• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 ///////////////////////////////////////////////////////////////////////////////////
2 /// OpenGL Mathematics (glm.g-truc.net)
3 ///
4 /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
5 /// Permission is hereby granted, free of charge, to any person obtaining a copy
6 /// of this software and associated documentation files (the "Software"), to deal
7 /// in the Software without restriction, including without limitation the rights
8 /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 /// copies of the Software, and to permit persons to whom the Software is
10 /// furnished to do so, subject to the following conditions:
11 ///
12 /// The above copyright notice and this permission notice shall be included in
13 /// all copies or substantial portions of the Software.
14 ///
15 /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 /// THE SOFTWARE.
22 ///
23 /// @ref gtx_simd_vec4
24 /// @file glm/gtx/simd_vec4.hpp
25 /// @date 2009-05-07 / 2011-06-07
26 /// @author Christophe Riccio
27 ///
28 /// @see core (dependence)
29 ///
30 /// @defgroup gtx_simd_vec4 GLM_GTX_simd_vec4
31 /// @ingroup gtx
32 ///
33 /// @brief SIMD implementation of vec4 type.
34 ///
35 /// <glm/gtx/simd_vec4.hpp> need to be included to use these functionalities.
36 ///////////////////////////////////////////////////////////////////////////////////
37 
38 #ifndef GLM_GTX_simd_vec4
39 #define GLM_GTX_simd_vec4
40 
41 // Dependency:
42 #include "../glm.hpp"
43 
44 #if(GLM_ARCH != GLM_ARCH_PURE)
45 
46 #if(GLM_ARCH & GLM_ARCH_SSE2)
47 #	include "../detail/intrinsic_common.hpp"
48 #	include "../detail/intrinsic_geometric.hpp"
49 #	include "../detail/intrinsic_integer.hpp"
50 #else
51 #	error "GLM: GLM_GTX_simd_vec4 requires compiler support of SSE2 through intrinsics"
52 #endif
53 
54 #if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
55 #	pragma message("GLM: GLM_GTX_simd_vec4 extension included")
56 #endif
57 
58 
59 // Warning silencer for nameless struct/union.
60 #if (GLM_COMPILER & GLM_COMPILER_VC)
61 #	pragma warning(push)
62 #	pragma warning(disable:4201)   // warning C4201: nonstandard extension used : nameless struct/union
63 #endif
64 
65 namespace glm
66 {
67 	enum comp
68 	{
69 		X = 0,
70 		R = 0,
71 		S = 0,
72 		Y = 1,
73 		G = 1,
74 		T = 1,
75 		Z = 2,
76 		B = 2,
77 		P = 2,
78 		W = 3,
79 		A = 3,
80 		Q = 3
81 	};
82 
83 }//namespace glm
84 
85 namespace glm{
86 namespace detail
87 {
88 	/// 4-dimensional vector implemented using SIMD SEE intrinsics.
89 	/// \ingroup gtx_simd_vec4
90 	GLM_ALIGNED_STRUCT(16) fvec4SIMD
91 	{
92 		enum ctor{null};
93 		typedef __m128 value_type;
94 		typedef std::size_t size_type;
95 		static size_type value_size();
96 
97 		typedef fvec4SIMD type;
98 		typedef tvec4<bool, highp> bool_type;
99 
100 #ifdef GLM_SIMD_ENABLE_XYZW_UNION
101 		union
102 		{
103 			__m128 Data;
104 			struct {float x, y, z, w;};
105 		};
106 #else
107 		__m128 Data;
108 #endif
109 
110 		//////////////////////////////////////
111 		// Implicit basic constructors
112 
113 		fvec4SIMD();
114 		fvec4SIMD(__m128 const & Data);
115 		fvec4SIMD(fvec4SIMD const & v);
116 
117 		//////////////////////////////////////
118 		// Explicit basic constructors
119 
120 		explicit fvec4SIMD(
121 			ctor);
122 		explicit fvec4SIMD(
123 			float const & s);
124 		explicit fvec4SIMD(
125 			float const & x,
126 			float const & y,
127 			float const & z,
128 			float const & w);
129 		explicit fvec4SIMD(
130 			vec4 const & v);
131 
132 		////////////////////////////////////////
133 		//// Conversion vector constructors
134 
135 		fvec4SIMD(vec2 const & v, float const & s1, float const & s2);
136 		fvec4SIMD(float const & s1, vec2 const & v, float const & s2);
137 		fvec4SIMD(float const & s1, float const & s2, vec2 const & v);
138 		fvec4SIMD(vec3 const & v, float const & s);
139 		fvec4SIMD(float const & s, vec3 const & v);
140 		fvec4SIMD(vec2 const & v1, vec2 const & v2);
141 		//fvec4SIMD(ivec4SIMD const & v);
142 
143 		//////////////////////////////////////
144 		// Unary arithmetic operators
145 
146 		fvec4SIMD& operator= (fvec4SIMD const & v);
147 		fvec4SIMD& operator+=(fvec4SIMD const & v);
148 		fvec4SIMD& operator-=(fvec4SIMD const & v);
149 		fvec4SIMD& operator*=(fvec4SIMD const & v);
150 		fvec4SIMD& operator/=(fvec4SIMD const & v);
151 
152 		fvec4SIMD& operator+=(float const & s);
153 		fvec4SIMD& operator-=(float const & s);
154 		fvec4SIMD& operator*=(float const & s);
155 		fvec4SIMD& operator/=(float const & s);
156 
157 		fvec4SIMD& operator++();
158 		fvec4SIMD& operator--();
159 
160 		//////////////////////////////////////
161 		// Swizzle operators
162 
163 		template <comp X, comp Y, comp Z, comp W>
164 		fvec4SIMD& swizzle();
165 		template <comp X, comp Y, comp Z, comp W>
166 		fvec4SIMD swizzle() const;
167 		template <comp X, comp Y, comp Z>
168 		fvec4SIMD swizzle() const;
169 		template <comp X, comp Y>
170 		fvec4SIMD swizzle() const;
171 		template <comp X>
172 		fvec4SIMD swizzle() const;
173 	};
174 }//namespace detail
175 
176 	typedef glm::detail::fvec4SIMD simdVec4;
177 
178 	/// @addtogroup gtx_simd_vec4
179 	/// @{
180 
181 	//! Convert a simdVec4 to a vec4.
182 	/// @see gtx_simd_vec4
183 	vec4 vec4_cast(
184 		detail::fvec4SIMD const & x);
185 
186 	//! Returns x if x >= 0; otherwise, it returns -x.
187 	/// @see gtx_simd_vec4
188 	detail::fvec4SIMD abs(detail::fvec4SIMD const & x);
189 
190 	//! Returns 1.0 if x > 0, 0.0 if x = 0, or -1.0 if x < 0.
191 	/// @see gtx_simd_vec4
192 	detail::fvec4SIMD sign(detail::fvec4SIMD const & x);
193 
194 	//! Returns a value equal to the nearest integer that is less then or equal to x.
195 	/// @see gtx_simd_vec4
196 	detail::fvec4SIMD floor(detail::fvec4SIMD const & x);
197 
198 	//! Returns a value equal to the nearest integer to x
199 	//! whose absolute value is not larger than the absolute value of x.
200 	/// @see gtx_simd_vec4
201 	detail::fvec4SIMD trunc(detail::fvec4SIMD const & x);
202 
203 	//! Returns a value equal to the nearest integer to x.
204 	//! The fraction 0.5 will round in a direction chosen by the
205 	//! implementation, presumably the direction that is fastest.
206 	//! This includes the possibility that round(x) returns the
207 	//! same value as roundEven(x) for all values of x.
208 	///
209 	/// @see gtx_simd_vec4
210 	detail::fvec4SIMD round(detail::fvec4SIMD const & x);
211 
212 	//! Returns a value equal to the nearest integer to x.
213 	//! A fractional part of 0.5 will round toward the nearest even
214 	//! integer. (Both 3.5 and 4.5 for x will return 4.0.)
215 	///
216 	/// @see gtx_simd_vec4
217 	//detail::fvec4SIMD roundEven(detail::fvec4SIMD const & x);
218 
219 	//! Returns a value equal to the nearest integer
220 	//! that is greater than or equal to x.
221 	/// @see gtx_simd_vec4
222 	detail::fvec4SIMD ceil(detail::fvec4SIMD const & x);
223 
224 	//! Return x - floor(x).
225 	///
226 	/// @see gtx_simd_vec4
227 	detail::fvec4SIMD fract(detail::fvec4SIMD const & x);
228 
229 	//! Modulus. Returns x - y * floor(x / y)
230 	//! for each component in x using the floating point value y.
231 	///
232 	/// @see gtx_simd_vec4
233 	detail::fvec4SIMD mod(
234 		detail::fvec4SIMD const & x,
235 		detail::fvec4SIMD const & y);
236 
237 	//! Modulus. Returns x - y * floor(x / y)
238 	//! for each component in x using the floating point value y.
239 	///
240 	/// @see gtx_simd_vec4
241 	detail::fvec4SIMD mod(
242 		detail::fvec4SIMD const & x,
243 		float const & y);
244 
245 	//! Returns the fractional part of x and sets i to the integer
246 	//! part (as a whole number floating point value). Both the
247 	//! return value and the output parameter will have the same
248 	//! sign as x.
249 	//! (From GLM_GTX_simd_vec4 extension, common function)
250 	//detail::fvec4SIMD modf(
251 	//	detail::fvec4SIMD const & x,
252 	//	detail::fvec4SIMD & i);
253 
254 	//! Returns y if y < x; otherwise, it returns x.
255 	///
256 	/// @see gtx_simd_vec4
257 	detail::fvec4SIMD min(
258 		detail::fvec4SIMD const & x,
259 		detail::fvec4SIMD const & y);
260 
261 	detail::fvec4SIMD min(
262 		detail::fvec4SIMD const & x,
263 		float const & y);
264 
265 	//! Returns y if x < y; otherwise, it returns x.
266 	///
267 	/// @see gtx_simd_vec4
268 	detail::fvec4SIMD max(
269 		detail::fvec4SIMD const & x,
270 		detail::fvec4SIMD const & y);
271 
272 	detail::fvec4SIMD max(
273 		detail::fvec4SIMD const & x,
274 		float const & y);
275 
276 	//! Returns min(max(x, minVal), maxVal) for each component in x
277 	//! using the floating-point values minVal and maxVal.
278 	///
279 	/// @see gtx_simd_vec4
280 	detail::fvec4SIMD clamp(
281 		detail::fvec4SIMD const & x,
282 		detail::fvec4SIMD const & minVal,
283 		detail::fvec4SIMD const & maxVal);
284 
285 	detail::fvec4SIMD clamp(
286 		detail::fvec4SIMD const & x,
287 		float const & minVal,
288 		float const & maxVal);
289 
290 	//! \return If genTypeU is a floating scalar or vector:
291 	//! Returns x * (1.0 - a) + y * a, i.e., the linear blend of
292 	//! x and y using the floating-point value a.
293 	//! The value for a is not restricted to the range [0, 1].
294 	//!
295 	//! \return If genTypeU is a boolean scalar or vector:
296 	//! Selects which vector each returned component comes
297 	//! from. For a component of a that is false, the
298 	//! corresponding component of x is returned. For a
299 	//! component of a that is true, the corresponding
300 	//! component of y is returned. Components of x and y that
301 	//! are not selected are allowed to be invalid floating point
302 	//! values and will have no effect on the results. Thus, this
303 	//! provides different functionality than
304 	//! genType mix(genType x, genType y, genType(a))
305 	//! where a is a Boolean vector.
306 	//!
307 	//! From GLSL 1.30.08 specification, section 8.3
308 	//!
309 	//! \param[in]  x Floating point scalar or vector.
310 	//! \param[in]  y Floating point scalar or vector.
311 	//! \param[in]  a Floating point or boolean scalar or vector.
312 	//!
313 	/// \todo Test when 'a' is a boolean.
314 	///
315 	/// @see gtx_simd_vec4
316 	detail::fvec4SIMD mix(
317 		detail::fvec4SIMD const & x,
318 		detail::fvec4SIMD const & y,
319 		detail::fvec4SIMD const & a);
320 
321 	//! Returns 0.0 if x < edge, otherwise it returns 1.0.
322 	///
323 	/// @see gtx_simd_vec4
324 	detail::fvec4SIMD step(
325 		detail::fvec4SIMD const & edge,
326 		detail::fvec4SIMD const & x);
327 
328 	detail::fvec4SIMD step(
329 		float const & edge,
330 		detail::fvec4SIMD const & x);
331 
332 	//! Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
333 	//! performs smooth Hermite interpolation between 0 and 1
334 	//! when edge0 < x < edge1. This is useful in cases where
335 	//! you would want a threshold function with a smooth
336 	//! transition. This is equivalent to:
337 	//! genType t;
338 	//! t = clamp ((x - edge0) / (edge1 - edge0), 0, 1);
339 	//! return t * t * (3 - 2 * t);
340 	//! Results are undefined if edge0 >= edge1.
341 	///
342 	/// @see gtx_simd_vec4
343 	detail::fvec4SIMD smoothstep(
344 		detail::fvec4SIMD const & edge0,
345 		detail::fvec4SIMD const & edge1,
346 		detail::fvec4SIMD const & x);
347 
348 	detail::fvec4SIMD smoothstep(
349 		float const & edge0,
350 		float const & edge1,
351 		detail::fvec4SIMD const & x);
352 
353 	//! Returns true if x holds a NaN (not a number)
354 	//! representation in the underlying implementation's set of
355 	//! floating point representations. Returns false otherwise,
356 	//! including for implementations with no NaN
357 	//! representations.
358 	///
359 	/// @see gtx_simd_vec4
360 	//bvec4 isnan(detail::fvec4SIMD const & x);
361 
362 	//! Returns true if x holds a positive infinity or negative
363 	//! infinity representation in the underlying implementation's
364 	//! set of floating point representations. Returns false
365 	//! otherwise, including for implementations with no infinity
366 	//! representations.
367 	///
368 	/// @see gtx_simd_vec4
369 	//bvec4 isinf(detail::fvec4SIMD const & x);
370 
371 	//! Returns a signed or unsigned integer value representing
372 	//! the encoding of a floating-point value. The floatingpoint
373 	//! value's bit-level representation is preserved.
374 	///
375 	/// @see gtx_simd_vec4
376 	//detail::ivec4SIMD floatBitsToInt(detail::fvec4SIMD const & value);
377 
378 	//! Returns a floating-point value corresponding to a signed
379 	//! or unsigned integer encoding of a floating-point value.
380 	//! If an inf or NaN is passed in, it will not signal, and the
381 	//! resulting floating point value is unspecified. Otherwise,
382 	//! the bit-level representation is preserved.
383 	///
384 	/// @see gtx_simd_vec4
385 	//detail::fvec4SIMD intBitsToFloat(detail::ivec4SIMD const & value);
386 
387 	//! Computes and returns a * b + c.
388 	///
389 	/// @see gtx_simd_vec4
390 	detail::fvec4SIMD fma(
391 		detail::fvec4SIMD const & a,
392 		detail::fvec4SIMD const & b,
393 		detail::fvec4SIMD const & c);
394 
395 	//! Splits x into a floating-point significand in the range
396 	//! [0.5, 1.0) and an integral exponent of two, such that:
397 	//! x = significand * exp(2, exponent)
398 	//! The significand is returned by the function and the
399 	//! exponent is returned in the parameter exp. For a
400 	//! floating-point value of zero, the significant and exponent
401 	//! are both zero. For a floating-point value that is an
402 	//! infinity or is not a number, the results are undefined.
403 	///
404 	/// @see gtx_simd_vec4
405 	//detail::fvec4SIMD frexp(detail::fvec4SIMD const & x, detail::ivec4SIMD & exp);
406 
407 	//! Builds a floating-point number from x and the
408 	//! corresponding integral exponent of two in exp, returning:
409 	//! significand * exp(2, exponent)
410 	//! If this product is too large to be represented in the
411 	//! floating-point type, the result is undefined.
412 	///
413 	/// @see gtx_simd_vec4
414 	//detail::fvec4SIMD ldexp(detail::fvec4SIMD const & x, detail::ivec4SIMD const & exp);
415 
416 	//! Returns the length of x, i.e., sqrt(x * x).
417 	///
418 	/// @see gtx_simd_vec4
419 	float length(
420 		detail::fvec4SIMD const & x);
421 
422 	//! Returns the length of x, i.e., sqrt(x * x).
423 	//! Less accurate but much faster than simdLength.
424 	///
425 	/// @see gtx_simd_vec4
426 	float fastLength(
427 		detail::fvec4SIMD const & x);
428 
429 	//! Returns the length of x, i.e., sqrt(x * x).
430 	//! Slightly more accurate but much slower than simdLength.
431 	///
432 	/// @see gtx_simd_vec4
433 	float niceLength(
434 		detail::fvec4SIMD const & x);
435 
436 	//! Returns the length of x, i.e., sqrt(x * x).
437 	///
438 	/// @see gtx_simd_vec4
439 	detail::fvec4SIMD length4(
440 		detail::fvec4SIMD const & x);
441 
442 	//! Returns the length of x, i.e., sqrt(x * x).
443 	//! Less accurate but much faster than simdLength4.
444 	///
445 	/// @see gtx_simd_vec4
446 	detail::fvec4SIMD fastLength4(
447 		detail::fvec4SIMD const & x);
448 
449 	//! Returns the length of x, i.e., sqrt(x * x).
450 	//! Slightly more accurate but much slower than simdLength4.
451 	///
452 	/// @see gtx_simd_vec4
453 	detail::fvec4SIMD niceLength4(
454 		detail::fvec4SIMD const & x);
455 
456 	//! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
457 	///
458 	/// @see gtx_simd_vec4
459 	float distance(
460 		detail::fvec4SIMD const & p0,
461 		detail::fvec4SIMD const & p1);
462 
463 	//! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
464 	///
465 	/// @see gtx_simd_vec4
466 	detail::fvec4SIMD distance4(
467 		detail::fvec4SIMD const & p0,
468 		detail::fvec4SIMD const & p1);
469 
470 	//! Returns the dot product of x and y, i.e., result = x * y.
471 	///
472 	/// @see gtx_simd_vec4
473 	float simdDot(
474 		detail::fvec4SIMD const & x,
475 		detail::fvec4SIMD const & y);
476 
477 	//! Returns the dot product of x and y, i.e., result = x * y.
478 	///
479 	/// @see gtx_simd_vec4
480 	detail::fvec4SIMD dot4(
481 		detail::fvec4SIMD const & x,
482 		detail::fvec4SIMD const & y);
483 
484 	//! Returns the cross product of x and y.
485 	///
486 	/// @see gtx_simd_vec4
487 	detail::fvec4SIMD cross(
488 		detail::fvec4SIMD const & x,
489 		detail::fvec4SIMD const & y);
490 
491 	//! Returns a vector in the same direction as x but with length of 1.
492 	///
493 	/// @see gtx_simd_vec4
494 	detail::fvec4SIMD normalize(
495 		detail::fvec4SIMD const & x);
496 
497 	//! Returns a vector in the same direction as x but with length of 1.
498 	//! Less accurate but much faster than simdNormalize.
499 	///
500 	/// @see gtx_simd_vec4
501 	detail::fvec4SIMD fastNormalize(
502 		detail::fvec4SIMD const & x);
503 
504 	//! If dot(Nref, I) < 0.0, return N, otherwise, return -N.
505 	///
506 	/// @see gtx_simd_vec4
507 	detail::fvec4SIMD simdFaceforward(
508 		detail::fvec4SIMD const & N,
509 		detail::fvec4SIMD const & I,
510 		detail::fvec4SIMD const & Nref);
511 
512 	//! For the incident vector I and surface orientation N,
513 	//! returns the reflection direction : result = I - 2.0 * dot(N, I) * N.
514 	///
515 	/// @see gtx_simd_vec4
516 	detail::fvec4SIMD reflect(
517 		detail::fvec4SIMD const & I,
518 		detail::fvec4SIMD const & N);
519 
520 	//! For the incident vector I and surface normal N,
521 	//! and the ratio of indices of refraction eta,
522 	//! return the refraction vector.
523 	///
524 	/// @see gtx_simd_vec4
525 	detail::fvec4SIMD refract(
526 		detail::fvec4SIMD const & I,
527 		detail::fvec4SIMD const & N,
528 		float const & eta);
529 
530 	//! Returns the positive square root of x.
531 	///
532 	/// @see gtx_simd_vec4
533 	detail::fvec4SIMD sqrt(
534 		detail::fvec4SIMD const & x);
535 
536 	//! Returns the positive square root of x with the nicest quality but very slow.
537 	//! Slightly more accurate but much slower than simdSqrt.
538 	///
539 	/// @see gtx_simd_vec4
540 	detail::fvec4SIMD niceSqrt(
541 		detail::fvec4SIMD const & x);
542 
543 	//! Returns the positive square root of x
544 	//! Less accurate but much faster than sqrt.
545 	///
546 	/// @see gtx_simd_vec4
547 	detail::fvec4SIMD fastSqrt(
548 		detail::fvec4SIMD const & x);
549 
550 	//! Returns the reciprocal of the positive square root of x.
551 	///
552 	/// @see gtx_simd_vec4
553 	detail::fvec4SIMD inversesqrt(
554 		detail::fvec4SIMD const & x);
555 
556 	//! Returns the reciprocal of the positive square root of x.
557 	//! Faster than inversesqrt but less accurate.
558 	///
559 	/// @see gtx_simd_vec4
560 	detail::fvec4SIMD fastInversesqrt(
561 		detail::fvec4SIMD const & x);
562 
563 	/// @}
564 }//namespace glm
565 
566 #include "simd_vec4.inl"
567 
568 #if (GLM_COMPILER & GLM_COMPILER_VC)
569 #	pragma warning(pop)
570 #endif
571 
572 #endif//(GLM_ARCH != GLM_ARCH_PURE)
573 
574 #endif//GLM_GTX_simd_vec4
575