1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #ifndef VP9_COMMON_VP9_ONYXC_INT_H_
12 #define VP9_COMMON_VP9_ONYXC_INT_H_
13
14 #include "./vpx_config.h"
15 #include "vpx/internal/vpx_codec_internal.h"
16 #include "vpx_util/vpx_thread.h"
17 #include "./vp9_rtcd.h"
18 #include "vp9/common/vp9_alloccommon.h"
19 #include "vp9/common/vp9_loopfilter.h"
20 #include "vp9/common/vp9_entropymv.h"
21 #include "vp9/common/vp9_entropy.h"
22 #include "vp9/common/vp9_entropymode.h"
23 #include "vp9/common/vp9_frame_buffers.h"
24 #include "vp9/common/vp9_quant_common.h"
25 #include "vp9/common/vp9_tile_common.h"
26
27 #if CONFIG_VP9_POSTPROC
28 #include "vp9/common/vp9_postproc.h"
29 #endif
30
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34
35 #define REFS_PER_FRAME 3
36
37 #define REF_FRAMES_LOG2 3
38 #define REF_FRAMES (1 << REF_FRAMES_LOG2)
39
40 // 1 scratch frame for the new frame, 3 for scaled references on the encoder.
41 // TODO(jkoleszar): These 3 extra references could probably come from the
42 // normal reference pool.
43 #define FRAME_BUFFERS (REF_FRAMES + 4)
44
45 #define FRAME_CONTEXTS_LOG2 2
46 #define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2)
47
48 #define NUM_PING_PONG_BUFFERS 2
49
50 extern const struct {
51 PARTITION_CONTEXT above;
52 PARTITION_CONTEXT left;
53 } partition_context_lookup[BLOCK_SIZES];
54
55 typedef enum {
56 SINGLE_REFERENCE = 0,
57 COMPOUND_REFERENCE = 1,
58 REFERENCE_MODE_SELECT = 2,
59 REFERENCE_MODES = 3,
60 } REFERENCE_MODE;
61
62 typedef struct {
63 int_mv mv[2];
64 MV_REFERENCE_FRAME ref_frame[2];
65 } MV_REF;
66
67 typedef struct {
68 int ref_count;
69 MV_REF *mvs;
70 int mi_rows;
71 int mi_cols;
72 uint8_t released;
73 vpx_codec_frame_buffer_t raw_frame_buffer;
74 YV12_BUFFER_CONFIG buf;
75 } RefCntBuffer;
76
77 typedef struct BufferPool {
78 // Private data associated with the frame buffer callbacks.
79 void *cb_priv;
80
81 vpx_get_frame_buffer_cb_fn_t get_fb_cb;
82 vpx_release_frame_buffer_cb_fn_t release_fb_cb;
83
84 RefCntBuffer frame_bufs[FRAME_BUFFERS];
85
86 // Frame buffers allocated internally by the codec.
87 InternalFrameBufferList int_frame_buffers;
88 } BufferPool;
89
90 typedef struct VP9Common {
91 struct vpx_internal_error_info error;
92 vpx_color_space_t color_space;
93 vpx_color_range_t color_range;
94 int width;
95 int height;
96 int render_width;
97 int render_height;
98 int last_width;
99 int last_height;
100
101 // TODO(jkoleszar): this implies chroma ss right now, but could vary per
102 // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to
103 // support additional planes.
104 int subsampling_x;
105 int subsampling_y;
106
107 #if CONFIG_VP9_HIGHBITDEPTH
108 int use_highbitdepth; // Marks if we need to use 16bit frame buffers.
109 #endif
110
111 YV12_BUFFER_CONFIG *frame_to_show;
112 RefCntBuffer *prev_frame;
113
114 // TODO(hkuang): Combine this with cur_buf in macroblockd.
115 RefCntBuffer *cur_frame;
116
117 int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */
118
119 // Prepare ref_frame_map for the next frame.
120 // Only used in frame parallel decode.
121 int next_ref_frame_map[REF_FRAMES];
122
123 // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and
124 // roll new_fb_idx into it.
125
126 // Each frame can reference REFS_PER_FRAME buffers
127 RefBuffer frame_refs[REFS_PER_FRAME];
128
129 int new_fb_idx;
130
131 #if CONFIG_VP9_POSTPROC
132 YV12_BUFFER_CONFIG post_proc_buffer;
133 YV12_BUFFER_CONFIG post_proc_buffer_int;
134 #endif
135
136 FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
137 FRAME_TYPE frame_type;
138
139 int show_frame;
140 int last_show_frame;
141 int show_existing_frame;
142
143 // Flag signaling that the frame is encoded using only INTRA modes.
144 uint8_t intra_only;
145 uint8_t last_intra_only;
146
147 int allow_high_precision_mv;
148
149 // Flag signaling that the frame context should be reset to default values.
150 // 0 or 1 implies don't reset, 2 reset just the context specified in the
151 // frame header, 3 reset all contexts.
152 int reset_frame_context;
153
154 // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
155 // MODE_INFO (8-pixel) units.
156 int MBs;
157 int mb_rows, mi_rows;
158 int mb_cols, mi_cols;
159 int mi_stride;
160
161 /* profile settings */
162 TX_MODE tx_mode;
163
164 int base_qindex;
165 int y_dc_delta_q;
166 int uv_dc_delta_q;
167 int uv_ac_delta_q;
168 int16_t y_dequant[MAX_SEGMENTS][2];
169 int16_t uv_dequant[MAX_SEGMENTS][2];
170
171 /* We allocate a MODE_INFO struct for each macroblock, together with
172 an extra row on top and column on the left to simplify prediction. */
173 int mi_alloc_size;
174 MODE_INFO *mip; /* Base of allocated array */
175 MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
176
177 // TODO(agrange): Move prev_mi into encoder structure.
178 // prev_mip and prev_mi will only be allocated in VP9 encoder.
179 MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */
180 MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
181
182 // Separate mi functions between encoder and decoder.
183 int (*alloc_mi)(struct VP9Common *cm, int mi_size);
184 void (*free_mi)(struct VP9Common *cm);
185 void (*setup_mi)(struct VP9Common *cm);
186
187 // Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible
188 // area will be NULL.
189 MODE_INFO **mi_grid_base;
190 MODE_INFO **mi_grid_visible;
191 MODE_INFO **prev_mi_grid_base;
192 MODE_INFO **prev_mi_grid_visible;
193
194 // Whether to use previous frame's motion vectors for prediction.
195 int use_prev_frame_mvs;
196
197 // Persistent mb segment id map used in prediction.
198 int seg_map_idx;
199 int prev_seg_map_idx;
200
201 uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS];
202 uint8_t *last_frame_seg_map;
203 uint8_t *current_frame_seg_map;
204 int seg_map_alloc_size;
205
206 INTERP_FILTER interp_filter;
207
208 loop_filter_info_n lf_info;
209
210 int refresh_frame_context; /* Two state 0 = NO, 1 = YES */
211
212 int ref_frame_sign_bias[MAX_REF_FRAMES]; /* Two state 0, 1 */
213
214 struct loopfilter lf;
215 struct segmentation seg;
216
217 // Context probabilities for reference frame prediction
218 MV_REFERENCE_FRAME comp_fixed_ref;
219 MV_REFERENCE_FRAME comp_var_ref[2];
220 REFERENCE_MODE reference_mode;
221
222 FRAME_CONTEXT *fc; /* this frame entropy */
223 FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS
224 unsigned int frame_context_idx; /* Context to use/update */
225 FRAME_COUNTS counts;
226
227 unsigned int current_video_frame;
228 BITSTREAM_PROFILE profile;
229
230 // VPX_BITS_8 in profile 0 or 1, VPX_BITS_10 or VPX_BITS_12 in profile 2 or 3.
231 vpx_bit_depth_t bit_depth;
232 vpx_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer
233
234 #if CONFIG_VP9_POSTPROC
235 struct postproc_state postproc_state;
236 #endif
237
238 int error_resilient_mode;
239 int frame_parallel_decoding_mode;
240
241 int log2_tile_cols, log2_tile_rows;
242 int byte_alignment;
243 int skip_loop_filter;
244
245 // Private data associated with the frame buffer callbacks.
246 void *cb_priv;
247 vpx_get_frame_buffer_cb_fn_t get_fb_cb;
248 vpx_release_frame_buffer_cb_fn_t release_fb_cb;
249
250 // Handles memory for the codec.
251 InternalFrameBufferList int_frame_buffers;
252
253 // External BufferPool passed from outside.
254 BufferPool *buffer_pool;
255
256 PARTITION_CONTEXT *above_seg_context;
257 ENTROPY_CONTEXT *above_context;
258 int above_context_alloc_cols;
259 } VP9_COMMON;
260
get_ref_frame(VP9_COMMON * cm,int index)261 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(VP9_COMMON *cm, int index) {
262 if (index < 0 || index >= REF_FRAMES) return NULL;
263 if (cm->ref_frame_map[index] < 0) return NULL;
264 assert(cm->ref_frame_map[index] < FRAME_BUFFERS);
265 return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf;
266 }
267
get_frame_new_buffer(VP9_COMMON * cm)268 static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(VP9_COMMON *cm) {
269 return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf;
270 }
271
get_free_fb(VP9_COMMON * cm)272 static INLINE int get_free_fb(VP9_COMMON *cm) {
273 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
274 int i;
275
276 for (i = 0; i < FRAME_BUFFERS; ++i)
277 if (frame_bufs[i].ref_count == 0) break;
278
279 if (i != FRAME_BUFFERS) {
280 frame_bufs[i].ref_count = 1;
281 } else {
282 // Reset i to be INVALID_IDX to indicate no free buffer found.
283 i = INVALID_IDX;
284 }
285
286 return i;
287 }
288
ref_cnt_fb(RefCntBuffer * bufs,int * idx,int new_idx)289 static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) {
290 const int ref_index = *idx;
291
292 if (ref_index >= 0 && bufs[ref_index].ref_count > 0)
293 bufs[ref_index].ref_count--;
294
295 *idx = new_idx;
296
297 bufs[new_idx].ref_count++;
298 }
299
mi_cols_aligned_to_sb(int n_mis)300 static INLINE int mi_cols_aligned_to_sb(int n_mis) {
301 return ALIGN_POWER_OF_TWO(n_mis, MI_BLOCK_SIZE_LOG2);
302 }
303
frame_is_intra_only(const VP9_COMMON * const cm)304 static INLINE int frame_is_intra_only(const VP9_COMMON *const cm) {
305 return cm->frame_type == KEY_FRAME || cm->intra_only;
306 }
307
set_partition_probs(const VP9_COMMON * const cm,MACROBLOCKD * const xd)308 static INLINE void set_partition_probs(const VP9_COMMON *const cm,
309 MACROBLOCKD *const xd) {
310 xd->partition_probs =
311 frame_is_intra_only(cm)
312 ? &vp9_kf_partition_probs[0]
313 : (const vpx_prob(*)[PARTITION_TYPES - 1]) cm->fc->partition_prob;
314 }
315
vp9_init_macroblockd(VP9_COMMON * cm,MACROBLOCKD * xd,tran_low_t * dqcoeff)316 static INLINE void vp9_init_macroblockd(VP9_COMMON *cm, MACROBLOCKD *xd,
317 tran_low_t *dqcoeff) {
318 int i;
319
320 for (i = 0; i < MAX_MB_PLANE; ++i) {
321 xd->plane[i].dqcoeff = dqcoeff;
322 xd->above_context[i] =
323 cm->above_context +
324 i * sizeof(*cm->above_context) * 2 * mi_cols_aligned_to_sb(cm->mi_cols);
325
326 if (get_plane_type(i) == PLANE_TYPE_Y) {
327 memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant));
328 } else {
329 memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant));
330 }
331 xd->fc = cm->fc;
332 }
333
334 xd->above_seg_context = cm->above_seg_context;
335 xd->mi_stride = cm->mi_stride;
336 xd->error_info = &cm->error;
337
338 set_partition_probs(cm, xd);
339 }
340
get_partition_probs(const MACROBLOCKD * xd,int ctx)341 static INLINE const vpx_prob *get_partition_probs(const MACROBLOCKD *xd,
342 int ctx) {
343 return xd->partition_probs[ctx];
344 }
345
set_skip_context(MACROBLOCKD * xd,int mi_row,int mi_col)346 static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) {
347 const int above_idx = mi_col * 2;
348 const int left_idx = (mi_row * 2) & 15;
349 int i;
350 for (i = 0; i < MAX_MB_PLANE; ++i) {
351 struct macroblockd_plane *const pd = &xd->plane[i];
352 pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
353 pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
354 }
355 }
356
calc_mi_size(int len)357 static INLINE int calc_mi_size(int len) {
358 // len is in mi units.
359 return len + MI_BLOCK_SIZE;
360 }
361
set_mi_row_col(MACROBLOCKD * xd,const TileInfo * const tile,int mi_row,int bh,int mi_col,int bw,int mi_rows,int mi_cols)362 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
363 int mi_row, int bh, int mi_col, int bw,
364 int mi_rows, int mi_cols) {
365 xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
366 xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
367 xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
368 xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
369
370 // Are edges available for intra prediction?
371 xd->above_mi = (mi_row != 0) ? xd->mi[-xd->mi_stride] : NULL;
372 xd->left_mi = (mi_col > tile->mi_col_start) ? xd->mi[-1] : NULL;
373 }
374
update_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize)375 static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
376 int mi_col, BLOCK_SIZE subsize,
377 BLOCK_SIZE bsize) {
378 PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
379 PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
380
381 // num_4x4_blocks_wide_lookup[bsize] / 2
382 const int bs = num_8x8_blocks_wide_lookup[bsize];
383
384 // update the partition context at the end notes. set partition bits
385 // of block sizes larger than the current one to be one, and partition
386 // bits of smaller block sizes to be zero.
387 memset(above_ctx, partition_context_lookup[subsize].above, bs);
388 memset(left_ctx, partition_context_lookup[subsize].left, bs);
389 }
390
partition_plane_context(const MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)391 static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
392 int mi_col, BLOCK_SIZE bsize) {
393 const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
394 const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
395 const int bsl = mi_width_log2_lookup[bsize];
396 int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
397
398 assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
399 assert(bsl >= 0);
400
401 return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
402 }
403
404 #ifdef __cplusplus
405 } // extern "C"
406 #endif
407
408 #endif // VP9_COMMON_VP9_ONYXC_INT_H_
409