• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package runner
6
7import (
8	"crypto"
9	"crypto/hmac"
10	"crypto/md5"
11	"crypto/sha1"
12	"crypto/sha256"
13	"hash"
14)
15
16// Split a premaster secret in two as specified in RFC 4346, section 5.
17func splitPreMasterSecret(secret []byte) (s1, s2 []byte) {
18	s1 = secret[0 : (len(secret)+1)/2]
19	s2 = secret[len(secret)/2:]
20	return
21}
22
23// pHash implements the P_hash function, as defined in RFC 4346, section 5.
24func pHash(result, secret, seed []byte, hash func() hash.Hash) {
25	h := hmac.New(hash, secret)
26	h.Write(seed)
27	a := h.Sum(nil)
28
29	j := 0
30	for j < len(result) {
31		h.Reset()
32		h.Write(a)
33		h.Write(seed)
34		b := h.Sum(nil)
35		todo := len(b)
36		if j+todo > len(result) {
37			todo = len(result) - j
38		}
39		copy(result[j:j+todo], b)
40		j += todo
41
42		h.Reset()
43		h.Write(a)
44		a = h.Sum(nil)
45	}
46}
47
48// prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5.
49func prf10(result, secret, label, seed []byte) {
50	hashSHA1 := sha1.New
51	hashMD5 := md5.New
52
53	labelAndSeed := make([]byte, len(label)+len(seed))
54	copy(labelAndSeed, label)
55	copy(labelAndSeed[len(label):], seed)
56
57	s1, s2 := splitPreMasterSecret(secret)
58	pHash(result, s1, labelAndSeed, hashMD5)
59	result2 := make([]byte, len(result))
60	pHash(result2, s2, labelAndSeed, hashSHA1)
61
62	for i, b := range result2 {
63		result[i] ^= b
64	}
65}
66
67// prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, section 5.
68func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) {
69	return func(result, secret, label, seed []byte) {
70		labelAndSeed := make([]byte, len(label)+len(seed))
71		copy(labelAndSeed, label)
72		copy(labelAndSeed[len(label):], seed)
73
74		pHash(result, secret, labelAndSeed, hashFunc)
75	}
76}
77
78// prf30 implements the SSL 3.0 pseudo-random function, as defined in
79// www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 6.
80func prf30(result, secret, label, seed []byte) {
81	hashSHA1 := sha1.New()
82	hashMD5 := md5.New()
83
84	done := 0
85	i := 0
86	// RFC5246 section 6.3 says that the largest PRF output needed is 128
87	// bytes. Since no more ciphersuites will be added to SSLv3, this will
88	// remain true. Each iteration gives us 16 bytes so 10 iterations will
89	// be sufficient.
90	var b [11]byte
91	for done < len(result) {
92		for j := 0; j <= i; j++ {
93			b[j] = 'A' + byte(i)
94		}
95
96		hashSHA1.Reset()
97		hashSHA1.Write(b[:i+1])
98		hashSHA1.Write(secret)
99		hashSHA1.Write(seed)
100		digest := hashSHA1.Sum(nil)
101
102		hashMD5.Reset()
103		hashMD5.Write(secret)
104		hashMD5.Write(digest)
105
106		done += copy(result[done:], hashMD5.Sum(nil))
107		i++
108	}
109}
110
111const (
112	tlsRandomLength      = 32 // Length of a random nonce in TLS 1.1.
113	masterSecretLength   = 48 // Length of a master secret in TLS 1.1.
114	finishedVerifyLength = 12 // Length of verify_data in a Finished message.
115)
116
117var masterSecretLabel = []byte("master secret")
118var extendedMasterSecretLabel = []byte("extended master secret")
119var keyExpansionLabel = []byte("key expansion")
120var clientFinishedLabel = []byte("client finished")
121var serverFinishedLabel = []byte("server finished")
122var finishedLabel = []byte("finished")
123var channelIDLabel = []byte("TLS Channel ID signature\x00")
124var channelIDResumeLabel = []byte("Resumption\x00")
125
126func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) {
127	switch version {
128	case VersionSSL30:
129		return prf30
130	case VersionTLS10, VersionTLS11:
131		return prf10
132	case VersionTLS12:
133		return prf12(suite.hash().New)
134	}
135	panic("unknown version")
136}
137
138// masterFromPreMasterSecret generates the master secret from the pre-master
139// secret. See http://tools.ietf.org/html/rfc5246#section-8.1
140func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte {
141	var seed [tlsRandomLength * 2]byte
142	copy(seed[0:len(clientRandom)], clientRandom)
143	copy(seed[len(clientRandom):], serverRandom)
144	masterSecret := make([]byte, masterSecretLength)
145	prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed[0:])
146	return masterSecret
147}
148
149// extendedMasterFromPreMasterSecret generates the master secret from the
150// pre-master secret when the Triple Handshake fix is in effect. See
151// https://tools.ietf.org/html/rfc7627
152func extendedMasterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret []byte, h finishedHash) []byte {
153	masterSecret := make([]byte, masterSecretLength)
154	prfForVersion(version, suite)(masterSecret, preMasterSecret, extendedMasterSecretLabel, h.Sum())
155	return masterSecret
156}
157
158// keysFromMasterSecret generates the connection keys from the master
159// secret, given the lengths of the MAC key, cipher key and IV, as defined in
160// RFC 2246, section 6.3.
161func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) {
162	var seed [tlsRandomLength * 2]byte
163	copy(seed[0:len(clientRandom)], serverRandom)
164	copy(seed[len(serverRandom):], clientRandom)
165
166	n := 2*macLen + 2*keyLen + 2*ivLen
167	keyMaterial := make([]byte, n)
168	prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed[0:])
169	clientMAC = keyMaterial[:macLen]
170	keyMaterial = keyMaterial[macLen:]
171	serverMAC = keyMaterial[:macLen]
172	keyMaterial = keyMaterial[macLen:]
173	clientKey = keyMaterial[:keyLen]
174	keyMaterial = keyMaterial[keyLen:]
175	serverKey = keyMaterial[:keyLen]
176	keyMaterial = keyMaterial[keyLen:]
177	clientIV = keyMaterial[:ivLen]
178	keyMaterial = keyMaterial[ivLen:]
179	serverIV = keyMaterial[:ivLen]
180	return
181}
182
183func newFinishedHash(wireVersion uint16, isDTLS bool, cipherSuite *cipherSuite) finishedHash {
184	var ret finishedHash
185
186	version, ok := wireToVersion(wireVersion, isDTLS)
187	if !ok {
188		panic("unknown version")
189	}
190
191	if version >= VersionTLS12 {
192		ret.hash = cipherSuite.hash()
193
194		ret.client = ret.hash.New()
195		ret.server = ret.hash.New()
196
197		if version == VersionTLS12 {
198			ret.prf = prf12(ret.hash.New)
199		} else {
200			ret.secret = make([]byte, ret.hash.Size())
201		}
202	} else {
203		ret.hash = crypto.MD5SHA1
204
205		ret.client = sha1.New()
206		ret.server = sha1.New()
207		ret.clientMD5 = md5.New()
208		ret.serverMD5 = md5.New()
209
210		ret.prf = prf10
211	}
212
213	ret.buffer = []byte{}
214	ret.version = version
215	ret.wireVersion = wireVersion
216	return ret
217}
218
219// A finishedHash calculates the hash of a set of handshake messages suitable
220// for including in a Finished message.
221type finishedHash struct {
222	hash crypto.Hash
223
224	client hash.Hash
225	server hash.Hash
226
227	// Prior to TLS 1.2, an additional MD5 hash is required.
228	clientMD5 hash.Hash
229	serverMD5 hash.Hash
230
231	// In TLS 1.2 (and SSL 3 for implementation convenience), a
232	// full buffer is required.
233	buffer []byte
234
235	version     uint16
236	wireVersion uint16
237	prf         func(result, secret, label, seed []byte)
238
239	// secret, in TLS 1.3, is the running input secret.
240	secret []byte
241}
242
243func (h *finishedHash) UpdateForHelloRetryRequest() (err error) {
244	data := newByteBuilder()
245	data.addU8(typeMessageHash)
246	data.addU24(h.hash.Size())
247	data.addBytes(h.Sum())
248	h.client = h.hash.New()
249	h.server = h.hash.New()
250	if h.buffer != nil {
251		h.buffer = []byte{}
252	}
253	h.Write(data.finish())
254	return nil
255}
256
257func (h *finishedHash) Write(msg []byte) (n int, err error) {
258	h.client.Write(msg)
259	h.server.Write(msg)
260
261	if h.version < VersionTLS12 {
262		h.clientMD5.Write(msg)
263		h.serverMD5.Write(msg)
264	}
265
266	if h.buffer != nil {
267		h.buffer = append(h.buffer, msg...)
268	}
269
270	return len(msg), nil
271}
272
273func (h finishedHash) Sum() []byte {
274	if h.version >= VersionTLS12 {
275		return h.client.Sum(nil)
276	}
277
278	out := make([]byte, 0, md5.Size+sha1.Size)
279	out = h.clientMD5.Sum(out)
280	return h.client.Sum(out)
281}
282
283// finishedSum30 calculates the contents of the verify_data member of a SSLv3
284// Finished message given the MD5 and SHA1 hashes of a set of handshake
285// messages.
286func finishedSum30(md5, sha1 hash.Hash, masterSecret []byte, magic []byte) []byte {
287	md5.Write(magic)
288	md5.Write(masterSecret)
289	md5.Write(ssl30Pad1[:])
290	md5Digest := md5.Sum(nil)
291
292	md5.Reset()
293	md5.Write(masterSecret)
294	md5.Write(ssl30Pad2[:])
295	md5.Write(md5Digest)
296	md5Digest = md5.Sum(nil)
297
298	sha1.Write(magic)
299	sha1.Write(masterSecret)
300	sha1.Write(ssl30Pad1[:40])
301	sha1Digest := sha1.Sum(nil)
302
303	sha1.Reset()
304	sha1.Write(masterSecret)
305	sha1.Write(ssl30Pad2[:40])
306	sha1.Write(sha1Digest)
307	sha1Digest = sha1.Sum(nil)
308
309	ret := make([]byte, len(md5Digest)+len(sha1Digest))
310	copy(ret, md5Digest)
311	copy(ret[len(md5Digest):], sha1Digest)
312	return ret
313}
314
315var ssl3ClientFinishedMagic = [4]byte{0x43, 0x4c, 0x4e, 0x54}
316var ssl3ServerFinishedMagic = [4]byte{0x53, 0x52, 0x56, 0x52}
317
318// clientSum returns the contents of the verify_data member of a client's
319// Finished message.
320func (h finishedHash) clientSum(baseKey []byte) []byte {
321	if h.version == VersionSSL30 {
322		return finishedSum30(h.clientMD5, h.client, baseKey, ssl3ClientFinishedMagic[:])
323	}
324
325	if h.version < VersionTLS13 {
326		out := make([]byte, finishedVerifyLength)
327		h.prf(out, baseKey, clientFinishedLabel, h.Sum())
328		return out
329	}
330
331	clientFinishedKey := hkdfExpandLabel(h.hash, baseKey, finishedLabel, nil, h.hash.Size())
332	finishedHMAC := hmac.New(h.hash.New, clientFinishedKey)
333	finishedHMAC.Write(h.appendContextHashes(nil))
334	return finishedHMAC.Sum(nil)
335}
336
337// serverSum returns the contents of the verify_data member of a server's
338// Finished message.
339func (h finishedHash) serverSum(baseKey []byte) []byte {
340	if h.version == VersionSSL30 {
341		return finishedSum30(h.serverMD5, h.server, baseKey, ssl3ServerFinishedMagic[:])
342	}
343
344	if h.version < VersionTLS13 {
345		out := make([]byte, finishedVerifyLength)
346		h.prf(out, baseKey, serverFinishedLabel, h.Sum())
347		return out
348	}
349
350	serverFinishedKey := hkdfExpandLabel(h.hash, baseKey, finishedLabel, nil, h.hash.Size())
351	finishedHMAC := hmac.New(h.hash.New, serverFinishedKey)
352	finishedHMAC.Write(h.appendContextHashes(nil))
353	return finishedHMAC.Sum(nil)
354}
355
356// hashForClientCertificateSSL3 returns the hash to be signed for client
357// certificates in SSL 3.0.
358func (h finishedHash) hashForClientCertificateSSL3(masterSecret []byte) []byte {
359	md5Hash := md5.New()
360	md5Hash.Write(h.buffer)
361	sha1Hash := sha1.New()
362	sha1Hash.Write(h.buffer)
363	return finishedSum30(md5Hash, sha1Hash, masterSecret, nil)
364}
365
366// hashForChannelID returns the hash to be signed for TLS Channel
367// ID. If a resumption, resumeHash has the previous handshake
368// hash. Otherwise, it is nil.
369func (h finishedHash) hashForChannelID(resumeHash []byte) []byte {
370	hash := sha256.New()
371	hash.Write(channelIDLabel)
372	if resumeHash != nil {
373		hash.Write(channelIDResumeLabel)
374		hash.Write(resumeHash)
375	}
376	hash.Write(h.Sum())
377	return hash.Sum(nil)
378}
379
380// discardHandshakeBuffer is called when there is no more need to
381// buffer the entirety of the handshake messages.
382func (h *finishedHash) discardHandshakeBuffer() {
383	h.buffer = nil
384}
385
386// zeroSecretTLS13 returns the default all zeros secret for TLS 1.3, used when a
387// given secret is not available in the handshake. See draft-ietf-tls-tls13-16,
388// section 7.1.
389func (h *finishedHash) zeroSecret() []byte {
390	return make([]byte, h.hash.Size())
391}
392
393// addEntropy incorporates ikm into the running TLS 1.3 secret with HKDF-Expand.
394func (h *finishedHash) addEntropy(ikm []byte) {
395	h.secret = hkdfExtract(h.hash.New, h.secret, ikm)
396}
397
398func (h *finishedHash) nextSecret() {
399	h.secret = hkdfExpandLabel(h.hash, h.secret, []byte("derived"), h.hash.New().Sum(nil), h.hash.Size())
400}
401
402// hkdfExpandLabel implements TLS 1.3's HKDF-Expand-Label function, as defined
403// in section 7.1 of draft-ietf-tls-tls13-16.
404func hkdfExpandLabel(hash crypto.Hash, secret, label, hashValue []byte, length int) []byte {
405	if len(label) > 255 || len(hashValue) > 255 {
406		panic("hkdfExpandLabel: label or hashValue too long")
407	}
408
409	versionLabel := []byte("tls13 ")
410	hkdfLabel := make([]byte, 3+len(versionLabel)+len(label)+1+len(hashValue))
411	x := hkdfLabel
412	x[0] = byte(length >> 8)
413	x[1] = byte(length)
414	x[2] = byte(len(versionLabel) + len(label))
415	x = x[3:]
416	copy(x, versionLabel)
417	x = x[len(versionLabel):]
418	copy(x, label)
419	x = x[len(label):]
420	x[0] = byte(len(hashValue))
421	copy(x[1:], hashValue)
422	return hkdfExpand(hash.New, secret, hkdfLabel, length)
423}
424
425// appendContextHashes returns the concatenation of the handshake hash and the
426// resumption context hash, as used in TLS 1.3.
427func (h *finishedHash) appendContextHashes(b []byte) []byte {
428	b = h.client.Sum(b)
429	return b
430}
431
432// The following are labels for traffic secret derivation in TLS 1.3.
433var (
434	externalPSKBinderLabel        = []byte("ext binder")
435	resumptionPSKBinderLabel      = []byte("res binder")
436	earlyTrafficLabel             = []byte("c e traffic")
437	clientHandshakeTrafficLabel   = []byte("c hs traffic")
438	serverHandshakeTrafficLabel   = []byte("s hs traffic")
439	clientApplicationTrafficLabel = []byte("c ap traffic")
440	serverApplicationTrafficLabel = []byte("s ap traffic")
441	applicationTrafficLabel       = []byte("traffic upd")
442	earlyExporterLabel            = []byte("e exp master")
443	exporterLabel                 = []byte("exp master")
444	resumptionLabel               = []byte("res master")
445
446	resumptionPSKLabel = []byte("resumption")
447)
448
449// deriveSecret implements TLS 1.3's Derive-Secret function, as defined in
450// section 7.1 of draft ietf-tls-tls13-16.
451func (h *finishedHash) deriveSecret(label []byte) []byte {
452	return hkdfExpandLabel(h.hash, h.secret, label, h.appendContextHashes(nil), h.hash.Size())
453}
454
455// The following are context strings for CertificateVerify in TLS 1.3.
456var (
457	clientCertificateVerifyContextTLS13 = []byte("TLS 1.3, client CertificateVerify")
458	serverCertificateVerifyContextTLS13 = []byte("TLS 1.3, server CertificateVerify")
459	channelIDContextTLS13               = []byte("TLS 1.3, Channel ID")
460)
461
462// certificateVerifyMessage returns the input to be signed for CertificateVerify
463// in TLS 1.3.
464func (h *finishedHash) certificateVerifyInput(context []byte) []byte {
465	const paddingLen = 64
466	b := make([]byte, paddingLen, paddingLen+len(context)+1+2*h.hash.Size())
467	for i := 0; i < paddingLen; i++ {
468		b[i] = 32
469	}
470	b = append(b, context...)
471	b = append(b, 0)
472	b = h.appendContextHashes(b)
473	return b
474}
475
476type trafficDirection int
477
478const (
479	clientWrite trafficDirection = iota
480	serverWrite
481)
482
483var (
484	keyTLS13 = []byte("key")
485	ivTLS13  = []byte("iv")
486)
487
488// deriveTrafficAEAD derives traffic keys and constructs an AEAD given a traffic
489// secret.
490func deriveTrafficAEAD(version uint16, suite *cipherSuite, secret []byte, side trafficDirection) interface{} {
491	key := hkdfExpandLabel(suite.hash(), secret, keyTLS13, nil, suite.keyLen)
492	iv := hkdfExpandLabel(suite.hash(), secret, ivTLS13, nil, suite.ivLen(version))
493
494	return suite.aead(version, key, iv)
495}
496
497func updateTrafficSecret(hash crypto.Hash, version uint16, secret []byte) []byte {
498	return hkdfExpandLabel(hash, secret, applicationTrafficLabel, nil, hash.Size())
499}
500
501func computePSKBinder(psk []byte, version uint16, label []byte, cipherSuite *cipherSuite, clientHello, helloRetryRequest, truncatedHello []byte) []byte {
502	finishedHash := newFinishedHash(version, false, cipherSuite)
503	finishedHash.addEntropy(psk)
504	binderKey := finishedHash.deriveSecret(label)
505	finishedHash.Write(clientHello)
506	if len(helloRetryRequest) != 0 {
507		finishedHash.UpdateForHelloRetryRequest()
508	}
509	finishedHash.Write(helloRetryRequest)
510	finishedHash.Write(truncatedHello)
511	return finishedHash.clientSum(binderKey)
512}
513
514func deriveSessionPSK(suite *cipherSuite, version uint16, masterSecret []byte, nonce []byte) []byte {
515	hash := suite.hash()
516	return hkdfExpandLabel(hash, masterSecret, resumptionPSKLabel, nonce, hash.Size())
517}
518