• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017 Richard Palethorpe <rpalethorpe@suse.com>
3  *
4  * This program is free software: you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation, either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program. If not, see <http://www.gnu.org/licenses/>.
16  */
17 /*
18  * Fuzzy Synchronisation - abreviated to fzsync
19  *
20  * This library is intended to help reproduce race conditions by providing two
21  * thread synchronisation mechanisms. The first is a 'checkpoint' system where
22  * each thread will wait indefinitely for the other to enter a checkpoint
23  * before continuing. This is acheived by calling tst_fzsync_wait() and/or
24  * tst_fzsync_wait_update() at the points you want to synchronise in each
25  * thread. This is functionally very similar to using pthread_barrier_wait()
26  * with two threads. However tst_fzsync_wait() can be inlined and is
27  * guaranteed not to call sleep or futex.
28  *
29  * The second takes the form a of a delay which is calculated by measuring the
30  * time difference between two points in each thread and comparing it to the
31  * desired difference (default is zero). Using a delay allows you to
32  * synchronise the threads at a point outside of your direct control
33  * (e.g. inside the kernel) or just increase the accuracy for the first
34  * mechanism. It is acheived using tst_fzsync_delay_{a,b}(),
35  * tst_fzsync_time_{a,b}() and tst_fzsync[_wait_]update().
36  *
37  * For a usage example see testcases/cve/cve-2016-7117.c or just run
38  * 'git grep tst_fuzzy_sync.h'
39  */
40 
41 #include <sys/time.h>
42 #include <time.h>
43 #include <math.h>
44 #include "tst_atomic.h"
45 
46 #ifndef CLOCK_MONOTONIC_RAW
47 # define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC
48 #endif
49 
50 /**
51  * struct tst_fzsync_pair - the state of a two way synchronisation
52  * @avg_diff: Internal; the average time difference over multiple iterations.
53  * @avg_diff_trgt: The desired average time difference, defaults to 0.
54  * @avg_alpha: The rate at which old diff samples are forgotten,
55  *             defaults to 0.25.
56  * @avg_dev: Internal; Absolute average deviation.
57  * @a: Internal; The time at which call site A was last passed.
58  * @b: Internal; The time at which call site B was last passed.
59  * @delay: Internal; The size of the delay, positive to delay A,
60  *         negative to delay B.
61  * @delay_inc: The step size of a delay increment, defaults to 1.
62  * @update_gap: The number of iterations between recalculating the delay.
63  *              Defaults to 0xF and must be of the form $2^n - 1$
64  * @info_gap: The number of iterations between printing some statistics.
65  *            Defaults to 0x7FFFF and must also be one less than a power of 2.
66  * @a_cntr: Internal; Atomic counter used by fzsync_pair_wait()
67  * @b_cntr: Internal; Atomic counter used by fzsync_pair_wait()
68  * @exit: Internal; Used by tst_fzsync_pair_exit() and fzsync_pair_wait()
69  *
70  * This contains all the necessary state for synchronising two points A and
71  * B. Where A is the time of an event in one process and B is the time of an
72  * event in another process.
73  *
74  * Internal fields should only be accessed by library functions.
75  */
76 struct tst_fzsync_pair {
77 	float avg_diff;
78 	float avg_diff_trgt;
79 	float avg_alpha;
80 	float avg_dev;
81 	struct timespec a;
82 	struct timespec b;
83 	long delay;
84 	long delay_inc;
85 	int update_gap;
86 	int info_gap;
87 	int a_cntr;
88 	int b_cntr;
89 	int exit;
90 };
91 
92 /**
93  * TST_FZSYNC_PAIR_INIT - Default values for struct tst_fzysnc_pair
94  */
95 #define TST_FZSYNC_PAIR_INIT {	\
96 	.avg_alpha = 0.25,	\
97 	.delay_inc = 1,	        \
98 	.update_gap = 0xF,	\
99 	.info_gap = 0x7FFFF     \
100 }
101 
102 /**
103  * tst_fzsync_pair_info - Print some synchronisation statistics
104  */
tst_fzsync_pair_info(struct tst_fzsync_pair * pair)105 static void tst_fzsync_pair_info(struct tst_fzsync_pair *pair)
106 {
107 	tst_res(TINFO,
108 		"avg_diff = %.0fns, avg_dev = %.0fns, delay = %05ld loops",
109 		pair->avg_diff, pair->avg_dev, pair->delay);
110 }
111 
112 /**
113  * tst_fzsync_delay_a - Perform spin delay for A, if needed
114  *
115  * Usually called just before the point you want to synchronise.
116  */
tst_fzsync_delay_a(struct tst_fzsync_pair * pair)117 static inline void tst_fzsync_delay_a(struct tst_fzsync_pair *pair)
118 {
119 	volatile long spin_delay = pair->delay;
120 
121 	while (spin_delay > 0)
122 		spin_delay--;
123 }
124 
125 /**
126  * tst_fzsync_delay_b - Perform spin delay for B, if needed
127  *
128  * Usually called just before the point you want to synchronise.
129  */
tst_fzsync_delay_b(struct tst_fzsync_pair * pair)130 static inline void tst_fzsync_delay_b(struct tst_fzsync_pair *pair)
131 {
132 	volatile long spin_delay = pair->delay;
133 
134 	while (spin_delay < 0)
135 		spin_delay++;
136 }
137 
tst_fzsync_time(struct timespec * t)138 static inline void tst_fzsync_time(struct timespec *t)
139 {
140 	clock_gettime(CLOCK_MONOTONIC_RAW, t);
141 }
142 
143 /**
144  * tst_fzsync_time_a - Set A's time to now.
145  *
146  * Called at the point you want to synchronise.
147  */
tst_fzsync_time_a(struct tst_fzsync_pair * pair)148 static inline void tst_fzsync_time_a(struct tst_fzsync_pair *pair)
149 {
150 	tst_fzsync_time(&pair->a);
151 }
152 
153 /**
154  * tst_fzsync_time_b - Set B's call time to now.
155  *
156  * Called at the point you want to synchronise.
157  */
tst_fzsync_time_b(struct tst_fzsync_pair * pair)158 static inline void tst_fzsync_time_b(struct tst_fzsync_pair *pair)
159 {
160 	tst_fzsync_time(&pair->b);
161 }
162 
163 /**
164  * tst_exp_moving_avg - Exponential moving average
165  * @alpha: The preference for recent samples over old ones.
166  * @sample: The current sample
167  * @prev_avg: The average of the all the previous samples
168  *
169  * Returns average including the current sample.
170  */
tst_exp_moving_avg(float alpha,float sample,float prev_avg)171 static inline float tst_exp_moving_avg(float alpha,
172 					float sample,
173 					float prev_avg)
174 {
175 	return alpha * sample + (1.0 - alpha) * prev_avg;
176 }
177 
178 /**
179  * tst_fzsync_pair_update - Recalculate the delay
180  * @loop_index: The i in "for(i = 0;..." or zero to ignore update_gap
181  * @pair: The state necessary for calculating the delay
182  *
183  * This should be called at the end of each loop to update the average
184  * measured time difference (between A and B) and update the delay. It is
185  * assumed that A and B are less than a second apart.
186  *
187  * The values of update_gap, avg_alpha and delay_inc decide the speed at which
188  * the algorithm approaches the optimum delay value and whether it is
189  * stable. If your test is behaving strangely, it could be because this
190  * algorithm is behaving chaotically and flip-flopping between large positve
191  * and negative delay values. You can call tst_fzysync_pair_info every few
192  * loops to check whether the average difference and delay values are stable.
193  */
tst_fzsync_pair_update(int loop_index,struct tst_fzsync_pair * pair)194 static void tst_fzsync_pair_update(int loop_index, struct tst_fzsync_pair *pair)
195 {
196 	long diff;
197 	long inc = pair->delay_inc;
198 	float target = pair->avg_diff_trgt;
199 	float avg = pair->avg_diff;
200 
201 	diff = pair->a.tv_nsec - pair->b.tv_nsec
202 		+ 1000000000 * (pair->a.tv_sec - pair->b.tv_sec);
203 	avg = tst_exp_moving_avg(pair->avg_alpha, diff, avg);
204 	pair->avg_dev = tst_exp_moving_avg(pair->avg_alpha,
205 					   fabs(diff - avg),
206 					   pair->avg_dev);
207 
208 	if (!(loop_index & pair->update_gap)) {
209 		if (avg > target)
210 			pair->delay -= inc;
211 		else if (avg < target)
212 			pair->delay += inc;
213 	}
214 
215 	if (!(loop_index & pair->info_gap))
216 		tst_fzsync_pair_info(pair);
217 
218 	pair->avg_diff = avg;
219 }
220 
221 /**
222  * tst_fzsync_pair_wait - Wait for the other thread
223  * @our_cntr: The counter for the thread we are on
224  * @other_cntr: The counter for the thread we are synchronising with
225  *
226  * Use this (through tst_fzsync_pair_wait_a() and tst_fzsync_pair_wait_b()) if
227  * you need an additional synchronisation point in a thread or you do not want
228  * to use the delay facility (not recommended). See
229  * tst_fzsync_pair_wait_update().
230  *
231  * Returns a non-zero value if the thread should continue otherwise the
232  * calling thread should exit.
233  */
tst_fzsync_pair_wait(struct tst_fzsync_pair * pair,int * our_cntr,int * other_cntr)234 static inline int tst_fzsync_pair_wait(struct tst_fzsync_pair *pair,
235 				       int *our_cntr, int *other_cntr)
236 {
237 	if (tst_atomic_inc(other_cntr) == INT_MAX) {
238 		/*
239 		 * We are about to break the invariant that the thread with
240 		 * the lowest count is in front of the other. So we must wait
241 		 * here to ensure the other thread has atleast reached the
242 		 * line above before doing that. If we are in rear position
243 		 * then our counter may already have been set to zero.
244 		 */
245 		while (tst_atomic_load(our_cntr) > 0
246 		       && tst_atomic_load(our_cntr) < INT_MAX
247 		       && !tst_atomic_load(&pair->exit))
248 			;
249 
250 		tst_atomic_store(0, other_cntr);
251 		/*
252 		 * Once both counters have been set to zero the invariant
253 		 * is restored and we can continue.
254 		 */
255 		while (tst_atomic_load(our_cntr) > 1
256 		       && !tst_atomic_load(&pair->exit))
257 			;
258 	} else {
259 		/*
260 		 * If our counter is less than the other thread's we are ahead
261 		 * of it and need to wait.
262 		 */
263 		while (tst_atomic_load(our_cntr) < tst_atomic_load(other_cntr)
264 		       && !tst_atomic_load(&pair->exit))
265 			;
266 	}
267 
268 	/* Only exit if we have done the same amount of work as the other thread */
269 	return !tst_atomic_load(&pair->exit) ||
270 	  tst_atomic_load(other_cntr) <= tst_atomic_load(our_cntr);
271 }
272 
tst_fzsync_wait_a(struct tst_fzsync_pair * pair)273 static inline int tst_fzsync_wait_a(struct tst_fzsync_pair *pair)
274 {
275 	return tst_fzsync_pair_wait(pair, &pair->a_cntr, &pair->b_cntr);
276 }
277 
tst_fzsync_wait_b(struct tst_fzsync_pair * pair)278 static inline int tst_fzsync_wait_b(struct tst_fzsync_pair *pair)
279 {
280 	return tst_fzsync_pair_wait(pair, &pair->b_cntr, &pair->a_cntr);
281 }
282 
283 /**
284  * tst_fzsync_pair_wait_update_{a,b} - Wait and then recalculate
285  *
286  * This allows you to have two long running threads which wait for each other
287  * every iteration. So each thread will exit this function at approximately
288  * the same time. It also updates the delay values in a thread safe manner.
289  *
290  * You must call this function in both threads the same number of times each
291  * iteration. So a call in one thread must match with a call in the
292  * other. Make sure that calls to tst_fzsync_pair_wait() and
293  * tst_fzsync_pair_wait_update() happen in the same order in each thread. That
294  * is, make sure that a call to tst_fzsync_pair_wait_update_a() in one thread
295  * corresponds to a call to tst_fzsync_pair_wait_update_b() in the other.
296  *
297  * Returns a non-zero value if the calling thread should continue to loop. If
298  * it returns zero then tst_fzsync_exit() has been called and you must exit
299  * the thread.
300  */
tst_fzsync_wait_update_a(struct tst_fzsync_pair * pair)301 static inline int tst_fzsync_wait_update_a(struct tst_fzsync_pair *pair)
302 {
303 	static int loop_index;
304 
305 	tst_fzsync_pair_wait(pair, &pair->a_cntr, &pair->b_cntr);
306 	loop_index++;
307 	tst_fzsync_pair_update(loop_index, pair);
308 	return tst_fzsync_pair_wait(pair, &pair->a_cntr, &pair->b_cntr);
309 }
310 
tst_fzsync_wait_update_b(struct tst_fzsync_pair * pair)311 static inline int tst_fzsync_wait_update_b(struct tst_fzsync_pair *pair)
312 {
313 	tst_fzsync_pair_wait(pair, &pair->b_cntr, &pair->a_cntr);
314 	return tst_fzsync_pair_wait(pair, &pair->b_cntr, &pair->a_cntr);
315 }
316 
317 /**
318  * tst_fzsync_pair_exit - Signal that the other thread should exit
319  *
320  * Causes tst_fzsync_pair_wait() and tst_fzsync_pair_wait_update() to return
321  * 0.
322  */
tst_fzsync_pair_exit(struct tst_fzsync_pair * pair)323 static inline void tst_fzsync_pair_exit(struct tst_fzsync_pair *pair)
324 {
325 	tst_atomic_store(1, &pair->exit);
326 }
327