• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "RuntimeDyldCOFF.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/COFF.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/MutexGuard.h"
25 
26 using namespace llvm;
27 using namespace llvm::object;
28 
29 #define DEBUG_TYPE "dyld"
30 
31 namespace {
32 
33 enum RuntimeDyldErrorCode {
34   GenericRTDyldError = 1
35 };
36 
37 // FIXME: This class is only here to support the transition to llvm::Error. It
38 // will be removed once this transition is complete. Clients should prefer to
39 // deal with the Error value directly, rather than converting to error_code.
40 class RuntimeDyldErrorCategory : public std::error_category {
41 public:
name() const42   const char *name() const LLVM_NOEXCEPT override { return "runtimedyld"; }
43 
message(int Condition) const44   std::string message(int Condition) const override {
45     switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
46       case GenericRTDyldError: return "Generic RuntimeDyld error";
47     }
48     llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
49   }
50 };
51 
52 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
53 
54 }
55 
56 char RuntimeDyldError::ID = 0;
57 
log(raw_ostream & OS) const58 void RuntimeDyldError::log(raw_ostream &OS) const {
59   OS << ErrMsg << "\n";
60 }
61 
convertToErrorCode() const62 std::error_code RuntimeDyldError::convertToErrorCode() const {
63   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
64 }
65 
66 // Empty out-of-line virtual destructor as the key function.
~RuntimeDyldImpl()67 RuntimeDyldImpl::~RuntimeDyldImpl() {}
68 
69 // Pin LoadedObjectInfo's vtables to this file.
anchor()70 void RuntimeDyld::LoadedObjectInfo::anchor() {}
71 
72 namespace llvm {
73 
registerEHFrames()74 void RuntimeDyldImpl::registerEHFrames() {}
75 
deregisterEHFrames()76 void RuntimeDyldImpl::deregisterEHFrames() {}
77 
78 #ifndef NDEBUG
dumpSectionMemory(const SectionEntry & S,StringRef State)79 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
80   dbgs() << "----- Contents of section " << S.getName() << " " << State
81          << " -----";
82 
83   if (S.getAddress() == nullptr) {
84     dbgs() << "\n          <section not emitted>\n";
85     return;
86   }
87 
88   const unsigned ColsPerRow = 16;
89 
90   uint8_t *DataAddr = S.getAddress();
91   uint64_t LoadAddr = S.getLoadAddress();
92 
93   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
94   unsigned BytesRemaining = S.getSize();
95 
96   if (StartPadding) {
97     dbgs() << "\n" << format("0x%016" PRIx64,
98                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
99     while (StartPadding--)
100       dbgs() << "   ";
101   }
102 
103   while (BytesRemaining > 0) {
104     if ((LoadAddr & (ColsPerRow - 1)) == 0)
105       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
106 
107     dbgs() << " " << format("%02x", *DataAddr);
108 
109     ++DataAddr;
110     ++LoadAddr;
111     --BytesRemaining;
112   }
113 
114   dbgs() << "\n";
115 }
116 #endif
117 
118 // Resolve the relocations for all symbols we currently know about.
resolveRelocations()119 void RuntimeDyldImpl::resolveRelocations() {
120   MutexGuard locked(lock);
121 
122   // Print out the sections prior to relocation.
123   DEBUG(
124     for (int i = 0, e = Sections.size(); i != e; ++i)
125       dumpSectionMemory(Sections[i], "before relocations");
126   );
127 
128   // First, resolve relocations associated with external symbols.
129   resolveExternalSymbols();
130 
131   // Iterate over all outstanding relocations
132   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
133     // The Section here (Sections[i]) refers to the section in which the
134     // symbol for the relocation is located.  The SectionID in the relocation
135     // entry provides the section to which the relocation will be applied.
136     int Idx = it->first;
137     uint64_t Addr = Sections[Idx].getLoadAddress();
138     DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
139                  << format("%p", (uintptr_t)Addr) << "\n");
140     resolveRelocationList(it->second, Addr);
141   }
142   Relocations.clear();
143 
144   // Print out sections after relocation.
145   DEBUG(
146     for (int i = 0, e = Sections.size(); i != e; ++i)
147       dumpSectionMemory(Sections[i], "after relocations");
148   );
149 
150 }
151 
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)152 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
153                                         uint64_t TargetAddress) {
154   MutexGuard locked(lock);
155   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
156     if (Sections[i].getAddress() == LocalAddress) {
157       reassignSectionAddress(i, TargetAddress);
158       return;
159     }
160   }
161   llvm_unreachable("Attempting to remap address of unknown section!");
162 }
163 
getOffset(const SymbolRef & Sym,SectionRef Sec,uint64_t & Result)164 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
165                        uint64_t &Result) {
166   Expected<uint64_t> AddressOrErr = Sym.getAddress();
167   if (!AddressOrErr)
168     return AddressOrErr.takeError();
169   Result = *AddressOrErr - Sec.getAddress();
170   return Error::success();
171 }
172 
173 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
loadObjectImpl(const object::ObjectFile & Obj)174 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
175   MutexGuard locked(lock);
176 
177   // Save information about our target
178   Arch = (Triple::ArchType)Obj.getArch();
179   IsTargetLittleEndian = Obj.isLittleEndian();
180   setMipsABI(Obj);
181 
182   // Compute the memory size required to load all sections to be loaded
183   // and pass this information to the memory manager
184   if (MemMgr.needsToReserveAllocationSpace()) {
185     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
186     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
187     if (auto Err = computeTotalAllocSize(Obj,
188                                          CodeSize, CodeAlign,
189                                          RODataSize, RODataAlign,
190                                          RWDataSize, RWDataAlign))
191       return std::move(Err);
192     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
193                                   RWDataSize, RWDataAlign);
194   }
195 
196   // Used sections from the object file
197   ObjSectionToIDMap LocalSections;
198 
199   // Common symbols requiring allocation, with their sizes and alignments
200   CommonSymbolList CommonSymbols;
201 
202   // Parse symbols
203   DEBUG(dbgs() << "Parse symbols:\n");
204   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
205        ++I) {
206     uint32_t Flags = I->getFlags();
207 
208     if (Flags & SymbolRef::SF_Common)
209       CommonSymbols.push_back(*I);
210     else {
211 
212       // Get the symbol type.
213       object::SymbolRef::Type SymType;
214       if (auto SymTypeOrErr = I->getType())
215         SymType =  *SymTypeOrErr;
216       else
217         return SymTypeOrErr.takeError();
218 
219       // Get symbol name.
220       StringRef Name;
221       if (auto NameOrErr = I->getName())
222         Name = *NameOrErr;
223       else
224         return NameOrErr.takeError();
225 
226       // Compute JIT symbol flags.
227       JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
228       if (Flags & SymbolRef::SF_Weak)
229         RTDyldSymFlags |= JITSymbolFlags::Weak;
230       if (Flags & SymbolRef::SF_Exported)
231         RTDyldSymFlags |= JITSymbolFlags::Exported;
232 
233       if (Flags & SymbolRef::SF_Absolute &&
234           SymType != object::SymbolRef::ST_File) {
235         uint64_t Addr = 0;
236         if (auto AddrOrErr = I->getAddress())
237           Addr = *AddrOrErr;
238         else
239           return AddrOrErr.takeError();
240 
241         unsigned SectionID = AbsoluteSymbolSection;
242 
243         DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
244                      << " SID: " << SectionID << " Offset: "
245                      << format("%p", (uintptr_t)Addr)
246                      << " flags: " << Flags << "\n");
247         GlobalSymbolTable[Name] =
248           SymbolTableEntry(SectionID, Addr, RTDyldSymFlags);
249       } else if (SymType == object::SymbolRef::ST_Function ||
250                  SymType == object::SymbolRef::ST_Data ||
251                  SymType == object::SymbolRef::ST_Unknown ||
252                  SymType == object::SymbolRef::ST_Other) {
253 
254         section_iterator SI = Obj.section_end();
255         if (auto SIOrErr = I->getSection())
256           SI = *SIOrErr;
257         else
258           return SIOrErr.takeError();
259 
260         if (SI == Obj.section_end())
261           continue;
262 
263         // Get symbol offset.
264         uint64_t SectOffset;
265         if (auto Err = getOffset(*I, *SI, SectOffset))
266           return std::move(Err);
267 
268         bool IsCode = SI->isText();
269         unsigned SectionID;
270         if (auto SectionIDOrErr = findOrEmitSection(Obj, *SI, IsCode,
271                                                     LocalSections))
272           SectionID = *SectionIDOrErr;
273         else
274           return SectionIDOrErr.takeError();
275 
276         DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
277                      << " SID: " << SectionID << " Offset: "
278                      << format("%p", (uintptr_t)SectOffset)
279                      << " flags: " << Flags << "\n");
280         GlobalSymbolTable[Name] =
281           SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags);
282       }
283     }
284   }
285 
286   // Allocate common symbols
287   if (auto Err = emitCommonSymbols(Obj, CommonSymbols))
288     return std::move(Err);
289 
290   // Parse and process relocations
291   DEBUG(dbgs() << "Parse relocations:\n");
292   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
293        SI != SE; ++SI) {
294     StubMap Stubs;
295     section_iterator RelocatedSection = SI->getRelocatedSection();
296 
297     if (RelocatedSection == SE)
298       continue;
299 
300     relocation_iterator I = SI->relocation_begin();
301     relocation_iterator E = SI->relocation_end();
302 
303     if (I == E && !ProcessAllSections)
304       continue;
305 
306     bool IsCode = RelocatedSection->isText();
307     unsigned SectionID = 0;
308     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
309                                                 LocalSections))
310       SectionID = *SectionIDOrErr;
311     else
312       return SectionIDOrErr.takeError();
313 
314     DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
315 
316     for (; I != E;)
317       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
318         I = *IOrErr;
319       else
320         return IOrErr.takeError();
321 
322     // If there is an attached checker, notify it about the stubs for this
323     // section so that they can be verified.
324     if (Checker)
325       Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
326   }
327 
328   // Give the subclasses a chance to tie-up any loose ends.
329   if (auto Err = finalizeLoad(Obj, LocalSections))
330     return std::move(Err);
331 
332 //   for (auto E : LocalSections)
333 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
334 
335   return LocalSections;
336 }
337 
338 // A helper method for computeTotalAllocSize.
339 // Computes the memory size required to allocate sections with the given sizes,
340 // assuming that all sections are allocated with the given alignment
341 static uint64_t
computeAllocationSizeForSections(std::vector<uint64_t> & SectionSizes,uint64_t Alignment)342 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
343                                  uint64_t Alignment) {
344   uint64_t TotalSize = 0;
345   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
346     uint64_t AlignedSize =
347         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
348     TotalSize += AlignedSize;
349   }
350   return TotalSize;
351 }
352 
isRequiredForExecution(const SectionRef Section)353 static bool isRequiredForExecution(const SectionRef Section) {
354   const ObjectFile *Obj = Section.getObject();
355   if (isa<object::ELFObjectFileBase>(Obj))
356     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
357   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
358     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
359     // Avoid loading zero-sized COFF sections.
360     // In PE files, VirtualSize gives the section size, and SizeOfRawData
361     // may be zero for sections with content. In Obj files, SizeOfRawData
362     // gives the section size, and VirtualSize is always zero. Hence
363     // the need to check for both cases below.
364     bool HasContent =
365         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
366     bool IsDiscardable =
367         CoffSection->Characteristics &
368         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
369     return HasContent && !IsDiscardable;
370   }
371 
372   assert(isa<MachOObjectFile>(Obj));
373   return true;
374 }
375 
isReadOnlyData(const SectionRef Section)376 static bool isReadOnlyData(const SectionRef Section) {
377   const ObjectFile *Obj = Section.getObject();
378   if (isa<object::ELFObjectFileBase>(Obj))
379     return !(ELFSectionRef(Section).getFlags() &
380              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
381   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
382     return ((COFFObj->getCOFFSection(Section)->Characteristics &
383              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
384              | COFF::IMAGE_SCN_MEM_READ
385              | COFF::IMAGE_SCN_MEM_WRITE))
386              ==
387              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
388              | COFF::IMAGE_SCN_MEM_READ));
389 
390   assert(isa<MachOObjectFile>(Obj));
391   return false;
392 }
393 
isZeroInit(const SectionRef Section)394 static bool isZeroInit(const SectionRef Section) {
395   const ObjectFile *Obj = Section.getObject();
396   if (isa<object::ELFObjectFileBase>(Obj))
397     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
398   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
399     return COFFObj->getCOFFSection(Section)->Characteristics &
400             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
401 
402   auto *MachO = cast<MachOObjectFile>(Obj);
403   unsigned SectionType = MachO->getSectionType(Section);
404   return SectionType == MachO::S_ZEROFILL ||
405          SectionType == MachO::S_GB_ZEROFILL;
406 }
407 
408 // Compute an upper bound of the memory size that is required to load all
409 // sections
computeTotalAllocSize(const ObjectFile & Obj,uint64_t & CodeSize,uint32_t & CodeAlign,uint64_t & RODataSize,uint32_t & RODataAlign,uint64_t & RWDataSize,uint32_t & RWDataAlign)410 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
411                                              uint64_t &CodeSize,
412                                              uint32_t &CodeAlign,
413                                              uint64_t &RODataSize,
414                                              uint32_t &RODataAlign,
415                                              uint64_t &RWDataSize,
416                                              uint32_t &RWDataAlign) {
417   // Compute the size of all sections required for execution
418   std::vector<uint64_t> CodeSectionSizes;
419   std::vector<uint64_t> ROSectionSizes;
420   std::vector<uint64_t> RWSectionSizes;
421 
422   // Collect sizes of all sections to be loaded;
423   // also determine the max alignment of all sections
424   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
425        SI != SE; ++SI) {
426     const SectionRef &Section = *SI;
427 
428     bool IsRequired = isRequiredForExecution(Section);
429 
430     // Consider only the sections that are required to be loaded for execution
431     if (IsRequired) {
432       uint64_t DataSize = Section.getSize();
433       uint64_t Alignment64 = Section.getAlignment();
434       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
435       bool IsCode = Section.isText();
436       bool IsReadOnly = isReadOnlyData(Section);
437 
438       StringRef Name;
439       if (auto EC = Section.getName(Name))
440         return errorCodeToError(EC);
441 
442       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
443       uint64_t SectionSize = DataSize + StubBufSize;
444 
445       // The .eh_frame section (at least on Linux) needs an extra four bytes
446       // padded
447       // with zeroes added at the end.  For MachO objects, this section has a
448       // slightly different name, so this won't have any effect for MachO
449       // objects.
450       if (Name == ".eh_frame")
451         SectionSize += 4;
452 
453       if (!SectionSize)
454         SectionSize = 1;
455 
456       if (IsCode) {
457         CodeAlign = std::max(CodeAlign, Alignment);
458         CodeSectionSizes.push_back(SectionSize);
459       } else if (IsReadOnly) {
460         RODataAlign = std::max(RODataAlign, Alignment);
461         ROSectionSizes.push_back(SectionSize);
462       } else {
463         RWDataAlign = std::max(RWDataAlign, Alignment);
464         RWSectionSizes.push_back(SectionSize);
465       }
466     }
467   }
468 
469   // Compute the size of all common symbols
470   uint64_t CommonSize = 0;
471   uint32_t CommonAlign = 1;
472   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
473        ++I) {
474     uint32_t Flags = I->getFlags();
475     if (Flags & SymbolRef::SF_Common) {
476       // Add the common symbols to a list.  We'll allocate them all below.
477       uint64_t Size = I->getCommonSize();
478       uint32_t Align = I->getAlignment();
479       // If this is the first common symbol, use its alignment as the alignment
480       // for the common symbols section.
481       if (CommonSize == 0)
482         CommonAlign = Align;
483       CommonSize = alignTo(CommonSize, Align) + Size;
484     }
485   }
486   if (CommonSize != 0) {
487     RWSectionSizes.push_back(CommonSize);
488     RWDataAlign = std::max(RWDataAlign, CommonAlign);
489   }
490 
491   // Compute the required allocation space for each different type of sections
492   // (code, read-only data, read-write data) assuming that all sections are
493   // allocated with the max alignment. Note that we cannot compute with the
494   // individual alignments of the sections, because then the required size
495   // depends on the order, in which the sections are allocated.
496   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
497   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
498   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
499 
500   return Error::success();
501 }
502 
503 // compute stub buffer size for the given section
computeSectionStubBufSize(const ObjectFile & Obj,const SectionRef & Section)504 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
505                                                     const SectionRef &Section) {
506   unsigned StubSize = getMaxStubSize();
507   if (StubSize == 0) {
508     return 0;
509   }
510   // FIXME: this is an inefficient way to handle this. We should computed the
511   // necessary section allocation size in loadObject by walking all the sections
512   // once.
513   unsigned StubBufSize = 0;
514   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
515        SI != SE; ++SI) {
516     section_iterator RelSecI = SI->getRelocatedSection();
517     if (!(RelSecI == Section))
518       continue;
519 
520     for (const RelocationRef &Reloc : SI->relocations())
521       if (relocationNeedsStub(Reloc))
522         StubBufSize += StubSize;
523   }
524 
525   // Get section data size and alignment
526   uint64_t DataSize = Section.getSize();
527   uint64_t Alignment64 = Section.getAlignment();
528 
529   // Add stubbuf size alignment
530   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
531   unsigned StubAlignment = getStubAlignment();
532   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
533   if (StubAlignment > EndAlignment)
534     StubBufSize += StubAlignment - EndAlignment;
535   return StubBufSize;
536 }
537 
readBytesUnaligned(uint8_t * Src,unsigned Size) const538 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
539                                              unsigned Size) const {
540   uint64_t Result = 0;
541   if (IsTargetLittleEndian) {
542     Src += Size - 1;
543     while (Size--)
544       Result = (Result << 8) | *Src--;
545   } else
546     while (Size--)
547       Result = (Result << 8) | *Src++;
548 
549   return Result;
550 }
551 
writeBytesUnaligned(uint64_t Value,uint8_t * Dst,unsigned Size) const552 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
553                                           unsigned Size) const {
554   if (IsTargetLittleEndian) {
555     while (Size--) {
556       *Dst++ = Value & 0xFF;
557       Value >>= 8;
558     }
559   } else {
560     Dst += Size - 1;
561     while (Size--) {
562       *Dst-- = Value & 0xFF;
563       Value >>= 8;
564     }
565   }
566 }
567 
emitCommonSymbols(const ObjectFile & Obj,CommonSymbolList & CommonSymbols)568 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
569                                          CommonSymbolList &CommonSymbols) {
570   if (CommonSymbols.empty())
571     return Error::success();
572 
573   uint64_t CommonSize = 0;
574   uint32_t CommonAlign = CommonSymbols.begin()->getAlignment();
575   CommonSymbolList SymbolsToAllocate;
576 
577   DEBUG(dbgs() << "Processing common symbols...\n");
578 
579   for (const auto &Sym : CommonSymbols) {
580     StringRef Name;
581     if (auto NameOrErr = Sym.getName())
582       Name = *NameOrErr;
583     else
584       return NameOrErr.takeError();
585 
586     // Skip common symbols already elsewhere.
587     if (GlobalSymbolTable.count(Name) ||
588         Resolver.findSymbolInLogicalDylib(Name)) {
589       DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
590                    << "'\n");
591       continue;
592     }
593 
594     uint32_t Align = Sym.getAlignment();
595     uint64_t Size = Sym.getCommonSize();
596 
597     CommonSize = alignTo(CommonSize, Align) + Size;
598 
599     SymbolsToAllocate.push_back(Sym);
600   }
601 
602   // Allocate memory for the section
603   unsigned SectionID = Sections.size();
604   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
605                                              "<common symbols>", false);
606   if (!Addr)
607     report_fatal_error("Unable to allocate memory for common symbols!");
608   uint64_t Offset = 0;
609   Sections.push_back(
610       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
611   memset(Addr, 0, CommonSize);
612 
613   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
614                << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
615 
616   // Assign the address of each symbol
617   for (auto &Sym : SymbolsToAllocate) {
618     uint32_t Align = Sym.getAlignment();
619     uint64_t Size = Sym.getCommonSize();
620     StringRef Name;
621     if (auto NameOrErr = Sym.getName())
622       Name = *NameOrErr;
623     else
624       return NameOrErr.takeError();
625     if (Align) {
626       // This symbol has an alignment requirement.
627       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
628       Addr += AlignOffset;
629       Offset += AlignOffset;
630     }
631     uint32_t Flags = Sym.getFlags();
632     JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
633     if (Flags & SymbolRef::SF_Weak)
634       RTDyldSymFlags |= JITSymbolFlags::Weak;
635     if (Flags & SymbolRef::SF_Exported)
636       RTDyldSymFlags |= JITSymbolFlags::Exported;
637     DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
638                  << format("%p", Addr) << "\n");
639     GlobalSymbolTable[Name] =
640       SymbolTableEntry(SectionID, Offset, RTDyldSymFlags);
641     Offset += Size;
642     Addr += Size;
643   }
644 
645   if (Checker)
646     Checker->registerSection(Obj.getFileName(), SectionID);
647 
648   return Error::success();
649 }
650 
651 Expected<unsigned>
emitSection(const ObjectFile & Obj,const SectionRef & Section,bool IsCode)652 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
653                              const SectionRef &Section,
654                              bool IsCode) {
655   StringRef data;
656   uint64_t Alignment64 = Section.getAlignment();
657 
658   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
659   unsigned PaddingSize = 0;
660   unsigned StubBufSize = 0;
661   bool IsRequired = isRequiredForExecution(Section);
662   bool IsVirtual = Section.isVirtual();
663   bool IsZeroInit = isZeroInit(Section);
664   bool IsReadOnly = isReadOnlyData(Section);
665   uint64_t DataSize = Section.getSize();
666 
667   StringRef Name;
668   if (auto EC = Section.getName(Name))
669     return errorCodeToError(EC);
670 
671   StubBufSize = computeSectionStubBufSize(Obj, Section);
672 
673   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
674   // with zeroes added at the end.  For MachO objects, this section has a
675   // slightly different name, so this won't have any effect for MachO objects.
676   if (Name == ".eh_frame")
677     PaddingSize = 4;
678 
679   uintptr_t Allocate;
680   unsigned SectionID = Sections.size();
681   uint8_t *Addr;
682   const char *pData = nullptr;
683 
684   // If this section contains any bits (i.e. isn't a virtual or bss section),
685   // grab a reference to them.
686   if (!IsVirtual && !IsZeroInit) {
687     // In either case, set the location of the unrelocated section in memory,
688     // since we still process relocations for it even if we're not applying them.
689     if (auto EC = Section.getContents(data))
690       return errorCodeToError(EC);
691     pData = data.data();
692   }
693 
694   // Code section alignment needs to be at least as high as stub alignment or
695   // padding calculations may by incorrect when the section is remapped to a
696   // higher alignment.
697   if (IsCode)
698     Alignment = std::max(Alignment, getStubAlignment());
699 
700   // Some sections, such as debug info, don't need to be loaded for execution.
701   // Leave those where they are.
702   if (IsRequired) {
703     Allocate = DataSize + PaddingSize + StubBufSize;
704     if (!Allocate)
705       Allocate = 1;
706     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
707                                                Name)
708                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
709                                                Name, IsReadOnly);
710     if (!Addr)
711       report_fatal_error("Unable to allocate section memory!");
712 
713     // Zero-initialize or copy the data from the image
714     if (IsZeroInit || IsVirtual)
715       memset(Addr, 0, DataSize);
716     else
717       memcpy(Addr, pData, DataSize);
718 
719     // Fill in any extra bytes we allocated for padding
720     if (PaddingSize != 0) {
721       memset(Addr + DataSize, 0, PaddingSize);
722       // Update the DataSize variable so that the stub offset is set correctly.
723       DataSize += PaddingSize;
724     }
725 
726     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
727                  << " obj addr: " << format("%p", pData)
728                  << " new addr: " << format("%p", Addr)
729                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
730                  << " Allocate: " << Allocate << "\n");
731   } else {
732     // Even if we didn't load the section, we need to record an entry for it
733     // to handle later processing (and by 'handle' I mean don't do anything
734     // with these sections).
735     Allocate = 0;
736     Addr = nullptr;
737     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
738                  << " obj addr: " << format("%p", data.data()) << " new addr: 0"
739                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
740                  << " Allocate: " << Allocate << "\n");
741   }
742 
743   Sections.push_back(
744       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
745 
746   if (Checker)
747     Checker->registerSection(Obj.getFileName(), SectionID);
748 
749   return SectionID;
750 }
751 
752 Expected<unsigned>
findOrEmitSection(const ObjectFile & Obj,const SectionRef & Section,bool IsCode,ObjSectionToIDMap & LocalSections)753 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
754                                    const SectionRef &Section,
755                                    bool IsCode,
756                                    ObjSectionToIDMap &LocalSections) {
757 
758   unsigned SectionID = 0;
759   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
760   if (i != LocalSections.end())
761     SectionID = i->second;
762   else {
763     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
764       SectionID = *SectionIDOrErr;
765     else
766       return SectionIDOrErr.takeError();
767     LocalSections[Section] = SectionID;
768   }
769   return SectionID;
770 }
771 
addRelocationForSection(const RelocationEntry & RE,unsigned SectionID)772 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
773                                               unsigned SectionID) {
774   Relocations[SectionID].push_back(RE);
775 }
776 
addRelocationForSymbol(const RelocationEntry & RE,StringRef SymbolName)777 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
778                                              StringRef SymbolName) {
779   // Relocation by symbol.  If the symbol is found in the global symbol table,
780   // create an appropriate section relocation.  Otherwise, add it to
781   // ExternalSymbolRelocations.
782   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
783   if (Loc == GlobalSymbolTable.end()) {
784     ExternalSymbolRelocations[SymbolName].push_back(RE);
785   } else {
786     // Copy the RE since we want to modify its addend.
787     RelocationEntry RECopy = RE;
788     const auto &SymInfo = Loc->second;
789     RECopy.Addend += SymInfo.getOffset();
790     Relocations[SymInfo.getSectionID()].push_back(RECopy);
791   }
792 }
793 
createStubFunction(uint8_t * Addr,unsigned AbiVariant)794 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
795                                              unsigned AbiVariant) {
796   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
797     // This stub has to be able to access the full address space,
798     // since symbol lookup won't necessarily find a handy, in-range,
799     // PLT stub for functions which could be anywhere.
800     // Stub can use ip0 (== x16) to calculate address
801     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
802     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
803     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
804     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
805     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
806 
807     return Addr;
808   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
809     // TODO: There is only ARM far stub now. We should add the Thumb stub,
810     // and stubs for branches Thumb - ARM and ARM - Thumb.
811     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
812     return Addr + 4;
813   } else if (IsMipsO32ABI) {
814     // 0:   3c190000        lui     t9,%hi(addr).
815     // 4:   27390000        addiu   t9,t9,%lo(addr).
816     // 8:   03200008        jr      t9.
817     // c:   00000000        nop.
818     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
819     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
820 
821     writeBytesUnaligned(LuiT9Instr, Addr, 4);
822     writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
823     writeBytesUnaligned(JrT9Instr, Addr+8, 4);
824     writeBytesUnaligned(NopInstr, Addr+12, 4);
825     return Addr;
826   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
827     // Depending on which version of the ELF ABI is in use, we need to
828     // generate one of two variants of the stub.  They both start with
829     // the same sequence to load the target address into r12.
830     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
831     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
832     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
833     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
834     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
835     if (AbiVariant == 2) {
836       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
837       // The address is already in r12 as required by the ABI.  Branch to it.
838       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
839       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
840       writeInt32BE(Addr+28, 0x4E800420); // bctr
841     } else {
842       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
843       // Load the function address on r11 and sets it to control register. Also
844       // loads the function TOC in r2 and environment pointer to r11.
845       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
846       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
847       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
848       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
849       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
850       writeInt32BE(Addr+40, 0x4E800420); // bctr
851     }
852     return Addr;
853   } else if (Arch == Triple::systemz) {
854     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
855     writeInt16BE(Addr+2,  0x0000);
856     writeInt16BE(Addr+4,  0x0004);
857     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
858     // 8-byte address stored at Addr + 8
859     return Addr;
860   } else if (Arch == Triple::x86_64) {
861     *Addr      = 0xFF; // jmp
862     *(Addr+1)  = 0x25; // rip
863     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
864   } else if (Arch == Triple::x86) {
865     *Addr      = 0xE9; // 32-bit pc-relative jump.
866   }
867   return Addr;
868 }
869 
870 // Assign an address to a symbol name and resolve all the relocations
871 // associated with it.
reassignSectionAddress(unsigned SectionID,uint64_t Addr)872 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
873                                              uint64_t Addr) {
874   // The address to use for relocation resolution is not
875   // the address of the local section buffer. We must be doing
876   // a remote execution environment of some sort. Relocations can't
877   // be applied until all the sections have been moved.  The client must
878   // trigger this with a call to MCJIT::finalize() or
879   // RuntimeDyld::resolveRelocations().
880   //
881   // Addr is a uint64_t because we can't assume the pointer width
882   // of the target is the same as that of the host. Just use a generic
883   // "big enough" type.
884   DEBUG(dbgs() << "Reassigning address for section " << SectionID << " ("
885                << Sections[SectionID].getName() << "): "
886                << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
887                << " -> " << format("0x%016" PRIx64, Addr) << "\n");
888   Sections[SectionID].setLoadAddress(Addr);
889 }
890 
resolveRelocationList(const RelocationList & Relocs,uint64_t Value)891 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
892                                             uint64_t Value) {
893   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
894     const RelocationEntry &RE = Relocs[i];
895     // Ignore relocations for sections that were not loaded
896     if (Sections[RE.SectionID].getAddress() == nullptr)
897       continue;
898     resolveRelocation(RE, Value);
899   }
900 }
901 
resolveExternalSymbols()902 void RuntimeDyldImpl::resolveExternalSymbols() {
903   while (!ExternalSymbolRelocations.empty()) {
904     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
905 
906     StringRef Name = i->first();
907     if (Name.size() == 0) {
908       // This is an absolute symbol, use an address of zero.
909       DEBUG(dbgs() << "Resolving absolute relocations."
910                    << "\n");
911       RelocationList &Relocs = i->second;
912       resolveRelocationList(Relocs, 0);
913     } else {
914       uint64_t Addr = 0;
915       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
916       if (Loc == GlobalSymbolTable.end()) {
917         // This is an external symbol, try to get its address from the symbol
918         // resolver.
919         // First search for the symbol in this logical dylib.
920         Addr = Resolver.findSymbolInLogicalDylib(Name.data()).getAddress();
921         // If that fails, try searching for an external symbol.
922         if (!Addr)
923           Addr = Resolver.findSymbol(Name.data()).getAddress();
924         // The call to getSymbolAddress may have caused additional modules to
925         // be loaded, which may have added new entries to the
926         // ExternalSymbolRelocations map.  Consquently, we need to update our
927         // iterator.  This is also why retrieval of the relocation list
928         // associated with this symbol is deferred until below this point.
929         // New entries may have been added to the relocation list.
930         i = ExternalSymbolRelocations.find(Name);
931       } else {
932         // We found the symbol in our global table.  It was probably in a
933         // Module that we loaded previously.
934         const auto &SymInfo = Loc->second;
935         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
936                SymInfo.getOffset();
937       }
938 
939       // FIXME: Implement error handling that doesn't kill the host program!
940       if (!Addr)
941         report_fatal_error("Program used external function '" + Name +
942                            "' which could not be resolved!");
943 
944       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
945       // manually and we shouldn't resolve its relocations.
946       if (Addr != UINT64_MAX) {
947         DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
948                      << format("0x%lx", Addr) << "\n");
949         // This list may have been updated when we called getSymbolAddress, so
950         // don't change this code to get the list earlier.
951         RelocationList &Relocs = i->second;
952         resolveRelocationList(Relocs, Addr);
953       }
954     }
955 
956     ExternalSymbolRelocations.erase(i);
957   }
958 }
959 
960 //===----------------------------------------------------------------------===//
961 // RuntimeDyld class implementation
962 
getSectionLoadAddress(const object::SectionRef & Sec) const963 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
964                                           const object::SectionRef &Sec) const {
965 
966   auto I = ObjSecToIDMap.find(Sec);
967   if (I != ObjSecToIDMap.end())
968     return RTDyld.Sections[I->second].getLoadAddress();
969 
970   return 0;
971 }
972 
anchor()973 void RuntimeDyld::MemoryManager::anchor() {}
anchor()974 void RuntimeDyld::SymbolResolver::anchor() {}
975 
RuntimeDyld(RuntimeDyld::MemoryManager & MemMgr,RuntimeDyld::SymbolResolver & Resolver)976 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
977                          RuntimeDyld::SymbolResolver &Resolver)
978     : MemMgr(MemMgr), Resolver(Resolver) {
979   // FIXME: There's a potential issue lurking here if a single instance of
980   // RuntimeDyld is used to load multiple objects.  The current implementation
981   // associates a single memory manager with a RuntimeDyld instance.  Even
982   // though the public class spawns a new 'impl' instance for each load,
983   // they share a single memory manager.  This can become a problem when page
984   // permissions are applied.
985   Dyld = nullptr;
986   ProcessAllSections = false;
987   Checker = nullptr;
988 }
989 
~RuntimeDyld()990 RuntimeDyld::~RuntimeDyld() {}
991 
992 static std::unique_ptr<RuntimeDyldCOFF>
createRuntimeDyldCOFF(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,RuntimeDyld::SymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyldCheckerImpl * Checker)993 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
994                       RuntimeDyld::SymbolResolver &Resolver,
995                       bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
996   std::unique_ptr<RuntimeDyldCOFF> Dyld =
997     RuntimeDyldCOFF::create(Arch, MM, Resolver);
998   Dyld->setProcessAllSections(ProcessAllSections);
999   Dyld->setRuntimeDyldChecker(Checker);
1000   return Dyld;
1001 }
1002 
1003 static std::unique_ptr<RuntimeDyldELF>
createRuntimeDyldELF(RuntimeDyld::MemoryManager & MM,RuntimeDyld::SymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyldCheckerImpl * Checker)1004 createRuntimeDyldELF(RuntimeDyld::MemoryManager &MM,
1005                      RuntimeDyld::SymbolResolver &Resolver,
1006                      bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
1007   std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM, Resolver));
1008   Dyld->setProcessAllSections(ProcessAllSections);
1009   Dyld->setRuntimeDyldChecker(Checker);
1010   return Dyld;
1011 }
1012 
1013 static std::unique_ptr<RuntimeDyldMachO>
createRuntimeDyldMachO(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,RuntimeDyld::SymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyldCheckerImpl * Checker)1014 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1015                        RuntimeDyld::SymbolResolver &Resolver,
1016                        bool ProcessAllSections,
1017                        RuntimeDyldCheckerImpl *Checker) {
1018   std::unique_ptr<RuntimeDyldMachO> Dyld =
1019     RuntimeDyldMachO::create(Arch, MM, Resolver);
1020   Dyld->setProcessAllSections(ProcessAllSections);
1021   Dyld->setRuntimeDyldChecker(Checker);
1022   return Dyld;
1023 }
1024 
1025 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const ObjectFile & Obj)1026 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1027   if (!Dyld) {
1028     if (Obj.isELF())
1029       Dyld = createRuntimeDyldELF(MemMgr, Resolver, ProcessAllSections, Checker);
1030     else if (Obj.isMachO())
1031       Dyld = createRuntimeDyldMachO(
1032                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1033                ProcessAllSections, Checker);
1034     else if (Obj.isCOFF())
1035       Dyld = createRuntimeDyldCOFF(
1036                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1037                ProcessAllSections, Checker);
1038     else
1039       report_fatal_error("Incompatible object format!");
1040   }
1041 
1042   if (!Dyld->isCompatibleFile(Obj))
1043     report_fatal_error("Incompatible object format!");
1044 
1045   auto LoadedObjInfo = Dyld->loadObject(Obj);
1046   MemMgr.notifyObjectLoaded(*this, Obj);
1047   return LoadedObjInfo;
1048 }
1049 
getSymbolLocalAddress(StringRef Name) const1050 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1051   if (!Dyld)
1052     return nullptr;
1053   return Dyld->getSymbolLocalAddress(Name);
1054 }
1055 
getSymbol(StringRef Name) const1056 RuntimeDyld::SymbolInfo RuntimeDyld::getSymbol(StringRef Name) const {
1057   if (!Dyld)
1058     return nullptr;
1059   return Dyld->getSymbol(Name);
1060 }
1061 
resolveRelocations()1062 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1063 
reassignSectionAddress(unsigned SectionID,uint64_t Addr)1064 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1065   Dyld->reassignSectionAddress(SectionID, Addr);
1066 }
1067 
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)1068 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1069                                     uint64_t TargetAddress) {
1070   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1071 }
1072 
hasError()1073 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1074 
getErrorString()1075 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1076 
finalizeWithMemoryManagerLocking()1077 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1078   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1079   MemMgr.FinalizationLocked = true;
1080   resolveRelocations();
1081   registerEHFrames();
1082   if (!MemoryFinalizationLocked) {
1083     MemMgr.finalizeMemory();
1084     MemMgr.FinalizationLocked = false;
1085   }
1086 }
1087 
registerEHFrames()1088 void RuntimeDyld::registerEHFrames() {
1089   if (Dyld)
1090     Dyld->registerEHFrames();
1091 }
1092 
deregisterEHFrames()1093 void RuntimeDyld::deregisterEHFrames() {
1094   if (Dyld)
1095     Dyld->deregisterEHFrames();
1096 }
1097 
1098 } // end namespace llvm
1099