• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_FRAMEWORK_ALLOCATOR_H_
17 #define TENSORFLOW_FRAMEWORK_ALLOCATOR_H_
18 
19 #include <stdlib.h>
20 
21 #include <limits>
22 
23 #include "tensorflow/core/framework/numeric_types.h"
24 #include "tensorflow/core/framework/resource_handle.h"
25 #include "tensorflow/core/framework/type_traits.h"
26 #include "tensorflow/core/framework/variant.h"
27 #include "tensorflow/core/platform/logging.h"
28 #include "tensorflow/core/platform/types.h"
29 
30 namespace tensorflow {
31 
32 // Attributes for a single allocation call. Different calls to the same
33 // allocator could potentially have different allocation attributes.
34 struct AllocationAttributes {
35   // If the first attempt to allocate the memory fails, the allocation
36   // should return immediately without retrying.
37   // An example use case is optional scratch spaces where a failure
38   // has only performance impact.
39   bool no_retry_on_failure = false;
40   // If a Tensor is allocated without the following set to true, then
41   // it is logged as an unknown allocation. During execution Tensors
42   // should be allocated through the OpKernelContext which records
43   // which Op is performing the allocation, and sets this flag to
44   // true.
45   bool allocation_will_be_logged = false;
46 };
47 
48 // Runtime statistics collected by an allocator.
49 struct AllocatorStats {
50   int64 num_allocs;        // Number of allocations.
51   int64 bytes_in_use;      // Number of bytes in use.
52   int64 max_bytes_in_use;  // The maximum bytes in use.
53   int64 max_alloc_size;    // The max single allocation seen.
54 
55   // The upper limit what the allocator can allocate, if such a limit
56   // is known. Certain allocator may return 0 to indicate the limit is
57   // unknown.
58   int64 bytes_limit;
59 
AllocatorStatsAllocatorStats60   AllocatorStats() { Clear(); }
61 
62   void Clear();
63   string DebugString() const;
64 };
65 
66 // Allocator is an abstract interface for allocating and deallocating
67 // device memory.
68 class Allocator {
69  public:
70 #ifdef EIGEN_VECTORIZE_AVX512
71   // Align to 64 byte boundary.
72   static constexpr size_t kAllocatorAlignment = 64;
73 #else
74   // Align to 32 byte boundary.
75   static constexpr size_t kAllocatorAlignment = 32;
76 #endif
77 
78   virtual ~Allocator();
79 
80   // Return a string identifying this allocator
81   virtual string Name() = 0;
82 
83   // Return an uninitialized block of memory that is "num_bytes" bytes
84   // in size.  The returned pointer is guaranteed to be aligned to a
85   // multiple of "alignment" bytes.
86   // REQUIRES: "alignment" is a power of 2.
87   virtual void* AllocateRaw(size_t alignment, size_t num_bytes) = 0;
88 
89   // Return an uninitialized block of memory that is "num_bytes" bytes
90   // in size with specified allocation attributes.  The returned pointer is
91   // guaranteed to be aligned to a multiple of "alignment" bytes.
92   // REQUIRES: "alignment" is a power of 2.
AllocateRaw(size_t alignment,size_t num_bytes,const AllocationAttributes & allocation_attr)93   virtual void* AllocateRaw(size_t alignment, size_t num_bytes,
94                             const AllocationAttributes& allocation_attr) {
95     // The default behavior is to use the implementation without any allocation
96     // attributes.
97     return AllocateRaw(alignment, num_bytes);
98   }
99 
100   // Deallocate a block of memory pointer to by "ptr"
101   // REQUIRES: "ptr" was previously returned by a call to AllocateRaw
102   virtual void DeallocateRaw(void* ptr) = 0;
103 
104   // Convenience functions to do typed allocation.  C++ constructors
105   // and destructors are invoked for complex types if necessary,
106   // depending on the concrete Allocator implementation. May return
107   // NULL if the tensor has too many elements to represent in a single
108   // allocation.
109   template <typename T>
Allocate(size_t num_elements)110   T* Allocate(size_t num_elements) {
111     return Allocate<T>(num_elements, AllocationAttributes());
112   }
113 
114   template <typename T>
Allocate(size_t num_elements,const AllocationAttributes & allocation_attr)115   T* Allocate(size_t num_elements,
116               const AllocationAttributes& allocation_attr) {
117     // TODO(jeff): Do we need to allow clients to pass in alignment
118     // requirements?
119 
120     if (num_elements > (std::numeric_limits<size_t>::max() / sizeof(T))) {
121       return NULL;
122     }
123 
124     void* p = AllocateRaw(kAllocatorAlignment, sizeof(T) * num_elements,
125                           allocation_attr);
126     T* typed_p = reinterpret_cast<T*>(p);
127     if (typed_p) RunCtor<T>(typed_p, num_elements);
128     return typed_p;
129   }
130 
131   template <typename T>
Deallocate(T * ptr,size_t num_elements)132   void Deallocate(T* ptr, size_t num_elements) {
133     if (ptr) {
134       RunDtor<T>(ptr, num_elements);
135       DeallocateRaw(ptr);
136     }
137   }
138 
139   // Returns true if this allocator tracks the sizes of allocations.
140   // RequestedSize and AllocatedSize must be overridden if
141   // TracksAllocationSizes is overridden to return true.
TracksAllocationSizes()142   virtual bool TracksAllocationSizes() { return false; }
143 
144   // Returns true if this allocator requires tensors with 0 elements
145   // to allocate buffers. This is false for most allocators, but may
146   // be used by special-case allocators that want to track tensor
147   // usage.
ShouldAllocateEmptyTensors()148   virtual bool ShouldAllocateEmptyTensors() { return false; }
149 
150   // Returns the user-requested size of the data allocated at
151   // 'ptr'.  Note that the actual buffer allocated might be larger
152   // than requested, but this function returns the size requested by
153   // the user.
154   //
155   // REQUIRES: TracksAllocationSizes() is true.
156   //
157   // REQUIRES: 'ptr!=nullptr' and points to a buffer previously
158   // allocated by this allocator.
RequestedSize(const void * ptr)159   virtual size_t RequestedSize(const void* ptr) {
160     CHECK(false) << "allocator doesn't track sizes";
161     return size_t(0);
162   }
163 
164   // Returns the allocated size of the buffer at 'ptr' if known,
165   // otherwise returns RequestedSize(ptr). AllocatedSize(ptr) is
166   // guaranteed to be >= RequestedSize(ptr).
167   //
168   // REQUIRES: TracksAllocationSizes() is true.
169   //
170   // REQUIRES: 'ptr!=nullptr' and points to a buffer previously
171   // allocated by this allocator.
AllocatedSize(const void * ptr)172   virtual size_t AllocatedSize(const void* ptr) { return RequestedSize(ptr); }
173 
174   // Returns either 0 or an identifier assigned to the buffer at 'ptr'
175   // when the buffer was returned by AllocateRaw. If non-zero, the
176   // identifier differs from every other ID assigned by this
177   // allocator.
178   //
179   // REQUIRES: TracksAllocationSizes() is true.
180   //
181   // REQUIRES: 'ptr!=nullptr' and points to a buffer previously
182   // allocated by this allocator.
AllocationId(const void * ptr)183   virtual int64 AllocationId(const void* ptr) { return 0; }
184 
185   // Returns the allocated size of the buffer at 'ptr' if known,
186   // otherwise returns 0. This method can be called when
187   // TracksAllocationSizes() is false, but can be extremely slow.
188   //
189   // REQUIRES: 'ptr!=nullptr' and points to a buffer previously
190   // allocated by this allocator.
AllocatedSizeSlow(const void * ptr)191   virtual size_t AllocatedSizeSlow(const void* ptr) {
192     if (TracksAllocationSizes()) {
193       return AllocatedSize(ptr);
194     }
195     return 0;
196   }
197 
198   // Fills in 'stats' with statistics collected by this allocator.
GetStats(AllocatorStats * stats)199   virtual void GetStats(AllocatorStats* stats) { stats->Clear(); }
200 
201   // Clears the internal stats except for the `in_use` field.
ClearStats()202   virtual void ClearStats() {}
203 
204  private:
205   // No constructors or destructors are run for simple types
206   template <typename T>
RunCtor(T * p,size_t n)207   void RunCtor(T* p, size_t n) {
208     static_assert(is_simple_type<T>::value, "T is not a simple type.");
209   }
210 
211   template <typename T>
RunDtor(T * p,size_t n)212   void RunDtor(T* p, size_t n) {}
213 
214   // custom constructors and destructors that can be overridden for
215   // non-standard allocators
216 
217   // Runs string's default constructor for  p[0], p[1], ..., p[n-1].
RunStringCtor(string * p,size_t n)218   virtual void RunStringCtor(string* p, size_t n) {
219     for (size_t i = 0; i < n; ++p, ++i) new (p) string();
220   }
221 
222   // Runs string's default destructor for  p[0], p[1], ..., p[n-1].
RunStringDtor(string * p,size_t n)223   virtual void RunStringDtor(string* p, size_t n) {
224     for (size_t i = 0; i < n; ++p, ++i) p->~string();
225   }
226 
RunResourceCtor(ResourceHandle * p,size_t n)227   virtual void RunResourceCtor(ResourceHandle* p, size_t n) {
228     for (size_t i = 0; i < n; ++p, ++i) new (p) ResourceHandle();
229   }
230 
231   // Runs string's default destructor for  p[0], p[1], ..., p[n-1].
RunResourceDtor(ResourceHandle * p,size_t n)232   virtual void RunResourceDtor(ResourceHandle* p, size_t n) {
233     for (size_t i = 0; i < n; ++p, ++i) p->~ResourceHandle();
234   }
235 
RunVariantCtor(Variant * p,size_t n)236   virtual void RunVariantCtor(Variant* p, size_t n) {
237     for (size_t i = 0; i < n; ++p, ++i) new (p) Variant();
238   }
239 
RunVariantDtor(Variant * p,size_t n)240   virtual void RunVariantDtor(Variant* p, size_t n) {
241     for (size_t i = 0; i < n; ++p, ++i) p->~Variant();
242   }
243 
244   // TODO(jeff): Maybe provide some interface to give info about
245   // current allocation state (total number of bytes available for
246   // allocation, number of bytes free on device, etc.)
247 };
248 
249 // Allocator-specific constructors and destructors are used for
250 // strings
251 template <>
RunCtor(string * p,size_t n)252 inline void Allocator::RunCtor(string* p, size_t n) {
253   RunStringCtor(p, n);
254 }
255 
256 template <>
RunDtor(string * p,size_t n)257 inline void Allocator::RunDtor(string* p, size_t n) {
258   RunStringDtor(p, n);
259 }
260 
261 template <>
RunCtor(ResourceHandle * p,size_t n)262 inline void Allocator::RunCtor(ResourceHandle* p, size_t n) {
263   RunResourceCtor(p, n);
264 }
265 
266 template <>
RunDtor(ResourceHandle * p,size_t n)267 inline void Allocator::RunDtor(ResourceHandle* p, size_t n) {
268   RunResourceDtor(p, n);
269 }
270 
271 template <>
RunCtor(Variant * p,size_t n)272 inline void Allocator::RunCtor(Variant* p, size_t n) {
273   RunVariantCtor(p, n);
274 }
275 
276 template <>
RunDtor(Variant * p,size_t n)277 inline void Allocator::RunDtor(Variant* p, size_t n) {
278   RunVariantDtor(p, n);
279 }
280 
281 // An implementation of Allocator that delegates all calls to another Allocator.
282 //
283 // Useful to clients who want to override part of the functionality of another
284 // allocator.
285 class AllocatorWrapper : public Allocator {
286  public:
AllocatorWrapper(Allocator * wrapped)287   explicit AllocatorWrapper(Allocator* wrapped) : wrapped_(wrapped) {}
288 
~AllocatorWrapper()289   ~AllocatorWrapper() override {}
290 
291   // Returns the wrapped allocator to which all calls are delegated.
wrapped()292   Allocator* wrapped() const { return wrapped_; }
293 
Name()294   string Name() override { return wrapped_->Name(); }
295 
AllocateRaw(size_t alignment,size_t num_bytes)296   void* AllocateRaw(size_t alignment, size_t num_bytes) override {
297     return wrapped_->AllocateRaw(alignment, num_bytes);
298   }
299 
AllocateRaw(size_t alignment,size_t num_bytes,const AllocationAttributes & allocation_attr)300   void* AllocateRaw(size_t alignment, size_t num_bytes,
301                     const AllocationAttributes& allocation_attr) override {
302     return wrapped_->AllocateRaw(alignment, num_bytes, allocation_attr);
303   }
304 
DeallocateRaw(void * ptr)305   void DeallocateRaw(void* ptr) override { wrapped_->DeallocateRaw(ptr); }
306 
TracksAllocationSizes()307   bool TracksAllocationSizes() override {
308     return wrapped_->TracksAllocationSizes();
309   }
310 
ShouldAllocateEmptyTensors()311   bool ShouldAllocateEmptyTensors() override {
312     return wrapped_->TracksAllocationSizes();
313   }
314 
RequestedSize(const void * ptr)315   size_t RequestedSize(const void* ptr) override {
316     return wrapped_->RequestedSize(ptr);
317   }
318 
AllocatedSize(const void * ptr)319   size_t AllocatedSize(const void* ptr) override {
320     return wrapped_->AllocatedSize(ptr);
321   }
322 
AllocationId(const void * ptr)323   int64 AllocationId(const void* ptr) override {
324     return wrapped_->AllocationId(ptr);
325   }
326 
AllocatedSizeSlow(const void * ptr)327   size_t AllocatedSizeSlow(const void* ptr) override {
328     return wrapped_->AllocatedSizeSlow(ptr);
329   }
330 
331  private:
332   Allocator* const wrapped_;
333 };
334 
335 // A tensorflow Op may need access to different kinds of memory that
336 // are not simply a function of the device to which the Op has been
337 // assigned.  For example, an Op executing on a GPU may still need
338 // to allocate CPU RAM for some purpose.  Internal to the tensorflow
339 // runtime we may choose to allocate CPU ram from special regions
340 // that have been prepared for higher performance in some use
341 // contexts, e.g. doing DMA with particular devices.  For these
342 // reasons, the Device interface does not expose just one memory
343 // Allocator, but instead provides an accessor that takes a
344 // specification of the desired memory attributes in order to select
345 // an Allocator.
346 //
347 // Example use:
348 //  // Allocator for ordinary device memory:
349 //  Allocator* a = allocator(AllocatorAttributes());
350 // ...
351 //  // Allocator for CPU RAM, regardless of where Op is executing:
352 //  AllocatorAttributes attr;
353 //  attr.set_on_host(true);
354 //  Allocator* a = allocator(attr);
355 struct AllocatorAttributes {
set_on_hostAllocatorAttributes356   void set_on_host(bool v) { value |= (static_cast<int>(v)); }
on_hostAllocatorAttributes357   bool on_host() const { return value & 0x1; }
set_nic_compatibleAllocatorAttributes358   void set_nic_compatible(bool v) { value |= (static_cast<int>(v) << 1); }
nic_compatibleAllocatorAttributes359   bool nic_compatible() const { return value & (0x1 << 1); }
set_gpu_compatibleAllocatorAttributes360   void set_gpu_compatible(bool v) { value |= (static_cast<int>(v) << 2); }
gpu_compatibleAllocatorAttributes361   bool gpu_compatible() const { return value & (0x1 << 2); }
MergeAllocatorAttributes362   void Merge(AllocatorAttributes other) { value |= other.value; }
363   // Returns true if the fields set in *this is a subset of or equal to
364   // those set in other.
IsEqualOrLessRestrictiveThanAllocatorAttributes365   bool IsEqualOrLessRestrictiveThan(const AllocatorAttributes& other) const {
366     return (value | other.value) == other.value;
367   }
368 
369   // NOTE: The upper 8 bits of the value are reserved for
370   // device-specific uses.  Implementors of a device can interpret these
371   // upper 8 bits in device-specific ways, and ops implemented for those
372   // devices are responsible for setting those 8 bits appropriately.
373   uint32 value = 0;
374 };
375 
376 // Returns a trivial implementation of Allocator which uses the system
377 // default malloc. The returned allocator is a process singleton.
378 Allocator* cpu_allocator();
379 
380 // If 'enable' is true, the process-wide cpu allocator collects
381 // AllocatorStats. By default, it's disabled.
382 void EnableCPUAllocatorStats(bool enable);
383 
384 // If 'enable' is true, the process-wide cpu allocator collects full
385 // statistics. By default, it's disabled.
386 void EnableCPUAllocatorFullStats(bool enable);
387 
388 // Abstract interface of an object that does the underlying suballoc/free of
389 // memory for a higher-level allocator.
390 class SubAllocator {
391  public:
~SubAllocator()392   virtual ~SubAllocator() {}
393   virtual void* Alloc(size_t alignment, size_t num_bytes) = 0;
394   virtual void Free(void* ptr, size_t num_bytes) = 0;
395 };
396 
397 }  // namespace tensorflow
398 
399 #endif  // TENSORFLOW_FRAMEWORK_ALLOCATOR_H_
400