
1128   DCHECK(self != nullptr);
1129   DCHECK(obj != nullptr);
1130   self->AssertThreadSuspensionIsAllowable();
1131   obj = FakeUnlock(obj);
1132   StackHandleScope<1> hs(self);
1133   Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1134   while (true) {
1135     LockWord lock_word = obj->GetLockWord(true);
1136     switch (lock_word.GetState()) {
1137       case LockWord::kHashCode:
1138         // Fall-through.
1139       case LockWord::kUnlocked:
1140         FailedUnlock(h_obj.Get(), self->GetThreadId(), 0u, nullptr);
1141         return false;  // Failure.
1142       case LockWord::kThinLocked: {
1143         uint32_t thread_id = self->GetThreadId();
1144         uint32_t owner_thread_id = lock_word.ThinLockOwner();
1145         if (owner_thread_id != thread_id) {
1146           FailedUnlock(h_obj.Get(), thread_id, owner_thread_id, nullptr);
1147           return false;  // Failure.
1148         } else {
1149           // We own the lock, decrease the recursion count.
1150           LockWord new_lw = LockWord::Default();
1151           if (lock_word.ThinLockCount() != 0) {
1152             uint32_t new_count = lock_word.ThinLockCount() - 1;
1153             new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.GCState());
1154           } else {
1155             new_lw = LockWord::FromDefault(lock_word.GCState());
1156           }
1157           if (!kUseReadBarrier) {
1158             DCHECK_EQ(new_lw.ReadBarrierState(), 0U);
1159             // TODO: This really only needs memory_order_release, but we currently have
1160             // no way to specify that. In fact there seem to be no legitimate uses of SetLockWord
1161             // with a final argument of true. This slows down x86 and ARMv7, but probably not v8.
1162             h_obj->SetLockWord(new_lw, true);
1163             AtraceMonitorUnlock();
1164             // Success!
1165             return true;
1166           } else {
1167             // Use CAS to preserve the read barrier state.
1168             if (h_obj->CasLockWordWeakRelease(lock_word, new_lw)) {
1169               AtraceMonitorUnlock();
1170               // Success!
1171               return true;
1172             }
1173           }
1174           continue;  // Go again.
1175         }
1176       }
1177       case LockWord::kFatLocked: {
1178         Monitor* mon = lock_word.FatLockMonitor();
1179         return mon->Unlock(self);
1180       }
1181       default: {
1182         LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1183         return false;
1184       }
1185     }
1186   }
1187 }
1188 
Wait(Thread * self,mirror::Object * obj,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)1189 void Monitor::Wait(Thread* self, mirror::Object *obj, int64_t ms, int32_t ns,
1190                    bool interruptShouldThrow, ThreadState why) {
1191   DCHECK(self != nullptr);
1192   DCHECK(obj != nullptr);
1193   StackHandleScope<1> hs(self);
1194   Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1195 
1196   Runtime::Current()->GetRuntimeCallbacks()->ObjectWaitStart(h_obj, ms);
1197   if (UNLIKELY(self->ObserveAsyncException() || self->IsExceptionPending())) {
1198     // See b/65558434 for information on handling of exceptions here.
1199     return;
1200   }
1201 
1202   LockWord lock_word = h_obj->GetLockWord(true);
1203   while (lock_word.GetState() != LockWord::kFatLocked) {
1204     switch (lock_word.GetState()) {
1205       case LockWord::kHashCode:
1206         // Fall-through.
1207       case LockWord::kUnlocked:
1208         ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
1209         return;  // Failure.
1210       case LockWord::kThinLocked: {
1211         uint32_t thread_id = self->GetThreadId();
1212         uint32_t owner_thread_id = lock_word.ThinLockOwner();
1213         if (owner_thread_id != thread_id) {
1214           ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
1215           return;  // Failure.
1216         } else {
1217           // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so
1218           // re-load.
1219           Inflate(self, self, h_obj.Get(), 0);
1220           lock_word = h_obj->GetLockWord(true);
1221         }
1222         break;
1223       }
1224       case LockWord::kFatLocked:  // Unreachable given the loop condition above. Fall-through.
1225       default: {
1226         LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1227         return;
1228       }
1229     }
1230   }
1231   Monitor* mon = lock_word.FatLockMonitor();
1232   mon->Wait(self, ms, ns, interruptShouldThrow, why);
1233 }
1234 
DoNotify(Thread * self,mirror::Object * obj,bool notify_all)1235 void Monitor::DoNotify(Thread* self, mirror::Object* obj, bool notify_all) {
1236   DCHECK(self != nullptr);
1237   DCHECK(obj != nullptr);
1238   LockWord lock_word = obj->GetLockWord(true);
1239   switch (lock_word.GetState()) {
1240     case LockWord::kHashCode:
1241       // Fall-through.
1242     case LockWord::kUnlocked:
1243       ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
1244       return;  // Failure.
1245     case LockWord::kThinLocked: {
1246       uint32_t thread_id = self->GetThreadId();
1247       uint32_t owner_thread_id = lock_word.ThinLockOwner();
1248       if (owner_thread_id != thread_id) {
1249         ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
1250         return;  // Failure.
1251       } else {
1252         // We own the lock but there's no Monitor and therefore no waiters.
1253         return;  // Success.
1254       }
1255     }
1256     case LockWord::kFatLocked: {
1257       Monitor* mon = lock_word.FatLockMonitor();
1258       if (notify_all) {
1259         mon->NotifyAll(self);
1260       } else {
1261         mon->Notify(self);
1262       }
1263       return;  // Success.
1264     }
1265     default: {
1266       LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1267       return;
1268     }
1269   }
1270 }
1271 
GetLockOwnerThreadId(mirror::Object * obj)1272 uint32_t Monitor::GetLockOwnerThreadId(mirror::Object* obj) {
1273   DCHECK(obj != nullptr);
1274   LockWord lock_word = obj->GetLockWord(true);
1275   switch (lock_word.GetState()) {
1276     case LockWord::kHashCode:
1277       // Fall-through.
1278     case LockWord::kUnlocked:
1279       return ThreadList::kInvalidThreadId;
1280     case LockWord::kThinLocked:
1281       return lock_word.ThinLockOwner();
1282     case LockWord::kFatLocked: {
1283       Monitor* mon = lock_word.FatLockMonitor();
1284       return mon->GetOwnerThreadId();
1285     }
1286     default: {
1287       LOG(FATAL) << "Unreachable";
1288       UNREACHABLE();
1289     }
1290   }
1291 }
1292 
FetchState(const Thread * thread,mirror::Object ** monitor_object,uint32_t * lock_owner_tid)1293 ThreadState Monitor::FetchState(const Thread* thread,
1294                                 /* out */ mirror::Object** monitor_object,
1295                                 /* out */ uint32_t* lock_owner_tid) {
1296   DCHECK(monitor_object != nullptr);
1297   DCHECK(lock_owner_tid != nullptr);
1298 
1299   *monitor_object = nullptr;
1300   *lock_owner_tid = ThreadList::kInvalidThreadId;
1301 
1302   ThreadState state = thread->GetState();
1303 
1304   switch (state) {
1305     case kWaiting:
1306     case kTimedWaiting:
1307     case kSleeping:
1308     {
1309       Thread* self = Thread::Current();
1310       MutexLock mu(self, *thread->GetWaitMutex());
1311       Monitor* monitor = thread->GetWaitMonitor();
1312       if (monitor != nullptr) {
1313         *monitor_object = monitor->GetObject();
1314       }
1315     }
1316     break;
1317 
1318     case kBlocked:
1319     case kWaitingForLockInflation:
1320     {
1321       mirror::Object* lock_object = thread->GetMonitorEnterObject();
1322       if (lock_object != nullptr) {
1323         if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
1324           // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
1325           // may have not been flipped yet and "pretty_object" may be a from-space (stale) ref, in
1326           // which case the GetLockOwnerThreadId() call below will crash. So explicitly mark/forward
1327           // it here.
1328           lock_object = ReadBarrier::Mark(lock_object);
1329         }
1330         *monitor_object = lock_object;
1331         *lock_owner_tid = lock_object->GetLockOwnerThreadId();
1332       }
1333     }
1334     break;
1335 
1336     default:
1337       break;
1338   }
1339 
1340   return state;
1341 }
1342 
GetContendedMonitor(Thread * thread)1343 mirror::Object* Monitor::GetContendedMonitor(Thread* thread) {
1344   // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
1345   // definition of contended that includes a monitor a thread is trying to enter...
1346   mirror::Object* result = thread->GetMonitorEnterObject();
1347   if (result == nullptr) {
1348     // ...but also a monitor that the thread is waiting on.
1349     MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
1350     Monitor* monitor = thread->GetWaitMonitor();
1351     if (monitor != nullptr) {
1352       result = monitor->GetObject();
1353     }
1354   }
1355   return result;
1356 }
1357 
VisitLocks(StackVisitor * stack_visitor,void (* callback)(mirror::Object *,void *),void * callback_context,bool abort_on_failure)1358 void Monitor::VisitLocks(StackVisitor* stack_visitor, void (*callback)(mirror::Object*, void*),
1359                          void* callback_context, bool abort_on_failure) {
1360   ArtMethod* m = stack_visitor->GetMethod();
1361   CHECK(m != nullptr);
1362 
1363   // Native methods are an easy special case.
1364   // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
1365   if (m->IsNative()) {
1366     if (m->IsSynchronized()) {
1367       mirror::Object* jni_this =
1368           stack_visitor->GetCurrentHandleScope(sizeof(void*))->GetReference(0);
1369       callback(jni_this, callback_context);
1370     }
1371     return;
1372   }
1373 
1374   // Proxy methods should not be synchronized.
1375   if (m->IsProxyMethod()) {
1376     CHECK(!m->IsSynchronized());
1377     return;
1378   }
1379 
1380   // Is there any reason to believe there's any synchronization in this method?
1381   CHECK(m->GetCodeItem() != nullptr) << m->PrettyMethod();
1382   CodeItemDataAccessor accessor(m->DexInstructionData());
1383   if (accessor.TriesSize() == 0) {
1384     return;  // No "tries" implies no synchronization, so no held locks to report.
1385   }
1386 
1387   // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot
1388   // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an
1389   // inconsistent stack anyways.
1390   uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure);
1391   if (!abort_on_failure && dex_pc == dex::kDexNoIndex) {
1392     LOG(ERROR) << "Could not find dex_pc for " << m->PrettyMethod();
1393     return;
1394   }
1395 
1396   // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
1397   // the locks held in this stack frame.
1398   std::vector<verifier::MethodVerifier::DexLockInfo> monitor_enter_dex_pcs;
1399   verifier::MethodVerifier::FindLocksAtDexPc(m, dex_pc, &monitor_enter_dex_pcs);
1400   for (verifier::MethodVerifier::DexLockInfo& dex_lock_info : monitor_enter_dex_pcs) {
1401     // As a debug check, check that dex PC corresponds to a monitor-enter.
1402     if (kIsDebugBuild) {
1403       const Instruction& monitor_enter_instruction = accessor.InstructionAt(dex_lock_info.dex_pc);
1404       CHECK_EQ(monitor_enter_instruction.Opcode(), Instruction::MONITOR_ENTER)
1405           << "expected monitor-enter @" << dex_lock_info.dex_pc << "; was "
1406           << reinterpret_cast<const void*>(&monitor_enter_instruction);
1407     }
1408 
1409     // Iterate through the set of dex registers, as the compiler may not have held all of them
1410     // live.
1411     bool success = false;
1412     for (uint32_t dex_reg : dex_lock_info.dex_registers) {
1413       uint32_t value;
1414       success = stack_visitor->GetVReg(m, dex_reg, kReferenceVReg, &value);
1415       if (success) {
1416         mirror::Object* o = reinterpret_cast<mirror::Object*>(value);
1417         callback(o, callback_context);
1418         break;
1419       }
1420     }
1421     DCHECK(success) << "Failed to find/read reference for monitor-enter at dex pc "
1422                     << dex_lock_info.dex_pc
1423                     << " in method "
1424                     << m->PrettyMethod();
1425     if (!success) {
1426       LOG(WARNING) << "Had a lock reported for dex pc " << dex_lock_info.dex_pc
1427                    << " but was not able to fetch a corresponding object!";
1428     }
1429   }
1430 }
1431 
IsValidLockWord(LockWord lock_word)1432 bool Monitor::IsValidLockWord(LockWord lock_word) {
1433   switch (lock_word.GetState()) {
1434     case LockWord::kUnlocked:
1435       // Nothing to check.
1436       return true;
1437     case LockWord::kThinLocked:
1438       // Basic sanity check of owner.
1439       return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId;
1440     case LockWord::kFatLocked: {
1441       // Check the  monitor appears in the monitor list.
1442       Monitor* mon = lock_word.FatLockMonitor();
1443       MonitorList* list = Runtime::Current()->GetMonitorList();
1444       MutexLock mu(Thread::Current(), list->monitor_list_lock_);
1445       for (Monitor* list_mon : list->list_) {
1446         if (mon == list_mon) {
1447           return true;  // Found our monitor.
1448         }
1449       }
1450       return false;  // Fail - unowned monitor in an object.
1451     }
1452     case LockWord::kHashCode:
1453       return true;
1454     default:
1455       LOG(FATAL) << "Unreachable";
1456       UNREACHABLE();
1457   }
1458 }
1459 
IsLocked()1460 bool Monitor::IsLocked() REQUIRES_SHARED(Locks::mutator_lock_) {
1461   MutexLock mu(Thread::Current(), monitor_lock_);
1462   return owner_ != nullptr;
1463 }
1464 
TranslateLocation(ArtMethod * method,uint32_t dex_pc,const char ** source_file,int32_t * line_number)1465 void Monitor::TranslateLocation(ArtMethod* method,
1466                                 uint32_t dex_pc,
1467                                 const char** source_file,
1468                                 int32_t* line_number) {
1469   // If method is null, location is unknown
1470   if (method == nullptr) {
1471     *source_file = "";
1472     *line_number = 0;
1473     return;
1474   }
1475   *source_file = method->GetDeclaringClassSourceFile();
1476   if (*source_file == nullptr) {
1477     *source_file = "";
1478   }
1479   *line_number = method->GetLineNumFromDexPC(dex_pc);
1480 }
1481 
GetOwnerThreadId()1482 uint32_t Monitor::GetOwnerThreadId() {
1483   MutexLock mu(Thread::Current(), monitor_lock_);
1484   Thread* owner = owner_;
1485   if (owner != nullptr) {
1486     return owner->GetThreadId();
1487   } else {
1488     return ThreadList::kInvalidThreadId;
1489   }
1490 }
1491 
MonitorList()1492 MonitorList::MonitorList()
1493     : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock),
1494       monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
1495 }
1496 
~MonitorList()1497 MonitorList::~MonitorList() {
1498   Thread* self = Thread::Current();
1499   MutexLock mu(self, monitor_list_lock_);
1500   // Release all monitors to the pool.
1501   // TODO: Is it an invariant that *all* open monitors are in the list? Then we could
1502   // clear faster in the pool.
1503   MonitorPool::ReleaseMonitors(self, &list_);
1504 }
1505 
DisallowNewMonitors()1506 void MonitorList::DisallowNewMonitors() {
1507   CHECK(!kUseReadBarrier);
1508   MutexLock mu(Thread::Current(), monitor_list_lock_);
1509   allow_new_monitors_ = false;
1510 }
1511 
AllowNewMonitors()1512 void MonitorList::AllowNewMonitors() {
1513   CHECK(!kUseReadBarrier);
1514   Thread* self = Thread::Current();
1515   MutexLock mu(self, monitor_list_lock_);
1516   allow_new_monitors_ = true;
1517   monitor_add_condition_.Broadcast(self);
1518 }
1519 
BroadcastForNewMonitors()1520 void MonitorList::BroadcastForNewMonitors() {
1521   Thread* self = Thread::Current();
1522   MutexLock mu(self, monitor_list_lock_);
1523   monitor_add_condition_.Broadcast(self);
1524 }
1525 
Add(Monitor * m)1526 void MonitorList::Add(Monitor* m) {
1527   Thread* self = Thread::Current();
1528   MutexLock mu(self, monitor_list_lock_);
1529   // CMS needs this to block for concurrent reference processing because an object allocated during
1530   // the GC won't be marked and concurrent reference processing would incorrectly clear the JNI weak
1531   // ref. But CC (kUseReadBarrier == true) doesn't because of the to-space invariant.
1532   while (!kUseReadBarrier && UNLIKELY(!allow_new_monitors_)) {
1533     // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
1534     // presence of threads blocking for weak ref access.
1535     self->CheckEmptyCheckpointFromWeakRefAccess(&monitor_list_lock_);
1536     monitor_add_condition_.WaitHoldingLocks(self);
1537   }
1538   list_.push_front(m);
1539 }
1540 
SweepMonitorList(IsMarkedVisitor * visitor)1541 void MonitorList::SweepMonitorList(IsMarkedVisitor* visitor) {
1542   Thread* self = Thread::Current();
1543   MutexLock mu(self, monitor_list_lock_);
1544   for (auto it = list_.begin(); it != list_.end(); ) {
1545     Monitor* m = *it;
1546     // Disable the read barrier in GetObject() as this is called by GC.
1547     mirror::Object* obj = m->GetObject<kWithoutReadBarrier>();
1548     // The object of a monitor can be null if we have deflated it.
1549     mirror::Object* new_obj = obj != nullptr ? visitor->IsMarked(obj) : nullptr;
1550     if (new_obj == nullptr) {
1551       VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object "
1552                     << obj;
1553       MonitorPool::ReleaseMonitor(self, m);
1554       it = list_.erase(it);
1555     } else {
1556       m->SetObject(new_obj);
1557       ++it;
1558     }
1559   }
1560 }
1561 
Size()1562 size_t MonitorList::Size() {
1563   Thread* self = Thread::Current();
1564   MutexLock mu(self, monitor_list_lock_);
1565   return list_.size();
1566 }
1567 
1568 class MonitorDeflateVisitor : public IsMarkedVisitor {
1569  public:
MonitorDeflateVisitor()1570   MonitorDeflateVisitor() : self_(Thread::Current()), deflate_count_(0) {}
1571 
IsMarked(mirror::Object * object)1572   virtual mirror::Object* IsMarked(mirror::Object* object) OVERRIDE
1573       REQUIRES_SHARED(Locks::mutator_lock_) {
1574     if (Monitor::Deflate(self_, object)) {
1575       DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked);
1576       ++deflate_count_;
1577       // If we deflated, return null so that the monitor gets removed from the array.
1578       return nullptr;
1579     }
1580     return object;  // Monitor was not deflated.
1581   }
1582 
1583   Thread* const self_;
1584   size_t deflate_count_;
1585 };
1586 
DeflateMonitors()1587 size_t MonitorList::DeflateMonitors() {
1588   MonitorDeflateVisitor visitor;
1589   Locks::mutator_lock_->AssertExclusiveHeld(visitor.self_);
1590   SweepMonitorList(&visitor);
1591   return visitor.deflate_count_;
1592 }
1593 
MonitorInfo(mirror::Object * obj)1594 MonitorInfo::MonitorInfo(mirror::Object* obj) : owner_(nullptr), entry_count_(0) {
1595   DCHECK(obj != nullptr);
1596   LockWord lock_word = obj->GetLockWord(true);
1597   switch (lock_word.GetState()) {
1598     case LockWord::kUnlocked:
1599       // Fall-through.
1600     case LockWord::kForwardingAddress:
1601       // Fall-through.
1602     case LockWord::kHashCode:
1603       break;
1604     case LockWord::kThinLocked:
1605       owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
1606       DCHECK(owner_ != nullptr) << "Thin-locked without owner!";
1607       entry_count_ = 1 + lock_word.ThinLockCount();
1608       // Thin locks have no waiters.
1609       break;
1610     case LockWord::kFatLocked: {
1611       Monitor* mon = lock_word.FatLockMonitor();
1612       owner_ = mon->owner_;
1613       // Here it is okay for the owner to be null since we don't reset the LockWord back to
1614       // kUnlocked until we get a GC. In cases where this hasn't happened yet we will have a fat
1615       // lock without an owner.
1616       if (owner_ != nullptr) {
1617         entry_count_ = 1 + mon->lock_count_;
1618       } else {
1619         DCHECK_EQ(mon->lock_count_, 0) << "Monitor is fat-locked without any owner!";
1620       }
1621       for (Thread* waiter = mon->wait_set_; waiter != nullptr; waiter = waiter->GetWaitNext()) {
1622         waiters_.push_back(waiter);
1623       }
1624       break;
1625     }
1626   }
1627 }
1628 
1629 }  // namespace art
1630