1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "RuntimeDyldCOFF.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/COFF.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/MutexGuard.h"
25
26 using namespace llvm;
27 using namespace llvm::object;
28
29 #define DEBUG_TYPE "dyld"
30
31 namespace {
32
33 enum RuntimeDyldErrorCode {
34 GenericRTDyldError = 1
35 };
36
37 // FIXME: This class is only here to support the transition to llvm::Error. It
38 // will be removed once this transition is complete. Clients should prefer to
39 // deal with the Error value directly, rather than converting to error_code.
40 class RuntimeDyldErrorCategory : public std::error_category {
41 public:
name() const42 const char *name() const LLVM_NOEXCEPT override { return "runtimedyld"; }
43
message(int Condition) const44 std::string message(int Condition) const override {
45 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
46 case GenericRTDyldError: return "Generic RuntimeDyld error";
47 }
48 llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
49 }
50 };
51
52 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
53
54 }
55
56 char RuntimeDyldError::ID = 0;
57
log(raw_ostream & OS) const58 void RuntimeDyldError::log(raw_ostream &OS) const {
59 OS << ErrMsg << "\n";
60 }
61
convertToErrorCode() const62 std::error_code RuntimeDyldError::convertToErrorCode() const {
63 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
64 }
65
66 // Empty out-of-line virtual destructor as the key function.
~RuntimeDyldImpl()67 RuntimeDyldImpl::~RuntimeDyldImpl() {}
68
69 // Pin LoadedObjectInfo's vtables to this file.
anchor()70 void RuntimeDyld::LoadedObjectInfo::anchor() {}
71
72 namespace llvm {
73
registerEHFrames()74 void RuntimeDyldImpl::registerEHFrames() {}
75
deregisterEHFrames()76 void RuntimeDyldImpl::deregisterEHFrames() {}
77
78 #ifndef NDEBUG
dumpSectionMemory(const SectionEntry & S,StringRef State)79 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
80 dbgs() << "----- Contents of section " << S.getName() << " " << State
81 << " -----";
82
83 if (S.getAddress() == nullptr) {
84 dbgs() << "\n <section not emitted>\n";
85 return;
86 }
87
88 const unsigned ColsPerRow = 16;
89
90 uint8_t *DataAddr = S.getAddress();
91 uint64_t LoadAddr = S.getLoadAddress();
92
93 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
94 unsigned BytesRemaining = S.getSize();
95
96 if (StartPadding) {
97 dbgs() << "\n" << format("0x%016" PRIx64,
98 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
99 while (StartPadding--)
100 dbgs() << " ";
101 }
102
103 while (BytesRemaining > 0) {
104 if ((LoadAddr & (ColsPerRow - 1)) == 0)
105 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
106
107 dbgs() << " " << format("%02x", *DataAddr);
108
109 ++DataAddr;
110 ++LoadAddr;
111 --BytesRemaining;
112 }
113
114 dbgs() << "\n";
115 }
116 #endif
117
118 // Resolve the relocations for all symbols we currently know about.
resolveRelocations()119 void RuntimeDyldImpl::resolveRelocations() {
120 MutexGuard locked(lock);
121
122 // Print out the sections prior to relocation.
123 DEBUG(
124 for (int i = 0, e = Sections.size(); i != e; ++i)
125 dumpSectionMemory(Sections[i], "before relocations");
126 );
127
128 // First, resolve relocations associated with external symbols.
129 resolveExternalSymbols();
130
131 // Iterate over all outstanding relocations
132 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
133 // The Section here (Sections[i]) refers to the section in which the
134 // symbol for the relocation is located. The SectionID in the relocation
135 // entry provides the section to which the relocation will be applied.
136 int Idx = it->first;
137 uint64_t Addr = Sections[Idx].getLoadAddress();
138 DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
139 << format("%p", (uintptr_t)Addr) << "\n");
140 resolveRelocationList(it->second, Addr);
141 }
142 Relocations.clear();
143
144 // Print out sections after relocation.
145 DEBUG(
146 for (int i = 0, e = Sections.size(); i != e; ++i)
147 dumpSectionMemory(Sections[i], "after relocations");
148 );
149
150 }
151
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)152 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
153 uint64_t TargetAddress) {
154 MutexGuard locked(lock);
155 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
156 if (Sections[i].getAddress() == LocalAddress) {
157 reassignSectionAddress(i, TargetAddress);
158 return;
159 }
160 }
161 llvm_unreachable("Attempting to remap address of unknown section!");
162 }
163
getOffset(const SymbolRef & Sym,SectionRef Sec,uint64_t & Result)164 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
165 uint64_t &Result) {
166 Expected<uint64_t> AddressOrErr = Sym.getAddress();
167 if (!AddressOrErr)
168 return AddressOrErr.takeError();
169 Result = *AddressOrErr - Sec.getAddress();
170 return Error::success();
171 }
172
173 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
loadObjectImpl(const object::ObjectFile & Obj)174 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
175 MutexGuard locked(lock);
176
177 // Save information about our target
178 Arch = (Triple::ArchType)Obj.getArch();
179 IsTargetLittleEndian = Obj.isLittleEndian();
180 setMipsABI(Obj);
181
182 // Compute the memory size required to load all sections to be loaded
183 // and pass this information to the memory manager
184 if (MemMgr.needsToReserveAllocationSpace()) {
185 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
186 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
187 if (auto Err = computeTotalAllocSize(Obj,
188 CodeSize, CodeAlign,
189 RODataSize, RODataAlign,
190 RWDataSize, RWDataAlign))
191 return std::move(Err);
192 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
193 RWDataSize, RWDataAlign);
194 }
195
196 // Used sections from the object file
197 ObjSectionToIDMap LocalSections;
198
199 // Common symbols requiring allocation, with their sizes and alignments
200 CommonSymbolList CommonSymbols;
201
202 // Parse symbols
203 DEBUG(dbgs() << "Parse symbols:\n");
204 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
205 ++I) {
206 uint32_t Flags = I->getFlags();
207
208 if (Flags & SymbolRef::SF_Common)
209 CommonSymbols.push_back(*I);
210 else {
211
212 // Get the symbol type.
213 object::SymbolRef::Type SymType;
214 if (auto SymTypeOrErr = I->getType())
215 SymType = *SymTypeOrErr;
216 else
217 return SymTypeOrErr.takeError();
218
219 // Get symbol name.
220 StringRef Name;
221 if (auto NameOrErr = I->getName())
222 Name = *NameOrErr;
223 else
224 return NameOrErr.takeError();
225
226 // Compute JIT symbol flags.
227 JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
228 if (Flags & SymbolRef::SF_Weak)
229 RTDyldSymFlags |= JITSymbolFlags::Weak;
230 if (Flags & SymbolRef::SF_Exported)
231 RTDyldSymFlags |= JITSymbolFlags::Exported;
232
233 if (Flags & SymbolRef::SF_Absolute &&
234 SymType != object::SymbolRef::ST_File) {
235 uint64_t Addr = 0;
236 if (auto AddrOrErr = I->getAddress())
237 Addr = *AddrOrErr;
238 else
239 return AddrOrErr.takeError();
240
241 unsigned SectionID = AbsoluteSymbolSection;
242
243 DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
244 << " SID: " << SectionID << " Offset: "
245 << format("%p", (uintptr_t)Addr)
246 << " flags: " << Flags << "\n");
247 GlobalSymbolTable[Name] =
248 SymbolTableEntry(SectionID, Addr, RTDyldSymFlags);
249 } else if (SymType == object::SymbolRef::ST_Function ||
250 SymType == object::SymbolRef::ST_Data ||
251 SymType == object::SymbolRef::ST_Unknown ||
252 SymType == object::SymbolRef::ST_Other) {
253
254 section_iterator SI = Obj.section_end();
255 if (auto SIOrErr = I->getSection())
256 SI = *SIOrErr;
257 else
258 return SIOrErr.takeError();
259
260 if (SI == Obj.section_end())
261 continue;
262
263 // Get symbol offset.
264 uint64_t SectOffset;
265 if (auto Err = getOffset(*I, *SI, SectOffset))
266 return std::move(Err);
267
268 bool IsCode = SI->isText();
269 unsigned SectionID;
270 if (auto SectionIDOrErr = findOrEmitSection(Obj, *SI, IsCode,
271 LocalSections))
272 SectionID = *SectionIDOrErr;
273 else
274 return SectionIDOrErr.takeError();
275
276 DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
277 << " SID: " << SectionID << " Offset: "
278 << format("%p", (uintptr_t)SectOffset)
279 << " flags: " << Flags << "\n");
280 GlobalSymbolTable[Name] =
281 SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags);
282 }
283 }
284 }
285
286 // Allocate common symbols
287 if (auto Err = emitCommonSymbols(Obj, CommonSymbols))
288 return std::move(Err);
289
290 // Parse and process relocations
291 DEBUG(dbgs() << "Parse relocations:\n");
292 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
293 SI != SE; ++SI) {
294 StubMap Stubs;
295 section_iterator RelocatedSection = SI->getRelocatedSection();
296
297 if (RelocatedSection == SE)
298 continue;
299
300 relocation_iterator I = SI->relocation_begin();
301 relocation_iterator E = SI->relocation_end();
302
303 if (I == E && !ProcessAllSections)
304 continue;
305
306 bool IsCode = RelocatedSection->isText();
307 unsigned SectionID = 0;
308 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
309 LocalSections))
310 SectionID = *SectionIDOrErr;
311 else
312 return SectionIDOrErr.takeError();
313
314 DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
315
316 for (; I != E;)
317 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
318 I = *IOrErr;
319 else
320 return IOrErr.takeError();
321
322 // If there is an attached checker, notify it about the stubs for this
323 // section so that they can be verified.
324 if (Checker)
325 Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
326 }
327
328 // Give the subclasses a chance to tie-up any loose ends.
329 if (auto Err = finalizeLoad(Obj, LocalSections))
330 return std::move(Err);
331
332 // for (auto E : LocalSections)
333 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
334
335 return LocalSections;
336 }
337
338 // A helper method for computeTotalAllocSize.
339 // Computes the memory size required to allocate sections with the given sizes,
340 // assuming that all sections are allocated with the given alignment
341 static uint64_t
computeAllocationSizeForSections(std::vector<uint64_t> & SectionSizes,uint64_t Alignment)342 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
343 uint64_t Alignment) {
344 uint64_t TotalSize = 0;
345 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
346 uint64_t AlignedSize =
347 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
348 TotalSize += AlignedSize;
349 }
350 return TotalSize;
351 }
352
isRequiredForExecution(const SectionRef Section)353 static bool isRequiredForExecution(const SectionRef Section) {
354 const ObjectFile *Obj = Section.getObject();
355 if (isa<object::ELFObjectFileBase>(Obj))
356 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
357 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
358 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
359 // Avoid loading zero-sized COFF sections.
360 // In PE files, VirtualSize gives the section size, and SizeOfRawData
361 // may be zero for sections with content. In Obj files, SizeOfRawData
362 // gives the section size, and VirtualSize is always zero. Hence
363 // the need to check for both cases below.
364 bool HasContent =
365 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
366 bool IsDiscardable =
367 CoffSection->Characteristics &
368 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
369 return HasContent && !IsDiscardable;
370 }
371
372 assert(isa<MachOObjectFile>(Obj));
373 return true;
374 }
375
isReadOnlyData(const SectionRef Section)376 static bool isReadOnlyData(const SectionRef Section) {
377 const ObjectFile *Obj = Section.getObject();
378 if (isa<object::ELFObjectFileBase>(Obj))
379 return !(ELFSectionRef(Section).getFlags() &
380 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
381 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
382 return ((COFFObj->getCOFFSection(Section)->Characteristics &
383 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
384 | COFF::IMAGE_SCN_MEM_READ
385 | COFF::IMAGE_SCN_MEM_WRITE))
386 ==
387 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
388 | COFF::IMAGE_SCN_MEM_READ));
389
390 assert(isa<MachOObjectFile>(Obj));
391 return false;
392 }
393
isZeroInit(const SectionRef Section)394 static bool isZeroInit(const SectionRef Section) {
395 const ObjectFile *Obj = Section.getObject();
396 if (isa<object::ELFObjectFileBase>(Obj))
397 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
398 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
399 return COFFObj->getCOFFSection(Section)->Characteristics &
400 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
401
402 auto *MachO = cast<MachOObjectFile>(Obj);
403 unsigned SectionType = MachO->getSectionType(Section);
404 return SectionType == MachO::S_ZEROFILL ||
405 SectionType == MachO::S_GB_ZEROFILL;
406 }
407
408 // Compute an upper bound of the memory size that is required to load all
409 // sections
computeTotalAllocSize(const ObjectFile & Obj,uint64_t & CodeSize,uint32_t & CodeAlign,uint64_t & RODataSize,uint32_t & RODataAlign,uint64_t & RWDataSize,uint32_t & RWDataAlign)410 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
411 uint64_t &CodeSize,
412 uint32_t &CodeAlign,
413 uint64_t &RODataSize,
414 uint32_t &RODataAlign,
415 uint64_t &RWDataSize,
416 uint32_t &RWDataAlign) {
417 // Compute the size of all sections required for execution
418 std::vector<uint64_t> CodeSectionSizes;
419 std::vector<uint64_t> ROSectionSizes;
420 std::vector<uint64_t> RWSectionSizes;
421
422 // Collect sizes of all sections to be loaded;
423 // also determine the max alignment of all sections
424 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
425 SI != SE; ++SI) {
426 const SectionRef &Section = *SI;
427
428 bool IsRequired = isRequiredForExecution(Section);
429
430 // Consider only the sections that are required to be loaded for execution
431 if (IsRequired) {
432 uint64_t DataSize = Section.getSize();
433 uint64_t Alignment64 = Section.getAlignment();
434 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
435 bool IsCode = Section.isText();
436 bool IsReadOnly = isReadOnlyData(Section);
437
438 StringRef Name;
439 if (auto EC = Section.getName(Name))
440 return errorCodeToError(EC);
441
442 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
443 uint64_t SectionSize = DataSize + StubBufSize;
444
445 // The .eh_frame section (at least on Linux) needs an extra four bytes
446 // padded
447 // with zeroes added at the end. For MachO objects, this section has a
448 // slightly different name, so this won't have any effect for MachO
449 // objects.
450 if (Name == ".eh_frame")
451 SectionSize += 4;
452
453 if (!SectionSize)
454 SectionSize = 1;
455
456 if (IsCode) {
457 CodeAlign = std::max(CodeAlign, Alignment);
458 CodeSectionSizes.push_back(SectionSize);
459 } else if (IsReadOnly) {
460 RODataAlign = std::max(RODataAlign, Alignment);
461 ROSectionSizes.push_back(SectionSize);
462 } else {
463 RWDataAlign = std::max(RWDataAlign, Alignment);
464 RWSectionSizes.push_back(SectionSize);
465 }
466 }
467 }
468
469 // Compute the size of all common symbols
470 uint64_t CommonSize = 0;
471 uint32_t CommonAlign = 1;
472 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
473 ++I) {
474 uint32_t Flags = I->getFlags();
475 if (Flags & SymbolRef::SF_Common) {
476 // Add the common symbols to a list. We'll allocate them all below.
477 uint64_t Size = I->getCommonSize();
478 uint32_t Align = I->getAlignment();
479 // If this is the first common symbol, use its alignment as the alignment
480 // for the common symbols section.
481 if (CommonSize == 0)
482 CommonAlign = Align;
483 CommonSize = alignTo(CommonSize, Align) + Size;
484 }
485 }
486 if (CommonSize != 0) {
487 RWSectionSizes.push_back(CommonSize);
488 RWDataAlign = std::max(RWDataAlign, CommonAlign);
489 }
490
491 // Compute the required allocation space for each different type of sections
492 // (code, read-only data, read-write data) assuming that all sections are
493 // allocated with the max alignment. Note that we cannot compute with the
494 // individual alignments of the sections, because then the required size
495 // depends on the order, in which the sections are allocated.
496 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
497 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
498 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
499
500 return Error::success();
501 }
502
503 // compute stub buffer size for the given section
computeSectionStubBufSize(const ObjectFile & Obj,const SectionRef & Section)504 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
505 const SectionRef &Section) {
506 unsigned StubSize = getMaxStubSize();
507 if (StubSize == 0) {
508 return 0;
509 }
510 // FIXME: this is an inefficient way to handle this. We should computed the
511 // necessary section allocation size in loadObject by walking all the sections
512 // once.
513 unsigned StubBufSize = 0;
514 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
515 SI != SE; ++SI) {
516 section_iterator RelSecI = SI->getRelocatedSection();
517 if (!(RelSecI == Section))
518 continue;
519
520 for (const RelocationRef &Reloc : SI->relocations())
521 if (relocationNeedsStub(Reloc))
522 StubBufSize += StubSize;
523 }
524
525 // Get section data size and alignment
526 uint64_t DataSize = Section.getSize();
527 uint64_t Alignment64 = Section.getAlignment();
528
529 // Add stubbuf size alignment
530 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
531 unsigned StubAlignment = getStubAlignment();
532 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
533 if (StubAlignment > EndAlignment)
534 StubBufSize += StubAlignment - EndAlignment;
535 return StubBufSize;
536 }
537
readBytesUnaligned(uint8_t * Src,unsigned Size) const538 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
539 unsigned Size) const {
540 uint64_t Result = 0;
541 if (IsTargetLittleEndian) {
542 Src += Size - 1;
543 while (Size--)
544 Result = (Result << 8) | *Src--;
545 } else
546 while (Size--)
547 Result = (Result << 8) | *Src++;
548
549 return Result;
550 }
551
writeBytesUnaligned(uint64_t Value,uint8_t * Dst,unsigned Size) const552 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
553 unsigned Size) const {
554 if (IsTargetLittleEndian) {
555 while (Size--) {
556 *Dst++ = Value & 0xFF;
557 Value >>= 8;
558 }
559 } else {
560 Dst += Size - 1;
561 while (Size--) {
562 *Dst-- = Value & 0xFF;
563 Value >>= 8;
564 }
565 }
566 }
567
emitCommonSymbols(const ObjectFile & Obj,CommonSymbolList & CommonSymbols)568 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
569 CommonSymbolList &CommonSymbols) {
570 if (CommonSymbols.empty())
571 return Error::success();
572
573 uint64_t CommonSize = 0;
574 uint32_t CommonAlign = CommonSymbols.begin()->getAlignment();
575 CommonSymbolList SymbolsToAllocate;
576
577 DEBUG(dbgs() << "Processing common symbols...\n");
578
579 for (const auto &Sym : CommonSymbols) {
580 StringRef Name;
581 if (auto NameOrErr = Sym.getName())
582 Name = *NameOrErr;
583 else
584 return NameOrErr.takeError();
585
586 // Skip common symbols already elsewhere.
587 if (GlobalSymbolTable.count(Name) ||
588 Resolver.findSymbolInLogicalDylib(Name)) {
589 DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
590 << "'\n");
591 continue;
592 }
593
594 uint32_t Align = Sym.getAlignment();
595 uint64_t Size = Sym.getCommonSize();
596
597 CommonSize = alignTo(CommonSize, Align) + Size;
598
599 SymbolsToAllocate.push_back(Sym);
600 }
601
602 // Allocate memory for the section
603 unsigned SectionID = Sections.size();
604 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
605 "<common symbols>", false);
606 if (!Addr)
607 report_fatal_error("Unable to allocate memory for common symbols!");
608 uint64_t Offset = 0;
609 Sections.push_back(
610 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
611 memset(Addr, 0, CommonSize);
612
613 DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
614 << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
615
616 // Assign the address of each symbol
617 for (auto &Sym : SymbolsToAllocate) {
618 uint32_t Align = Sym.getAlignment();
619 uint64_t Size = Sym.getCommonSize();
620 StringRef Name;
621 if (auto NameOrErr = Sym.getName())
622 Name = *NameOrErr;
623 else
624 return NameOrErr.takeError();
625 if (Align) {
626 // This symbol has an alignment requirement.
627 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
628 Addr += AlignOffset;
629 Offset += AlignOffset;
630 }
631 uint32_t Flags = Sym.getFlags();
632 JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
633 if (Flags & SymbolRef::SF_Weak)
634 RTDyldSymFlags |= JITSymbolFlags::Weak;
635 if (Flags & SymbolRef::SF_Exported)
636 RTDyldSymFlags |= JITSymbolFlags::Exported;
637 DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
638 << format("%p", Addr) << "\n");
639 GlobalSymbolTable[Name] =
640 SymbolTableEntry(SectionID, Offset, RTDyldSymFlags);
641 Offset += Size;
642 Addr += Size;
643 }
644
645 if (Checker)
646 Checker->registerSection(Obj.getFileName(), SectionID);
647
648 return Error::success();
649 }
650
651 Expected<unsigned>
emitSection(const ObjectFile & Obj,const SectionRef & Section,bool IsCode)652 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
653 const SectionRef &Section,
654 bool IsCode) {
655 StringRef data;
656 uint64_t Alignment64 = Section.getAlignment();
657
658 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
659 unsigned PaddingSize = 0;
660 unsigned StubBufSize = 0;
661 bool IsRequired = isRequiredForExecution(Section);
662 bool IsVirtual = Section.isVirtual();
663 bool IsZeroInit = isZeroInit(Section);
664 bool IsReadOnly = isReadOnlyData(Section);
665 uint64_t DataSize = Section.getSize();
666
667 StringRef Name;
668 if (auto EC = Section.getName(Name))
669 return errorCodeToError(EC);
670
671 StubBufSize = computeSectionStubBufSize(Obj, Section);
672
673 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
674 // with zeroes added at the end. For MachO objects, this section has a
675 // slightly different name, so this won't have any effect for MachO objects.
676 if (Name == ".eh_frame")
677 PaddingSize = 4;
678
679 uintptr_t Allocate;
680 unsigned SectionID = Sections.size();
681 uint8_t *Addr;
682 const char *pData = nullptr;
683
684 // If this section contains any bits (i.e. isn't a virtual or bss section),
685 // grab a reference to them.
686 if (!IsVirtual && !IsZeroInit) {
687 // In either case, set the location of the unrelocated section in memory,
688 // since we still process relocations for it even if we're not applying them.
689 if (auto EC = Section.getContents(data))
690 return errorCodeToError(EC);
691 pData = data.data();
692 }
693
694 // Code section alignment needs to be at least as high as stub alignment or
695 // padding calculations may by incorrect when the section is remapped to a
696 // higher alignment.
697 if (IsCode)
698 Alignment = std::max(Alignment, getStubAlignment());
699
700 // Some sections, such as debug info, don't need to be loaded for execution.
701 // Leave those where they are.
702 if (IsRequired) {
703 Allocate = DataSize + PaddingSize + StubBufSize;
704 if (!Allocate)
705 Allocate = 1;
706 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
707 Name)
708 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
709 Name, IsReadOnly);
710 if (!Addr)
711 report_fatal_error("Unable to allocate section memory!");
712
713 // Zero-initialize or copy the data from the image
714 if (IsZeroInit || IsVirtual)
715 memset(Addr, 0, DataSize);
716 else
717 memcpy(Addr, pData, DataSize);
718
719 // Fill in any extra bytes we allocated for padding
720 if (PaddingSize != 0) {
721 memset(Addr + DataSize, 0, PaddingSize);
722 // Update the DataSize variable so that the stub offset is set correctly.
723 DataSize += PaddingSize;
724 }
725
726 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
727 << " obj addr: " << format("%p", pData)
728 << " new addr: " << format("%p", Addr)
729 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
730 << " Allocate: " << Allocate << "\n");
731 } else {
732 // Even if we didn't load the section, we need to record an entry for it
733 // to handle later processing (and by 'handle' I mean don't do anything
734 // with these sections).
735 Allocate = 0;
736 Addr = nullptr;
737 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
738 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
739 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
740 << " Allocate: " << Allocate << "\n");
741 }
742
743 Sections.push_back(
744 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
745
746 if (Checker)
747 Checker->registerSection(Obj.getFileName(), SectionID);
748
749 return SectionID;
750 }
751
752 Expected<unsigned>
findOrEmitSection(const ObjectFile & Obj,const SectionRef & Section,bool IsCode,ObjSectionToIDMap & LocalSections)753 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
754 const SectionRef &Section,
755 bool IsCode,
756 ObjSectionToIDMap &LocalSections) {
757
758 unsigned SectionID = 0;
759 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
760 if (i != LocalSections.end())
761 SectionID = i->second;
762 else {
763 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
764 SectionID = *SectionIDOrErr;
765 else
766 return SectionIDOrErr.takeError();
767 LocalSections[Section] = SectionID;
768 }
769 return SectionID;
770 }
771
addRelocationForSection(const RelocationEntry & RE,unsigned SectionID)772 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
773 unsigned SectionID) {
774 Relocations[SectionID].push_back(RE);
775 }
776
addRelocationForSymbol(const RelocationEntry & RE,StringRef SymbolName)777 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
778 StringRef SymbolName) {
779 // Relocation by symbol. If the symbol is found in the global symbol table,
780 // create an appropriate section relocation. Otherwise, add it to
781 // ExternalSymbolRelocations.
782 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
783 if (Loc == GlobalSymbolTable.end()) {
784 ExternalSymbolRelocations[SymbolName].push_back(RE);
785 } else {
786 // Copy the RE since we want to modify its addend.
787 RelocationEntry RECopy = RE;
788 const auto &SymInfo = Loc->second;
789 RECopy.Addend += SymInfo.getOffset();
790 Relocations[SymInfo.getSectionID()].push_back(RECopy);
791 }
792 }
793
createStubFunction(uint8_t * Addr,unsigned AbiVariant)794 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
795 unsigned AbiVariant) {
796 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
797 // This stub has to be able to access the full address space,
798 // since symbol lookup won't necessarily find a handy, in-range,
799 // PLT stub for functions which could be anywhere.
800 // Stub can use ip0 (== x16) to calculate address
801 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
802 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
803 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
804 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
805 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
806
807 return Addr;
808 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
809 // TODO: There is only ARM far stub now. We should add the Thumb stub,
810 // and stubs for branches Thumb - ARM and ARM - Thumb.
811 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
812 return Addr + 4;
813 } else if (IsMipsO32ABI) {
814 // 0: 3c190000 lui t9,%hi(addr).
815 // 4: 27390000 addiu t9,t9,%lo(addr).
816 // 8: 03200008 jr t9.
817 // c: 00000000 nop.
818 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
819 const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
820
821 writeBytesUnaligned(LuiT9Instr, Addr, 4);
822 writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
823 writeBytesUnaligned(JrT9Instr, Addr+8, 4);
824 writeBytesUnaligned(NopInstr, Addr+12, 4);
825 return Addr;
826 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
827 // Depending on which version of the ELF ABI is in use, we need to
828 // generate one of two variants of the stub. They both start with
829 // the same sequence to load the target address into r12.
830 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
831 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
832 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
833 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
834 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
835 if (AbiVariant == 2) {
836 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
837 // The address is already in r12 as required by the ABI. Branch to it.
838 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
839 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
840 writeInt32BE(Addr+28, 0x4E800420); // bctr
841 } else {
842 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
843 // Load the function address on r11 and sets it to control register. Also
844 // loads the function TOC in r2 and environment pointer to r11.
845 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
846 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
847 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
848 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
849 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
850 writeInt32BE(Addr+40, 0x4E800420); // bctr
851 }
852 return Addr;
853 } else if (Arch == Triple::systemz) {
854 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
855 writeInt16BE(Addr+2, 0x0000);
856 writeInt16BE(Addr+4, 0x0004);
857 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
858 // 8-byte address stored at Addr + 8
859 return Addr;
860 } else if (Arch == Triple::x86_64) {
861 *Addr = 0xFF; // jmp
862 *(Addr+1) = 0x25; // rip
863 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
864 } else if (Arch == Triple::x86) {
865 *Addr = 0xE9; // 32-bit pc-relative jump.
866 }
867 return Addr;
868 }
869
870 // Assign an address to a symbol name and resolve all the relocations
871 // associated with it.
reassignSectionAddress(unsigned SectionID,uint64_t Addr)872 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
873 uint64_t Addr) {
874 // The address to use for relocation resolution is not
875 // the address of the local section buffer. We must be doing
876 // a remote execution environment of some sort. Relocations can't
877 // be applied until all the sections have been moved. The client must
878 // trigger this with a call to MCJIT::finalize() or
879 // RuntimeDyld::resolveRelocations().
880 //
881 // Addr is a uint64_t because we can't assume the pointer width
882 // of the target is the same as that of the host. Just use a generic
883 // "big enough" type.
884 DEBUG(dbgs() << "Reassigning address for section " << SectionID << " ("
885 << Sections[SectionID].getName() << "): "
886 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
887 << " -> " << format("0x%016" PRIx64, Addr) << "\n");
888 Sections[SectionID].setLoadAddress(Addr);
889 }
890
resolveRelocationList(const RelocationList & Relocs,uint64_t Value)891 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
892 uint64_t Value) {
893 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
894 const RelocationEntry &RE = Relocs[i];
895 // Ignore relocations for sections that were not loaded
896 if (Sections[RE.SectionID].getAddress() == nullptr)
897 continue;
898 resolveRelocation(RE, Value);
899 }
900 }
901
resolveExternalSymbols()902 void RuntimeDyldImpl::resolveExternalSymbols() {
903 while (!ExternalSymbolRelocations.empty()) {
904 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
905
906 StringRef Name = i->first();
907 if (Name.size() == 0) {
908 // This is an absolute symbol, use an address of zero.
909 DEBUG(dbgs() << "Resolving absolute relocations."
910 << "\n");
911 RelocationList &Relocs = i->second;
912 resolveRelocationList(Relocs, 0);
913 } else {
914 uint64_t Addr = 0;
915 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
916 if (Loc == GlobalSymbolTable.end()) {
917 // This is an external symbol, try to get its address from the symbol
918 // resolver.
919 // First search for the symbol in this logical dylib.
920 Addr = Resolver.findSymbolInLogicalDylib(Name.data()).getAddress();
921 // If that fails, try searching for an external symbol.
922 if (!Addr)
923 Addr = Resolver.findSymbol(Name.data()).getAddress();
924 // The call to getSymbolAddress may have caused additional modules to
925 // be loaded, which may have added new entries to the
926 // ExternalSymbolRelocations map. Consquently, we need to update our
927 // iterator. This is also why retrieval of the relocation list
928 // associated with this symbol is deferred until below this point.
929 // New entries may have been added to the relocation list.
930 i = ExternalSymbolRelocations.find(Name);
931 } else {
932 // We found the symbol in our global table. It was probably in a
933 // Module that we loaded previously.
934 const auto &SymInfo = Loc->second;
935 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
936 SymInfo.getOffset();
937 }
938
939 // FIXME: Implement error handling that doesn't kill the host program!
940 if (!Addr)
941 report_fatal_error("Program used external function '" + Name +
942 "' which could not be resolved!");
943
944 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
945 // manually and we shouldn't resolve its relocations.
946 if (Addr != UINT64_MAX) {
947 DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
948 << format("0x%lx", Addr) << "\n");
949 // This list may have been updated when we called getSymbolAddress, so
950 // don't change this code to get the list earlier.
951 RelocationList &Relocs = i->second;
952 resolveRelocationList(Relocs, Addr);
953 }
954 }
955
956 ExternalSymbolRelocations.erase(i);
957 }
958 }
959
960 //===----------------------------------------------------------------------===//
961 // RuntimeDyld class implementation
962
getSectionLoadAddress(const object::SectionRef & Sec) const963 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
964 const object::SectionRef &Sec) const {
965
966 auto I = ObjSecToIDMap.find(Sec);
967 if (I != ObjSecToIDMap.end())
968 return RTDyld.Sections[I->second].getLoadAddress();
969
970 return 0;
971 }
972
anchor()973 void RuntimeDyld::MemoryManager::anchor() {}
anchor()974 void RuntimeDyld::SymbolResolver::anchor() {}
975
RuntimeDyld(RuntimeDyld::MemoryManager & MemMgr,RuntimeDyld::SymbolResolver & Resolver)976 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
977 RuntimeDyld::SymbolResolver &Resolver)
978 : MemMgr(MemMgr), Resolver(Resolver) {
979 // FIXME: There's a potential issue lurking here if a single instance of
980 // RuntimeDyld is used to load multiple objects. The current implementation
981 // associates a single memory manager with a RuntimeDyld instance. Even
982 // though the public class spawns a new 'impl' instance for each load,
983 // they share a single memory manager. This can become a problem when page
984 // permissions are applied.
985 Dyld = nullptr;
986 ProcessAllSections = false;
987 Checker = nullptr;
988 }
989
~RuntimeDyld()990 RuntimeDyld::~RuntimeDyld() {}
991
992 static std::unique_ptr<RuntimeDyldCOFF>
createRuntimeDyldCOFF(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,RuntimeDyld::SymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyldCheckerImpl * Checker)993 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
994 RuntimeDyld::SymbolResolver &Resolver,
995 bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
996 std::unique_ptr<RuntimeDyldCOFF> Dyld =
997 RuntimeDyldCOFF::create(Arch, MM, Resolver);
998 Dyld->setProcessAllSections(ProcessAllSections);
999 Dyld->setRuntimeDyldChecker(Checker);
1000 return Dyld;
1001 }
1002
1003 static std::unique_ptr<RuntimeDyldELF>
createRuntimeDyldELF(RuntimeDyld::MemoryManager & MM,RuntimeDyld::SymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyldCheckerImpl * Checker)1004 createRuntimeDyldELF(RuntimeDyld::MemoryManager &MM,
1005 RuntimeDyld::SymbolResolver &Resolver,
1006 bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
1007 std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM, Resolver));
1008 Dyld->setProcessAllSections(ProcessAllSections);
1009 Dyld->setRuntimeDyldChecker(Checker);
1010 return Dyld;
1011 }
1012
1013 static std::unique_ptr<RuntimeDyldMachO>
createRuntimeDyldMachO(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MM,RuntimeDyld::SymbolResolver & Resolver,bool ProcessAllSections,RuntimeDyldCheckerImpl * Checker)1014 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1015 RuntimeDyld::SymbolResolver &Resolver,
1016 bool ProcessAllSections,
1017 RuntimeDyldCheckerImpl *Checker) {
1018 std::unique_ptr<RuntimeDyldMachO> Dyld =
1019 RuntimeDyldMachO::create(Arch, MM, Resolver);
1020 Dyld->setProcessAllSections(ProcessAllSections);
1021 Dyld->setRuntimeDyldChecker(Checker);
1022 return Dyld;
1023 }
1024
1025 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const ObjectFile & Obj)1026 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1027 if (!Dyld) {
1028 if (Obj.isELF())
1029 Dyld = createRuntimeDyldELF(MemMgr, Resolver, ProcessAllSections, Checker);
1030 else if (Obj.isMachO())
1031 Dyld = createRuntimeDyldMachO(
1032 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1033 ProcessAllSections, Checker);
1034 else if (Obj.isCOFF())
1035 Dyld = createRuntimeDyldCOFF(
1036 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1037 ProcessAllSections, Checker);
1038 else
1039 report_fatal_error("Incompatible object format!");
1040 }
1041
1042 if (!Dyld->isCompatibleFile(Obj))
1043 report_fatal_error("Incompatible object format!");
1044
1045 auto LoadedObjInfo = Dyld->loadObject(Obj);
1046 MemMgr.notifyObjectLoaded(*this, Obj);
1047 return LoadedObjInfo;
1048 }
1049
getSymbolLocalAddress(StringRef Name) const1050 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1051 if (!Dyld)
1052 return nullptr;
1053 return Dyld->getSymbolLocalAddress(Name);
1054 }
1055
getSymbol(StringRef Name) const1056 RuntimeDyld::SymbolInfo RuntimeDyld::getSymbol(StringRef Name) const {
1057 if (!Dyld)
1058 return nullptr;
1059 return Dyld->getSymbol(Name);
1060 }
1061
resolveRelocations()1062 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1063
reassignSectionAddress(unsigned SectionID,uint64_t Addr)1064 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1065 Dyld->reassignSectionAddress(SectionID, Addr);
1066 }
1067
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)1068 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1069 uint64_t TargetAddress) {
1070 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1071 }
1072
hasError()1073 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1074
getErrorString()1075 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1076
finalizeWithMemoryManagerLocking()1077 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1078 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1079 MemMgr.FinalizationLocked = true;
1080 resolveRelocations();
1081 registerEHFrames();
1082 if (!MemoryFinalizationLocked) {
1083 MemMgr.finalizeMemory();
1084 MemMgr.FinalizationLocked = false;
1085 }
1086 }
1087
registerEHFrames()1088 void RuntimeDyld::registerEHFrames() {
1089 if (Dyld)
1090 Dyld->registerEHFrames();
1091 }
1092
deregisterEHFrames()1093 void RuntimeDyld::deregisterEHFrames() {
1094 if (Dyld)
1095 Dyld->deregisterEHFrames();
1096 }
1097
1098 } // end namespace llvm
1099