• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- subzero/src/IceGlobalContext.cpp - Global context defs -------------===//
2 //
3 //                        The Subzero Code Generator
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Defines aspects of the compilation that persist across multiple
12 /// functions.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "IceGlobalContext.h"
17 
18 #include "IceCfg.h"
19 #include "IceCfgNode.h"
20 #include "IceClFlags.h"
21 #include "IceDefs.h"
22 #include "IceELFObjectWriter.h"
23 #include "IceGlobalInits.h"
24 #include "IceLiveness.h"
25 #include "IceOperand.h"
26 #include "IceRevision.h"
27 #include "IceTargetLowering.h"
28 #include "IceTimerTree.h"
29 #include "IceTypes.def"
30 #include "IceTypes.h"
31 
32 #ifdef __clang__
33 #pragma clang diagnostic push
34 #pragma clang diagnostic ignored "-Wunused-parameter"
35 #endif // __clang__
36 
37 #include "llvm/Support/Timer.h"
38 
39 #ifdef __clang__
40 #pragma clang diagnostic pop
41 #endif // __clang__
42 
43 #include <algorithm> // max()
44 
45 namespace std {
46 template <> struct hash<Ice::RelocatableTuple> {
operator ()std::hash47   size_t operator()(const Ice::RelocatableTuple &Key) const {
48     // Use the relocatable's name, plus the hash of a combination of the number
49     // of OffsetExprs and the known, fixed offset for the reloc. We left shift
50     // the known relocatable by 5 trying to minimize the interaction between the
51     // bits in OffsetExpr.size() and Key.Offset.
52     return hash<Ice::SizeT>()(Key.Name.getID()) +
53            hash<std::size_t>()(Key.OffsetExpr.size() + (Key.Offset << 5));
54   }
55 };
56 } // end of namespace std
57 
58 namespace Ice {
59 
60 namespace {
61 
62 // Define the key comparison function for the constant pool's unordered_map,
63 // but only for key types of interest: integer types, floating point types, and
64 // the special RelocatableTuple.
65 template <typename KeyType, class Enable = void> struct KeyCompare {};
66 
67 template <typename KeyType>
68 struct KeyCompare<KeyType,
69                   typename std::enable_if<
70                       std::is_integral<KeyType>::value ||
71                       std::is_same<KeyType, RelocatableTuple>::value>::type> {
operator ()Ice::__anon9ab01fc20111::KeyCompare72   bool operator()(const KeyType &Value1, const KeyType &Value2) const {
73     return Value1 == Value2;
74   }
75 };
76 template <typename KeyType>
77 struct KeyCompare<KeyType, typename std::enable_if<
78                                std::is_floating_point<KeyType>::value>::type> {
operator ()Ice::__anon9ab01fc20111::KeyCompare79   bool operator()(const KeyType &Value1, const KeyType &Value2) const {
80     return !memcmp(&Value1, &Value2, sizeof(KeyType));
81   }
82 };
83 
84 // Define a key comparison function for sorting the constant pool's values
85 // after they are dumped to a vector. This covers integer types, floating point
86 // types, and ConstantRelocatable values.
87 template <typename ValueType, class Enable = void> struct KeyCompareLess {};
88 
89 template <typename ValueType>
90 struct KeyCompareLess<ValueType,
91                       typename std::enable_if<std::is_floating_point<
92                           typename ValueType::PrimType>::value>::type> {
operator ()Ice::__anon9ab01fc20111::KeyCompareLess93   bool operator()(const Constant *Const1, const Constant *Const2) const {
94     using CompareType = uint64_t;
95     static_assert(sizeof(typename ValueType::PrimType) <= sizeof(CompareType),
96                   "Expected floating-point type of width 64-bit or less");
97     typename ValueType::PrimType V1 = llvm::cast<ValueType>(Const1)->getValue();
98     typename ValueType::PrimType V2 = llvm::cast<ValueType>(Const2)->getValue();
99     // We avoid "V1<V2" because of NaN.
100     // We avoid "memcmp(&V1,&V2,sizeof(V1))<0" which depends on the
101     // endian-ness of the host system running Subzero.
102     // Instead, compare the result of bit_cast to uint64_t.
103     uint64_t I1 = 0, I2 = 0;
104     memcpy(&I1, &V1, sizeof(V1));
105     memcpy(&I2, &V2, sizeof(V2));
106     return I1 < I2;
107   }
108 };
109 template <typename ValueType>
110 struct KeyCompareLess<ValueType,
111                       typename std::enable_if<std::is_integral<
112                           typename ValueType::PrimType>::value>::type> {
operator ()Ice::__anon9ab01fc20111::KeyCompareLess113   bool operator()(const Constant *Const1, const Constant *Const2) const {
114     typename ValueType::PrimType V1 = llvm::cast<ValueType>(Const1)->getValue();
115     typename ValueType::PrimType V2 = llvm::cast<ValueType>(Const2)->getValue();
116     return V1 < V2;
117   }
118 };
119 template <typename ValueType>
120 struct KeyCompareLess<
121     ValueType, typename std::enable_if<
122                    std::is_same<ValueType, ConstantRelocatable>::value>::type> {
operator ()Ice::__anon9ab01fc20111::KeyCompareLess123   bool operator()(const Constant *Const1, const Constant *Const2) const {
124     auto *V1 = llvm::cast<ValueType>(Const1);
125     auto *V2 = llvm::cast<ValueType>(Const2);
126     if (V1->getName() == V2->getName())
127       return V1->getOffset() < V2->getOffset();
128     return V1->getName() < V2->getName();
129   }
130 };
131 
132 // TypePool maps constants of type KeyType (e.g. float) to pointers to
133 // type ValueType (e.g. ConstantFloat).
134 template <Type Ty, typename KeyType, typename ValueType> class TypePool {
135   TypePool(const TypePool &) = delete;
136   TypePool &operator=(const TypePool &) = delete;
137 
138 public:
139   TypePool() = default;
getOrAdd(GlobalContext * Ctx,KeyType Key)140   ValueType *getOrAdd(GlobalContext *Ctx, KeyType Key) {
141     auto Iter = Pool.find(Key);
142     if (Iter != Pool.end()) {
143       Iter->second->updateLookupCount();
144       return Iter->second;
145     }
146     auto *Result = ValueType::create(Ctx, Ty, Key);
147     Pool[Key] = Result;
148     Result->updateLookupCount();
149     return Result;
150   }
getConstantPool() const151   ConstantList getConstantPool() const {
152     ConstantList Constants;
153     Constants.reserve(Pool.size());
154     for (auto &I : Pool)
155       Constants.push_back(I.second);
156     // The sort (and its KeyCompareLess machinery) is not strictly necessary,
157     // but is desirable for producing output that is deterministic across
158     // unordered_map::iterator implementations.
159     std::sort(Constants.begin(), Constants.end(), KeyCompareLess<ValueType>());
160     return Constants;
161   }
size() const162   size_t size() const { return Pool.size(); }
163 
164 private:
165   // Use the default hash function, and a custom key comparison function. The
166   // key comparison function for floating point variables can't use the default
167   // == based implementation because of special C++ semantics regarding +0.0,
168   // -0.0, and NaN comparison. However, it's OK to use the default hash for
169   // floating point values because KeyCompare is the final source of truth - in
170   // the worst case a "false" collision must be resolved.
171   using ContainerType =
172       std::unordered_map<KeyType, ValueType *, std::hash<KeyType>,
173                          KeyCompare<KeyType>>;
174   ContainerType Pool;
175 };
176 
177 // UndefPool maps ICE types to the corresponding ConstantUndef values.
178 class UndefPool {
179   UndefPool(const UndefPool &) = delete;
180   UndefPool &operator=(const UndefPool &) = delete;
181 
182 public:
UndefPool()183   UndefPool() : Pool(IceType_NUM) {}
184 
getOrAdd(GlobalContext * Ctx,Type Ty)185   ConstantUndef *getOrAdd(GlobalContext *Ctx, Type Ty) {
186     if (Pool[Ty] == nullptr)
187       Pool[Ty] = ConstantUndef::create(Ctx, Ty);
188     return Pool[Ty];
189   }
190 
191 private:
192   std::vector<ConstantUndef *> Pool;
193 };
194 
195 } // end of anonymous namespace
196 
197 // The global constant pool bundles individual pools of each type of
198 // interest.
199 class ConstantPool {
200   ConstantPool(const ConstantPool &) = delete;
201   ConstantPool &operator=(const ConstantPool &) = delete;
202 
203 public:
204   ConstantPool() = default;
205   TypePool<IceType_f32, float, ConstantFloat> Floats;
206   TypePool<IceType_f64, double, ConstantDouble> Doubles;
207   TypePool<IceType_i1, int8_t, ConstantInteger32> Integers1;
208   TypePool<IceType_i8, int8_t, ConstantInteger32> Integers8;
209   TypePool<IceType_i16, int16_t, ConstantInteger32> Integers16;
210   TypePool<IceType_i32, int32_t, ConstantInteger32> Integers32;
211   TypePool<IceType_i64, int64_t, ConstantInteger64> Integers64;
212   TypePool<IceType_i32, RelocatableTuple, ConstantRelocatable> Relocatables;
213   TypePool<IceType_i32, RelocatableTuple, ConstantRelocatable>
214       ExternRelocatables;
215   UndefPool Undefs;
216 };
217 
waitForWorkerThreads()218 void GlobalContext::waitForWorkerThreads() {
219   if (WaitForWorkerThreadsCalled.exchange(true))
220     return;
221   optQueueNotifyEnd();
222   for (std::thread &Worker : TranslationThreads) {
223     Worker.join();
224   }
225   TranslationThreads.clear();
226 
227   // Only notify the emit queue to end after all the translation threads have
228   // ended.
229   emitQueueNotifyEnd();
230   for (std::thread &Worker : EmitterThreads) {
231     Worker.join();
232   }
233   EmitterThreads.clear();
234 
235   if (BuildDefs::timers()) {
236     auto Timers = getTimers();
237     for (ThreadContext *TLS : AllThreadContexts)
238       Timers->mergeFrom(TLS->Timers);
239   }
240   if (BuildDefs::dump()) {
241     // Do a separate loop over AllThreadContexts to avoid holding two locks at
242     // once.
243     auto Stats = getStatsCumulative();
244     for (ThreadContext *TLS : AllThreadContexts)
245       Stats->add(TLS->StatsCumulative);
246   }
247 }
248 
dump(const Cfg * Func,GlobalContext * Ctx)249 void GlobalContext::CodeStats::dump(const Cfg *Func, GlobalContext *Ctx) {
250   if (!BuildDefs::dump())
251     return;
252   OstreamLocker _(Ctx);
253   Ostream &Str = Ctx->getStrDump();
254   const std::string Name =
255       (Func == nullptr ? "_FINAL_" : Func->getFunctionNameAndSize());
256 #define X(str, tag)                                                            \
257   Str << "|" << Name << "|" str "|" << Stats[CS_##tag] << "\n";
258   CODESTATS_TABLE
259 #undef X
260   Str << "|" << Name << "|Spills+Fills|"
261       << Stats[CS_NumSpills] + Stats[CS_NumFills] << "\n";
262   Str << "|" << Name << "|Memory Usage     |";
263   if (const auto MemUsed = static_cast<size_t>(
264           llvm::TimeRecord::getCurrentTime(false).getMemUsed())) {
265     static constexpr size_t _1MB = 1024 * 1024;
266     Str << (MemUsed / _1MB) << " MB";
267   } else {
268     Str << "(requires '-track-memory')";
269   }
270   Str << "\n";
271   Str << "|" << Name << "|CPool Sizes ";
272   {
273     auto Pool = Ctx->getConstPool();
274     Str << "|f32=" << Pool->Floats.size();
275     Str << "|f64=" << Pool->Doubles.size();
276     Str << "|i1=" << Pool->Integers1.size();
277     Str << "|i8=" << Pool->Integers8.size();
278     Str << "|i16=" << Pool->Integers16.size();
279     Str << "|i32=" << Pool->Integers32.size();
280     Str << "|i64=" << Pool->Integers64.size();
281     Str << "|Rel=" << Pool->Relocatables.size();
282     Str << "|ExtRel=" << Pool->ExternRelocatables.size();
283   }
284   Str << "\n";
285   if (Func != nullptr) {
286     Str << "|" << Name << "|Cfg Memory       |" << Func->getTotalMemoryMB()
287         << " MB\n";
288     Str << "|" << Name << "|Liveness Memory  |" << Func->getLivenessMemoryMB()
289         << " MB\n";
290   }
291 }
292 
293 namespace {
294 
295 // By default, wake up the main parser thread when the OptQ gets half empty.
296 static constexpr size_t DefaultOptQWakeupSize = GlobalContext::MaxOptQSize >> 1;
297 
298 } // end of anonymous namespace
299 
GlobalContext(Ostream * OsDump,Ostream * OsEmit,Ostream * OsError,ELFStreamer * ELFStr)300 GlobalContext::GlobalContext(Ostream *OsDump, Ostream *OsEmit, Ostream *OsError,
301                              ELFStreamer *ELFStr)
302     : Strings(new StringPool()), ConstPool(new ConstantPool()), ErrorStatus(),
303       StrDump(OsDump), StrEmit(OsEmit), StrError(OsError), IntrinsicsInfo(this),
304       ObjectWriter(),
305       OptQWakeupSize(std::max(DefaultOptQWakeupSize,
306                               size_t(getFlags().getNumTranslationThreads()))),
307       OptQ(/*Sequential=*/getFlags().isSequential(),
308            /*MaxSize=*/
309            getFlags().isParseParallel()
310                ? MaxOptQSize
311                : getFlags().getNumTranslationThreads()),
312       // EmitQ is allowed unlimited size.
313       EmitQ(/*Sequential=*/getFlags().isSequential()),
314       DataLowering(TargetDataLowering::createLowering(this)) {
315   assert(OsDump && "OsDump is not defined for GlobalContext");
316   assert(OsEmit && "OsEmit is not defined for GlobalContext");
317   assert(OsError && "OsError is not defined for GlobalContext");
318   // Make sure thread_local fields are properly initialized before any
319   // accesses are made.  Do this here instead of at the start of
320   // main() so that all clients (e.g. unit tests) can benefit for
321   // free.
322   GlobalContext::TlsInit();
323   Cfg::TlsInit();
324   Liveness::TlsInit();
325   // Create a new ThreadContext for the current thread.  No need to
326   // lock AllThreadContexts at this point since no other threads have
327   // access yet to this GlobalContext object.
328   ThreadContext *MyTLS = new ThreadContext();
329   AllThreadContexts.push_back(MyTLS);
330   ICE_TLS_SET_FIELD(TLS, MyTLS);
331   // Pre-register built-in stack names.
332   if (BuildDefs::timers()) {
333     // TODO(stichnot): There needs to be a strong relationship between
334     // the newTimerStackID() return values and TSK_Default/TSK_Funcs.
335     newTimerStackID("Total across all functions");
336     newTimerStackID("Per-function summary");
337   }
338   Timers.initInto(MyTLS->Timers);
339   switch (getFlags().getOutFileType()) {
340   case FT_Elf:
341     ObjectWriter.reset(new ELFObjectWriter(*this, *ELFStr));
342     break;
343   case FT_Asm:
344   case FT_Iasm:
345     break;
346   }
347 // Cache up front common constants.
348 #define X(tag, sizeLog2, align, elts, elty, str, rcstr)                        \
349   ConstZeroForType[IceType_##tag] = getConstantZeroInternal(IceType_##tag);
350   ICETYPE_TABLE;
351 #undef X
352   ConstantTrue = getConstantInt1Internal(1);
353 // Define runtime helper functions.
354 #define X(Tag, Name)                                                           \
355   RuntimeHelperFunc[static_cast<size_t>(RuntimeHelper::H_##Tag)] =             \
356       getConstantExternSym(getGlobalString(Name));
357   RUNTIME_HELPER_FUNCTIONS_TABLE
358 #undef X
359 
360   TargetLowering::staticInit(this);
361 
362   if (getFlags().getEmitRevision()) {
363     // Embed the Subzero revision into the compiled binary by creating a special
364     // global variable initialized with the revision string.
365     auto *Revision = VariableDeclaration::create(&Globals, true);
366     Revision->setName(this, "__Sz_revision");
367     Revision->setIsConstant(true);
368     const char *RevisionString = getSubzeroRevision();
369     Revision->addInitializer(VariableDeclaration::DataInitializer::create(
370         &Globals, RevisionString, 1 + strlen(RevisionString)));
371     Globals.push_back(Revision);
372   }
373 }
374 
translateFunctionsWrapper(ThreadContext * MyTLS)375 void GlobalContext::translateFunctionsWrapper(ThreadContext *MyTLS) {
376   ICE_TLS_SET_FIELD(TLS, MyTLS);
377   translateFunctions();
378 }
379 
translateFunctions()380 void GlobalContext::translateFunctions() {
381   TimerMarker Timer(TimerStack::TT_translateFunctions, this);
382   while (std::unique_ptr<OptWorkItem> OptItem = optQueueBlockingPop()) {
383     std::unique_ptr<EmitterWorkItem> Item;
384     auto Func = OptItem->getParsedCfg();
385     // Install Func in TLS for Cfg-specific container allocators.
386     CfgLocalAllocatorScope _(Func.get());
387     // Reset per-function stats being accumulated in TLS.
388     resetStats();
389     // Set verbose level to none if the current function does NOT match the
390     // -verbose-focus command-line option.
391     if (!getFlags().matchVerboseFocusOn(Func->getFunctionName(),
392                                         Func->getSequenceNumber()))
393       Func->setVerbose(IceV_None);
394     // Disable translation if -notranslate is specified, or if the current
395     // function matches the -translate-only option.  If translation is disabled,
396     // just dump the high-level IR and continue.
397     if (getFlags().getDisableTranslation() ||
398         !getFlags().matchTranslateOnly(Func->getFunctionName(),
399                                        Func->getSequenceNumber())) {
400       Func->dump();
401       // Add a dummy work item as a placeholder.  This maintains sequence
402       // numbers so that the emitter thread will emit subsequent functions.
403       Item = makeUnique<EmitterWorkItem>(Func->getSequenceNumber());
404       emitQueueBlockingPush(std::move(Item));
405       continue; // Func goes out of scope and gets deleted
406     }
407 
408     Func->translate();
409     if (Func->hasError()) {
410       getErrorStatus()->assign(EC_Translation);
411       OstreamLocker L(this);
412       getStrError() << "ICE translation error: " << Func->getFunctionName()
413                     << ": " << Func->getError() << ": "
414                     << Func->getFunctionNameAndSize() << "\n";
415       Item = makeUnique<EmitterWorkItem>(Func->getSequenceNumber());
416     } else {
417       Func->getAssembler<>()->setInternal(Func->getInternal());
418       switch (getFlags().getOutFileType()) {
419       case FT_Elf:
420       case FT_Iasm: {
421         Func->emitIAS();
422         // The Cfg has already emitted into the assembly buffer, so
423         // stats have been fully collected into this thread's TLS.
424         // Dump them before TLS is reset for the next Cfg.
425         if (BuildDefs::dump())
426           dumpStats(Func.get());
427         auto Asm = Func->releaseAssembler();
428         // Copy relevant fields into Asm before Func is deleted.
429         Asm->setFunctionName(Func->getFunctionName());
430         Item = makeUnique<EmitterWorkItem>(Func->getSequenceNumber(),
431                                            std::move(Asm));
432         Item->setGlobalInits(Func->getGlobalInits());
433       } break;
434       case FT_Asm:
435         // The Cfg has not been emitted yet, so stats are not ready
436         // to be dumped.
437         std::unique_ptr<VariableDeclarationList> GlobalInits =
438             Func->getGlobalInits();
439         Item = makeUnique<EmitterWorkItem>(Func->getSequenceNumber(),
440                                            std::move(Func));
441         Item->setGlobalInits(std::move(GlobalInits));
442         break;
443       }
444     }
445     assert(Item != nullptr);
446     emitQueueBlockingPush(std::move(Item));
447     // The Cfg now gets deleted as Func goes out of scope.
448   }
449 }
450 
451 namespace {
452 
453 // Ensure Pending is large enough that Pending[Index] is valid.
resizePending(std::vector<std::unique_ptr<EmitterWorkItem>> * Pending,uint32_t Index)454 void resizePending(std::vector<std::unique_ptr<EmitterWorkItem>> *Pending,
455                    uint32_t Index) {
456   if (Index >= Pending->size())
457     Utils::reserveAndResize(*Pending, Index + 1);
458 }
459 
460 } // end of anonymous namespace
461 
462 // static
TlsInit()463 void GlobalContext::TlsInit() { ICE_TLS_INIT_FIELD(TLS); }
464 
emitFileHeader()465 void GlobalContext::emitFileHeader() {
466   TimerMarker T1(Ice::TimerStack::TT_emitAsm, this);
467   if (getFlags().getOutFileType() == FT_Elf) {
468     getObjectWriter()->writeInitialELFHeader();
469   } else {
470     if (!BuildDefs::dump()) {
471       getStrError() << "emitFileHeader for non-ELF";
472       getErrorStatus()->assign(EC_Translation);
473     }
474     TargetHeaderLowering::createLowering(this)->lower();
475   }
476 }
477 
lowerConstants()478 void GlobalContext::lowerConstants() { DataLowering->lowerConstants(); }
479 
lowerJumpTables()480 void GlobalContext::lowerJumpTables() { DataLowering->lowerJumpTables(); }
481 
emitTargetRODataSections()482 void GlobalContext::emitTargetRODataSections() {
483   DataLowering->emitTargetRODataSections();
484 }
485 
saveBlockInfoPtrs()486 void GlobalContext::saveBlockInfoPtrs() {
487   for (VariableDeclaration *Global : Globals) {
488     if (Cfg::isProfileGlobal(*Global)) {
489       ProfileBlockInfos.push_back(Global);
490     }
491   }
492 }
493 
lowerGlobals(const std::string & SectionSuffix)494 void GlobalContext::lowerGlobals(const std::string &SectionSuffix) {
495   TimerMarker T(TimerStack::TT_emitGlobalInitializers, this);
496   const bool DumpGlobalVariables =
497       BuildDefs::dump() && (getFlags().getVerbose() & IceV_GlobalInit) &&
498       getFlags().matchVerboseFocusOn("", 0);
499   if (DumpGlobalVariables) {
500     OstreamLocker L(this);
501     Ostream &Stream = getStrDump();
502     for (const Ice::VariableDeclaration *Global : Globals) {
503       Global->dump(Stream);
504     }
505   }
506   if (getFlags().getDisableTranslation())
507     return;
508 
509   saveBlockInfoPtrs();
510   // If we need to shuffle the layout of global variables, shuffle them now.
511   if (getFlags().getReorderGlobalVariables()) {
512     // Create a random number generator for global variable reordering.
513     RandomNumberGenerator RNG(getFlags().getRandomSeed(),
514                               RPE_GlobalVariableReordering);
515     RandomShuffle(Globals.begin(), Globals.end(),
516                   [&RNG](int N) { return (uint32_t)RNG.next(N); });
517   }
518 
519   if (!BuildDefs::minimal() && Instrumentor)
520     Instrumentor->instrumentGlobals(Globals);
521 
522   DataLowering->lowerGlobals(Globals, SectionSuffix);
523   if (ProfileBlockInfos.empty() && DisposeGlobalVariablesAfterLowering) {
524     Globals.clearAndPurge();
525   } else {
526     Globals.clear();
527   }
528 }
529 
lowerProfileData()530 void GlobalContext::lowerProfileData() {
531   // ProfileBlockInfoVarDecl is initialized in the constructor, and will only
532   // ever be nullptr after this method completes. This assertion is a convoluted
533   // way of ensuring lowerProfileData is invoked a single time.
534   assert(ProfileBlockInfoVarDecl == nullptr);
535 
536   auto GlobalVariablePool = getInitializerAllocator();
537   ProfileBlockInfoVarDecl =
538       VariableDeclaration::createExternal(GlobalVariablePool.get());
539   ProfileBlockInfoVarDecl->setAlignment(typeWidthInBytes(IceType_i64));
540   ProfileBlockInfoVarDecl->setIsConstant(true);
541 
542   // Note: if you change this symbol, make sure to update
543   // runtime/szrt_profiler.c as well.
544   ProfileBlockInfoVarDecl->setName(this, "__Sz_block_profile_info");
545 
546   for (const VariableDeclaration *PBI : ProfileBlockInfos) {
547     if (Cfg::isProfileGlobal(*PBI)) {
548       constexpr RelocOffsetT BlockExecutionCounterOffset = 0;
549       ProfileBlockInfoVarDecl->addInitializer(
550           VariableDeclaration::RelocInitializer::create(
551               GlobalVariablePool.get(), PBI,
552               {RelocOffset::create(this, BlockExecutionCounterOffset)}));
553     }
554   }
555 
556   // This adds a 64-bit sentinel entry to the end of our array. For 32-bit
557   // architectures this will waste 4 bytes.
558   const SizeT Sizeof64BitNullPtr = typeWidthInBytes(IceType_i64);
559   ProfileBlockInfoVarDecl->addInitializer(
560       VariableDeclaration::ZeroInitializer::create(GlobalVariablePool.get(),
561                                                    Sizeof64BitNullPtr));
562   Globals.push_back(ProfileBlockInfoVarDecl);
563   constexpr char ProfileDataSection[] = "$sz_profiler$";
564   lowerGlobals(ProfileDataSection);
565 }
566 
emitterWrapper(ThreadContext * MyTLS)567 void GlobalContext::emitterWrapper(ThreadContext *MyTLS) {
568   ICE_TLS_SET_FIELD(TLS, MyTLS);
569   emitItems();
570 }
571 
emitItems()572 void GlobalContext::emitItems() {
573   const bool Threaded = !getFlags().isSequential();
574   // Pending is a vector containing the reassembled, ordered list of
575   // work items.  When we're ready for the next item, we first check
576   // whether it's in the Pending list.  If not, we take an item from
577   // the work queue, and if it's not the item we're waiting for, we
578   // insert it into Pending and repeat.  The work item is deleted
579   // after it is processed.
580   std::vector<std::unique_ptr<EmitterWorkItem>> Pending;
581   uint32_t DesiredSequenceNumber = getFirstSequenceNumber();
582   uint32_t ShuffleStartIndex = DesiredSequenceNumber;
583   uint32_t ShuffleEndIndex = DesiredSequenceNumber;
584   bool EmitQueueEmpty = false;
585   const uint32_t ShuffleWindowSize =
586       std::max(1u, getFlags().getReorderFunctionsWindowSize());
587   bool Shuffle = Threaded && getFlags().getReorderFunctions();
588   // Create a random number generator for function reordering.
589   RandomNumberGenerator RNG(getFlags().getRandomSeed(), RPE_FunctionReordering);
590 
591   while (!EmitQueueEmpty) {
592     resizePending(&Pending, DesiredSequenceNumber);
593     // See if Pending contains DesiredSequenceNumber.
594     if (Pending[DesiredSequenceNumber] == nullptr) {
595       // We need to fetch an EmitterWorkItem from the queue.
596       auto RawItem = emitQueueBlockingPop();
597       if (RawItem == nullptr) {
598         // This is the notifier for an empty queue.
599         EmitQueueEmpty = true;
600       } else {
601         // We get an EmitterWorkItem, we need to add it to Pending.
602         uint32_t ItemSeq = RawItem->getSequenceNumber();
603         if (Threaded && ItemSeq != DesiredSequenceNumber) {
604           // Not the desired one, add it to Pending but do not increase
605           // DesiredSequenceNumber. Continue the loop, do not emit the item.
606           resizePending(&Pending, ItemSeq);
607           Pending[ItemSeq] = std::move(RawItem);
608           continue;
609         }
610         // ItemSeq == DesiredSequenceNumber, we need to check if we should
611         // emit it or not. If !Threaded, we're OK with ItemSeq !=
612         // DesiredSequenceNumber.
613         Pending[DesiredSequenceNumber] = std::move(RawItem);
614       }
615     }
616     const auto *CurrentWorkItem = Pending[DesiredSequenceNumber].get();
617 
618     // We have the desired EmitterWorkItem or nullptr as the end notifier.
619     // If the emitter queue is not empty, increase DesiredSequenceNumber and
620     // ShuffleEndIndex.
621     if (!EmitQueueEmpty) {
622       DesiredSequenceNumber++;
623       ShuffleEndIndex++;
624     }
625 
626     if (Shuffle) {
627       // Continue fetching EmitterWorkItem if function reordering is turned on,
628       // and emit queue is not empty, and the number of consecutive pending
629       // items is smaller than the window size, and RawItem is not a
630       // WI_GlobalInits kind. Emit WI_GlobalInits kind block first to avoid
631       // holding an arbitrarily large GlobalDeclarationList.
632       if (!EmitQueueEmpty &&
633           ShuffleEndIndex - ShuffleStartIndex < ShuffleWindowSize &&
634           CurrentWorkItem->getKind() != EmitterWorkItem::WI_GlobalInits)
635         continue;
636 
637       // Emit the EmitterWorkItem between Pending[ShuffleStartIndex] to
638       // Pending[ShuffleEndIndex]. If function reordering turned on, shuffle the
639       // pending items from Pending[ShuffleStartIndex] to
640       // Pending[ShuffleEndIndex].
641       RandomShuffle(Pending.begin() + ShuffleStartIndex,
642                     Pending.begin() + ShuffleEndIndex,
643                     [&RNG](uint64_t N) { return (uint32_t)RNG.next(N); });
644     }
645 
646     // Emit the item from ShuffleStartIndex to ShuffleEndIndex.
647     for (uint32_t I = ShuffleStartIndex; I < ShuffleEndIndex; I++) {
648       std::unique_ptr<EmitterWorkItem> Item = std::move(Pending[I]);
649 
650       switch (Item->getKind()) {
651       case EmitterWorkItem::WI_Nop:
652         break;
653       case EmitterWorkItem::WI_GlobalInits: {
654         accumulateGlobals(Item->getGlobalInits());
655       } break;
656       case EmitterWorkItem::WI_Asm: {
657         lowerGlobalsIfNoCodeHasBeenSeen();
658         accumulateGlobals(Item->getGlobalInits());
659 
660         std::unique_ptr<Assembler> Asm = Item->getAsm();
661         Asm->alignFunction();
662         GlobalString Name = Asm->getFunctionName();
663         switch (getFlags().getOutFileType()) {
664         case FT_Elf:
665           getObjectWriter()->writeFunctionCode(Name, Asm->getInternal(),
666                                                Asm.get());
667           break;
668         case FT_Iasm: {
669           OstreamLocker L(this);
670           Cfg::emitTextHeader(Name, this, Asm.get());
671           Asm->emitIASBytes(this);
672         } break;
673         case FT_Asm:
674           llvm::report_fatal_error("Unexpected FT_Asm");
675           break;
676         }
677       } break;
678       case EmitterWorkItem::WI_Cfg: {
679         if (!BuildDefs::dump())
680           llvm::report_fatal_error("WI_Cfg work item created inappropriately");
681         lowerGlobalsIfNoCodeHasBeenSeen();
682         accumulateGlobals(Item->getGlobalInits());
683 
684         assert(getFlags().getOutFileType() == FT_Asm);
685         std::unique_ptr<Cfg> Func = Item->getCfg();
686         // Unfortunately, we have to temporarily install the Cfg in TLS
687         // because Variable::asType() uses the allocator to create the
688         // differently-typed copy.
689         CfgLocalAllocatorScope _(Func.get());
690         Func->emit();
691         dumpStats(Func.get());
692       } break;
693       }
694     }
695     // Update the start index for next shuffling queue
696     ShuffleStartIndex = ShuffleEndIndex;
697   }
698 
699   // In case there are no code to be generated, we invoke the conditional
700   // lowerGlobals again -- this is a no-op if code has been emitted.
701   lowerGlobalsIfNoCodeHasBeenSeen();
702 }
703 
~GlobalContext()704 GlobalContext::~GlobalContext() {
705   llvm::DeleteContainerPointers(AllThreadContexts);
706   LockedPtr<DestructorArray> Dtors = getDestructors();
707   // Destructors are invoked in the opposite object construction order.
708   for (const auto &Dtor : reverse_range(*Dtors))
709     Dtor();
710 }
711 
dumpStrings()712 void GlobalContext::dumpStrings() {
713   if (!getFlags().getDumpStrings())
714     return;
715   OstreamLocker _(this);
716   Ostream &Str = getStrDump();
717   Str << "GlobalContext strings:\n";
718   getStrings()->dump(Str);
719 }
720 
dumpConstantLookupCounts()721 void GlobalContext::dumpConstantLookupCounts() {
722   if (!BuildDefs::dump())
723     return;
724   const bool DumpCounts = (getFlags().getVerbose() & IceV_ConstPoolStats) &&
725                           getFlags().matchVerboseFocusOn("", 0);
726   if (!DumpCounts)
727     return;
728 
729   OstreamLocker _(this);
730   Ostream &Str = getStrDump();
731   Str << "Constant pool use stats: count+value+type\n";
732 #define X(WhichPool)                                                           \
733   for (auto *C : getConstPool()->WhichPool.getConstantPool()) {                \
734     Str << C->getLookupCount() << " ";                                         \
735     C->dump(Str);                                                              \
736     Str << " " << C->getType() << "\n";                                        \
737   }
738   X(Integers1);
739   X(Integers8);
740   X(Integers16);
741   X(Integers32);
742   X(Integers64);
743   X(Floats);
744   X(Doubles);
745   X(Relocatables);
746   X(ExternRelocatables);
747 #undef X
748 }
749 
750 // TODO(stichnot): Consider adding thread-local caches of constant pool entries
751 // to reduce contention.
752 
753 // All locking is done by the getConstantInt[0-9]+() target function.
getConstantInt(Type Ty,int64_t Value)754 Constant *GlobalContext::getConstantInt(Type Ty, int64_t Value) {
755   switch (Ty) {
756   case IceType_i1:
757     return getConstantInt1(Value);
758   case IceType_i8:
759     return getConstantInt8(Value);
760   case IceType_i16:
761     return getConstantInt16(Value);
762   case IceType_i32:
763     return getConstantInt32(Value);
764   case IceType_i64:
765     return getConstantInt64(Value);
766   default:
767     llvm_unreachable("Bad integer type for getConstant");
768   }
769   return nullptr;
770 }
771 
getConstantInt1Internal(int8_t ConstantInt1)772 Constant *GlobalContext::getConstantInt1Internal(int8_t ConstantInt1) {
773   ConstantInt1 &= INT8_C(1);
774   return getConstPool()->Integers1.getOrAdd(this, ConstantInt1);
775 }
776 
getConstantInt8Internal(int8_t ConstantInt8)777 Constant *GlobalContext::getConstantInt8Internal(int8_t ConstantInt8) {
778   return getConstPool()->Integers8.getOrAdd(this, ConstantInt8);
779 }
780 
getConstantInt16Internal(int16_t ConstantInt16)781 Constant *GlobalContext::getConstantInt16Internal(int16_t ConstantInt16) {
782   return getConstPool()->Integers16.getOrAdd(this, ConstantInt16);
783 }
784 
getConstantInt32Internal(int32_t ConstantInt32)785 Constant *GlobalContext::getConstantInt32Internal(int32_t ConstantInt32) {
786   return getConstPool()->Integers32.getOrAdd(this, ConstantInt32);
787 }
788 
getConstantInt64Internal(int64_t ConstantInt64)789 Constant *GlobalContext::getConstantInt64Internal(int64_t ConstantInt64) {
790   return getConstPool()->Integers64.getOrAdd(this, ConstantInt64);
791 }
792 
getConstantFloat(float ConstantFloat)793 Constant *GlobalContext::getConstantFloat(float ConstantFloat) {
794   return getConstPool()->Floats.getOrAdd(this, ConstantFloat);
795 }
796 
getConstantDouble(double ConstantDouble)797 Constant *GlobalContext::getConstantDouble(double ConstantDouble) {
798   return getConstPool()->Doubles.getOrAdd(this, ConstantDouble);
799 }
800 
getConstantSymWithEmitString(const RelocOffsetT Offset,const RelocOffsetArray & OffsetExpr,GlobalString Name,const std::string & EmitString)801 Constant *GlobalContext::getConstantSymWithEmitString(
802     const RelocOffsetT Offset, const RelocOffsetArray &OffsetExpr,
803     GlobalString Name, const std::string &EmitString) {
804   return getConstPool()->Relocatables.getOrAdd(
805       this, RelocatableTuple(Offset, OffsetExpr, Name, EmitString));
806 }
807 
getConstantSym(RelocOffsetT Offset,GlobalString Name)808 Constant *GlobalContext::getConstantSym(RelocOffsetT Offset,
809                                         GlobalString Name) {
810   constexpr char EmptyEmitString[] = "";
811   return getConstantSymWithEmitString(Offset, {}, Name, EmptyEmitString);
812 }
813 
getConstantExternSym(GlobalString Name)814 Constant *GlobalContext::getConstantExternSym(GlobalString Name) {
815   constexpr RelocOffsetT Offset = 0;
816   return getConstPool()->ExternRelocatables.getOrAdd(
817       this, RelocatableTuple(Offset, {}, Name));
818 }
819 
getConstantUndef(Type Ty)820 Constant *GlobalContext::getConstantUndef(Type Ty) {
821   return getConstPool()->Undefs.getOrAdd(this, Ty);
822 }
823 
getConstantZero(Type Ty)824 Constant *GlobalContext::getConstantZero(Type Ty) {
825   Constant *Zero = ConstZeroForType[Ty];
826   if (Zero == nullptr)
827     llvm::report_fatal_error("Unsupported constant type: " + typeStdString(Ty));
828   return Zero;
829 }
830 
831 // All locking is done by the getConstant*() target function.
getConstantZeroInternal(Type Ty)832 Constant *GlobalContext::getConstantZeroInternal(Type Ty) {
833   switch (Ty) {
834   case IceType_i1:
835     return getConstantInt1Internal(0);
836   case IceType_i8:
837     return getConstantInt8Internal(0);
838   case IceType_i16:
839     return getConstantInt16Internal(0);
840   case IceType_i32:
841     return getConstantInt32Internal(0);
842   case IceType_i64:
843     return getConstantInt64Internal(0);
844   case IceType_f32:
845     return getConstantFloat(0);
846   case IceType_f64:
847     return getConstantDouble(0);
848   default:
849     return nullptr;
850   }
851 }
852 
getConstantPool(Type Ty)853 ConstantList GlobalContext::getConstantPool(Type Ty) {
854   switch (Ty) {
855   case IceType_i1:
856   case IceType_i8:
857     return getConstPool()->Integers8.getConstantPool();
858   case IceType_i16:
859     return getConstPool()->Integers16.getConstantPool();
860   case IceType_i32:
861     return getConstPool()->Integers32.getConstantPool();
862   case IceType_i64:
863     return getConstPool()->Integers64.getConstantPool();
864   case IceType_f32:
865     return getConstPool()->Floats.getConstantPool();
866   case IceType_f64:
867     return getConstPool()->Doubles.getConstantPool();
868   case IceType_v4i1:
869   case IceType_v8i1:
870   case IceType_v16i1:
871   case IceType_v16i8:
872   case IceType_v8i16:
873   case IceType_v4i32:
874   case IceType_v4f32:
875     llvm::report_fatal_error("Unsupported constant type: " + typeStdString(Ty));
876     break;
877   case IceType_void:
878   case IceType_NUM:
879     break;
880   }
881   llvm_unreachable("Unknown type");
882 }
883 
getConstantExternSyms()884 ConstantList GlobalContext::getConstantExternSyms() {
885   return getConstPool()->ExternRelocatables.getConstantPool();
886 }
887 
getGlobalString(const std::string & Name)888 GlobalString GlobalContext::getGlobalString(const std::string &Name) {
889   return GlobalString::createWithString(this, Name);
890 }
891 
getJumpTables()892 JumpTableDataList GlobalContext::getJumpTables() {
893   JumpTableDataList JumpTables(*getJumpTableList());
894   // Make order deterministic by sorting into functions and then ID of the jump
895   // table within that function.
896   std::sort(JumpTables.begin(), JumpTables.end(),
897             [](const JumpTableData &A, const JumpTableData &B) {
898               if (A.getFunctionName() != B.getFunctionName())
899                 return A.getFunctionName() < B.getFunctionName();
900               return A.getId() < B.getId();
901             });
902 
903   if (getFlags().getReorderPooledConstants()) {
904     // If reorder-pooled-constants option is set to true, we also shuffle the
905     // jump tables before emitting them.
906 
907     // Create a random number generator for jump tables reordering, considering
908     // jump tables as pooled constants.
909     RandomNumberGenerator RNG(getFlags().getRandomSeed(),
910                               RPE_PooledConstantReordering);
911     RandomShuffle(JumpTables.begin(), JumpTables.end(),
912                   [&RNG](uint64_t N) { return (uint32_t)RNG.next(N); });
913   }
914   return JumpTables;
915 }
916 
addJumpTableData(JumpTableData JumpTable)917 void GlobalContext::addJumpTableData(JumpTableData JumpTable) {
918   getJumpTableList()->emplace_back(std::move(JumpTable));
919 }
920 
newTimerStackID(const std::string & Name)921 TimerStackIdT GlobalContext::newTimerStackID(const std::string &Name) {
922   if (!BuildDefs::timers())
923     return 0;
924   auto Timers = getTimers();
925   TimerStackIdT NewID = Timers->size();
926   Timers->push_back(TimerStack(Name));
927   return NewID;
928 }
929 
getTimerID(TimerStackIdT StackID,const std::string & Name)930 TimerIdT GlobalContext::getTimerID(TimerStackIdT StackID,
931                                    const std::string &Name) {
932   auto *Timers = &ICE_TLS_GET_FIELD(TLS)->Timers;
933   assert(StackID < Timers->size());
934   return Timers->at(StackID).getTimerID(Name);
935 }
936 
pushTimer(TimerIdT ID,TimerStackIdT StackID)937 void GlobalContext::pushTimer(TimerIdT ID, TimerStackIdT StackID) {
938   auto *Timers = &ICE_TLS_GET_FIELD(TLS)->Timers;
939   assert(StackID < Timers->size());
940   Timers->at(StackID).push(ID);
941 }
942 
popTimer(TimerIdT ID,TimerStackIdT StackID)943 void GlobalContext::popTimer(TimerIdT ID, TimerStackIdT StackID) {
944   auto *Timers = &ICE_TLS_GET_FIELD(TLS)->Timers;
945   assert(StackID < Timers->size());
946   Timers->at(StackID).pop(ID);
947 }
948 
resetTimer(TimerStackIdT StackID)949 void GlobalContext::resetTimer(TimerStackIdT StackID) {
950   auto *Timers = &ICE_TLS_GET_FIELD(TLS)->Timers;
951   assert(StackID < Timers->size());
952   Timers->at(StackID).reset();
953 }
954 
getTimerName(TimerStackIdT StackID)955 std::string GlobalContext::getTimerName(TimerStackIdT StackID) {
956   auto *Timers = &ICE_TLS_GET_FIELD(TLS)->Timers;
957   assert(StackID < Timers->size());
958   return Timers->at(StackID).getName();
959 }
960 
setTimerName(TimerStackIdT StackID,const std::string & NewName)961 void GlobalContext::setTimerName(TimerStackIdT StackID,
962                                  const std::string &NewName) {
963   auto *Timers = &ICE_TLS_GET_FIELD(TLS)->Timers;
964   assert(StackID < Timers->size());
965   Timers->at(StackID).setName(NewName);
966 }
967 
968 // Note: optQueueBlockingPush and optQueueBlockingPop use unique_ptr at the
969 // interface to take and transfer ownership, but they internally store the raw
970 // Cfg pointer in the work queue. This allows e.g. future queue optimizations
971 // such as the use of atomics to modify queue elements.
optQueueBlockingPush(std::unique_ptr<OptWorkItem> Item)972 void GlobalContext::optQueueBlockingPush(std::unique_ptr<OptWorkItem> Item) {
973   assert(Item);
974   {
975     TimerMarker _(TimerStack::TT_qTransPush, this);
976     OptQ.blockingPush(std::move(Item));
977   }
978   if (getFlags().isSequential())
979     translateFunctions();
980 }
981 
optQueueBlockingPop()982 std::unique_ptr<OptWorkItem> GlobalContext::optQueueBlockingPop() {
983   TimerMarker _(TimerStack::TT_qTransPop, this);
984   return OptQ.blockingPop(OptQWakeupSize);
985 }
986 
emitQueueBlockingPush(std::unique_ptr<EmitterWorkItem> Item)987 void GlobalContext::emitQueueBlockingPush(
988     std::unique_ptr<EmitterWorkItem> Item) {
989   assert(Item);
990   {
991     TimerMarker _(TimerStack::TT_qEmitPush, this);
992     EmitQ.blockingPush(std::move(Item));
993   }
994   if (getFlags().isSequential())
995     emitItems();
996 }
997 
emitQueueBlockingPop()998 std::unique_ptr<EmitterWorkItem> GlobalContext::emitQueueBlockingPop() {
999   TimerMarker _(TimerStack::TT_qEmitPop, this);
1000   return EmitQ.blockingPop();
1001 }
1002 
initParserThread()1003 void GlobalContext::initParserThread() {
1004   ThreadContext *Tls = new ThreadContext();
1005   auto Timers = getTimers();
1006   Timers->initInto(Tls->Timers);
1007   AllThreadContexts.push_back(Tls);
1008   ICE_TLS_SET_FIELD(TLS, Tls);
1009 }
1010 
startWorkerThreads()1011 void GlobalContext::startWorkerThreads() {
1012   size_t NumWorkers = getFlags().getNumTranslationThreads();
1013   auto Timers = getTimers();
1014   for (size_t i = 0; i < NumWorkers; ++i) {
1015     ThreadContext *WorkerTLS = new ThreadContext();
1016     Timers->initInto(WorkerTLS->Timers);
1017     AllThreadContexts.push_back(WorkerTLS);
1018     TranslationThreads.push_back(std::thread(
1019         &GlobalContext::translateFunctionsWrapper, this, WorkerTLS));
1020   }
1021   if (NumWorkers) {
1022     ThreadContext *WorkerTLS = new ThreadContext();
1023     Timers->initInto(WorkerTLS->Timers);
1024     AllThreadContexts.push_back(WorkerTLS);
1025     EmitterThreads.push_back(
1026         std::thread(&GlobalContext::emitterWrapper, this, WorkerTLS));
1027   }
1028 }
1029 
resetStats()1030 void GlobalContext::resetStats() {
1031   if (BuildDefs::dump())
1032     ICE_TLS_GET_FIELD(TLS)->StatsFunction.reset();
1033 }
1034 
dumpStats(const Cfg * Func)1035 void GlobalContext::dumpStats(const Cfg *Func) {
1036   if (!getFlags().getDumpStats())
1037     return;
1038   if (Func == nullptr) {
1039     getStatsCumulative()->dump(Func, this);
1040   } else {
1041     ICE_TLS_GET_FIELD(TLS)->StatsFunction.dump(Func, this);
1042   }
1043 }
1044 
statsUpdateEmitted(uint32_t InstCount)1045 void GlobalContext::statsUpdateEmitted(uint32_t InstCount) {
1046   if (!getFlags().getDumpStats())
1047     return;
1048   ThreadContext *Tls = ICE_TLS_GET_FIELD(TLS);
1049   Tls->StatsFunction.update(CodeStats::CS_InstCount, InstCount);
1050   Tls->StatsCumulative.update(CodeStats::CS_InstCount, InstCount);
1051 }
1052 
statsUpdateRegistersSaved(uint32_t Num)1053 void GlobalContext::statsUpdateRegistersSaved(uint32_t Num) {
1054   if (!getFlags().getDumpStats())
1055     return;
1056   ThreadContext *Tls = ICE_TLS_GET_FIELD(TLS);
1057   Tls->StatsFunction.update(CodeStats::CS_RegsSaved, Num);
1058   Tls->StatsCumulative.update(CodeStats::CS_RegsSaved, Num);
1059 }
1060 
statsUpdateFrameBytes(uint32_t Bytes)1061 void GlobalContext::statsUpdateFrameBytes(uint32_t Bytes) {
1062   if (!getFlags().getDumpStats())
1063     return;
1064   ThreadContext *Tls = ICE_TLS_GET_FIELD(TLS);
1065   Tls->StatsFunction.update(CodeStats::CS_FrameByte, Bytes);
1066   Tls->StatsCumulative.update(CodeStats::CS_FrameByte, Bytes);
1067 }
1068 
statsUpdateSpills()1069 void GlobalContext::statsUpdateSpills() {
1070   if (!getFlags().getDumpStats())
1071     return;
1072   ThreadContext *Tls = ICE_TLS_GET_FIELD(TLS);
1073   Tls->StatsFunction.update(CodeStats::CS_NumSpills);
1074   Tls->StatsCumulative.update(CodeStats::CS_NumSpills);
1075 }
1076 
statsUpdateFills()1077 void GlobalContext::statsUpdateFills() {
1078   if (!getFlags().getDumpStats())
1079     return;
1080   ThreadContext *Tls = ICE_TLS_GET_FIELD(TLS);
1081   Tls->StatsFunction.update(CodeStats::CS_NumFills);
1082   Tls->StatsCumulative.update(CodeStats::CS_NumFills);
1083 }
1084 
statsUpdateRPImms()1085 void GlobalContext::statsUpdateRPImms() {
1086   if (!getFlags().getDumpStats())
1087     return;
1088   ThreadContext *Tls = ICE_TLS_GET_FIELD(TLS);
1089   Tls->StatsFunction.update(CodeStats::CS_NumRPImms);
1090   Tls->StatsCumulative.update(CodeStats::CS_NumRPImms);
1091 }
1092 
dumpTimers(TimerStackIdT StackID,bool DumpCumulative)1093 void GlobalContext::dumpTimers(TimerStackIdT StackID, bool DumpCumulative) {
1094   if (!BuildDefs::timers())
1095     return;
1096   auto Timers = getTimers();
1097   assert(Timers->size() > StackID);
1098   OstreamLocker L(this);
1099   Timers->at(StackID).dump(getStrDump(), DumpCumulative);
1100 }
1101 
dumpLocalTimers(const std::string & TimerNameOverride,TimerStackIdT StackID,bool DumpCumulative)1102 void GlobalContext::dumpLocalTimers(const std::string &TimerNameOverride,
1103                                     TimerStackIdT StackID,
1104                                     bool DumpCumulative) {
1105   if (!BuildDefs::timers())
1106     return;
1107   auto *Timers = &ICE_TLS_GET_FIELD(TLS)->Timers;
1108   assert(Timers->size() > StackID);
1109   // Temporarily override the thread-local timer name with the given name.
1110   // Don't do it permanently because the final timer merge at the end expects
1111   // the thread-local timer names to be the same as the global timer name.
1112   auto OrigName = getTimerName(StackID);
1113   setTimerName(StackID, TimerNameOverride);
1114   {
1115     OstreamLocker _(this);
1116     Timers->at(StackID).dump(getStrDump(), DumpCumulative);
1117   }
1118   setTimerName(StackID, OrigName);
1119 }
1120 
1121 LockedPtr<StringPool>
getStrings(const GlobalContext * PoolOwner)1122 GlobalStringPoolTraits::getStrings(const GlobalContext *PoolOwner) {
1123   return PoolOwner->getStrings();
1124 }
1125 
getTimerIdFromFuncName(GlobalContext * Ctx,const std::string & FuncName)1126 TimerIdT TimerMarker::getTimerIdFromFuncName(GlobalContext *Ctx,
1127                                              const std::string &FuncName) {
1128   if (!BuildDefs::timers())
1129     return 0;
1130   if (!getFlags().getTimeEachFunction())
1131     return 0;
1132   return Ctx->getTimerID(GlobalContext::TSK_Funcs, FuncName);
1133 }
1134 
push()1135 void TimerMarker::push() {
1136   switch (StackID) {
1137   case GlobalContext::TSK_Default:
1138     Active = getFlags().getSubzeroTimingEnabled() ||
1139              !getFlags().getTimingFocusOnString().empty();
1140     break;
1141   case GlobalContext::TSK_Funcs:
1142     Active = getFlags().getTimeEachFunction();
1143     break;
1144   default:
1145     break;
1146   }
1147   if (Active)
1148     Ctx->pushTimer(ID, StackID);
1149 }
1150 
pushCfg(const Cfg * Func)1151 void TimerMarker::pushCfg(const Cfg *Func) {
1152   Ctx = Func->getContext();
1153   Active = Func->getFocusedTiming() || getFlags().getSubzeroTimingEnabled();
1154   if (Active)
1155     Ctx->pushTimer(ID, StackID);
1156 }
1157 
1158 ICE_TLS_DEFINE_FIELD(GlobalContext::ThreadContext *, GlobalContext, TLS);
1159 
1160 } // end of namespace Ice
1161