• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #ifndef VIXL_UTILS_H
28 #define VIXL_UTILS_H
29 
30 #include <cmath>
31 #include <cstring>
32 #include <vector>
33 
34 #include "compiler-intrinsics-vixl.h"
35 #include "globals-vixl.h"
36 
37 namespace vixl {
38 
39 // Macros for compile-time format checking.
40 #if GCC_VERSION_OR_NEWER(4, 4, 0)
41 #define PRINTF_CHECK(format_index, varargs_index) \
42   __attribute__((format(gnu_printf, format_index, varargs_index)))
43 #else
44 #define PRINTF_CHECK(format_index, varargs_index)
45 #endif
46 
47 #ifdef __GNUC__
48 #define VIXL_HAS_DEPRECATED_WITH_MSG
49 #elif defined(__clang__)
50 #ifdef __has_extension(attribute_deprecated_with_message)
51 #define VIXL_HAS_DEPRECATED_WITH_MSG
52 #endif
53 #endif
54 
55 #ifdef VIXL_HAS_DEPRECATED_WITH_MSG
56 #define VIXL_DEPRECATED(replaced_by, declarator) \
57   __attribute__((deprecated("Use \"" replaced_by "\" instead"))) declarator
58 #else
59 #define VIXL_DEPRECATED(replaced_by, declarator) declarator
60 #endif
61 
62 #ifdef VIXL_DEBUG
63 #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_UNREACHABLE()
64 #else
65 #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_FALLTHROUGH()
66 #endif
67 
68 // Check number width.
69 // TODO: Refactor these using templates.
IsIntN(unsigned n,uint32_t x)70 inline bool IsIntN(unsigned n, uint32_t x) {
71   VIXL_ASSERT((0 < n) && (n < 32));
72   uint32_t limit = UINT32_C(1) << (n - 1);
73   return x < limit;
74 }
IsIntN(unsigned n,int32_t x)75 inline bool IsIntN(unsigned n, int32_t x) {
76   VIXL_ASSERT((0 < n) && (n < 32));
77   int32_t limit = INT32_C(1) << (n - 1);
78   return (-limit <= x) && (x < limit);
79 }
IsIntN(unsigned n,uint64_t x)80 inline bool IsIntN(unsigned n, uint64_t x) {
81   VIXL_ASSERT((0 < n) && (n < 64));
82   uint64_t limit = UINT64_C(1) << (n - 1);
83   return x < limit;
84 }
IsIntN(unsigned n,int64_t x)85 inline bool IsIntN(unsigned n, int64_t x) {
86   VIXL_ASSERT((0 < n) && (n < 64));
87   int64_t limit = INT64_C(1) << (n - 1);
88   return (-limit <= x) && (x < limit);
89 }
is_intn(unsigned n,int64_t x)90 VIXL_DEPRECATED("IsIntN", inline bool is_intn(unsigned n, int64_t x)) {
91   return IsIntN(n, x);
92 }
93 
IsUintN(unsigned n,uint32_t x)94 inline bool IsUintN(unsigned n, uint32_t x) {
95   VIXL_ASSERT((0 < n) && (n < 32));
96   return !(x >> n);
97 }
IsUintN(unsigned n,int32_t x)98 inline bool IsUintN(unsigned n, int32_t x) {
99   VIXL_ASSERT((0 < n) && (n < 32));
100   // Convert to an unsigned integer to avoid implementation-defined behavior.
101   return !(static_cast<uint32_t>(x) >> n);
102 }
IsUintN(unsigned n,uint64_t x)103 inline bool IsUintN(unsigned n, uint64_t x) {
104   VIXL_ASSERT((0 < n) && (n < 64));
105   return !(x >> n);
106 }
IsUintN(unsigned n,int64_t x)107 inline bool IsUintN(unsigned n, int64_t x) {
108   VIXL_ASSERT((0 < n) && (n < 64));
109   // Convert to an unsigned integer to avoid implementation-defined behavior.
110   return !(static_cast<uint64_t>(x) >> n);
111 }
is_uintn(unsigned n,int64_t x)112 VIXL_DEPRECATED("IsUintN", inline bool is_uintn(unsigned n, int64_t x)) {
113   return IsUintN(n, x);
114 }
115 
TruncateToUintN(unsigned n,uint64_t x)116 inline uint64_t TruncateToUintN(unsigned n, uint64_t x) {
117   VIXL_ASSERT((0 < n) && (n < 64));
118   return static_cast<uint64_t>(x) & ((UINT64_C(1) << n) - 1);
119 }
120 VIXL_DEPRECATED("TruncateToUintN",
121                 inline uint64_t truncate_to_intn(unsigned n, int64_t x)) {
122   return TruncateToUintN(n, x);
123 }
124 
125 // clang-format off
126 #define INT_1_TO_32_LIST(V)                                                    \
127 V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \
128 V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \
129 V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \
130 V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)
131 
132 #define INT_33_TO_63_LIST(V)                                                   \
133 V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \
134 V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \
135 V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \
136 V(57) V(58) V(59) V(60) V(61) V(62) V(63)
137 
138 #define INT_1_TO_63_LIST(V) INT_1_TO_32_LIST(V) INT_33_TO_63_LIST(V)
139 
140 // clang-format on
141 
142 #define DECLARE_IS_INT_N(N)                                       \
143   inline bool IsInt##N(int64_t x) { return IsIntN(N, x); }        \
144   VIXL_DEPRECATED("IsInt" #N, inline bool is_int##N(int64_t x)) { \
145     return IsIntN(N, x);                                          \
146   }
147 
148 #define DECLARE_IS_UINT_N(N)                                        \
149   inline bool IsUint##N(int64_t x) { return IsUintN(N, x); }        \
150   VIXL_DEPRECATED("IsUint" #N, inline bool is_uint##N(int64_t x)) { \
151     return IsUintN(N, x);                                           \
152   }
153 
154 #define DECLARE_TRUNCATE_TO_UINT_32(N)                             \
155   inline uint32_t TruncateToUint##N(uint64_t x) {                  \
156     return static_cast<uint32_t>(TruncateToUintN(N, x));           \
157   }                                                                \
158   VIXL_DEPRECATED("TruncateToUint" #N,                             \
159                   inline uint32_t truncate_to_int##N(int64_t x)) { \
160     return TruncateToUint##N(x);                                   \
161   }
162 
163 INT_1_TO_63_LIST(DECLARE_IS_INT_N)
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)164 INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
165 INT_1_TO_32_LIST(DECLARE_TRUNCATE_TO_UINT_32)
166 
167 #undef DECLARE_IS_INT_N
168 #undef DECLARE_IS_UINT_N
169 #undef DECLARE_TRUNCATE_TO_INT_N
170 
171 // Bit field extraction.
172 inline uint64_t ExtractUnsignedBitfield64(int msb, int lsb, uint64_t x) {
173   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
174               (msb >= lsb));
175   if ((msb == 63) && (lsb == 0)) return x;
176   return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
177 }
178 
179 
ExtractUnsignedBitfield32(int msb,int lsb,uint32_t x)180 inline uint32_t ExtractUnsignedBitfield32(int msb, int lsb, uint32_t x) {
181   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
182               (msb >= lsb));
183   return TruncateToUint32(ExtractUnsignedBitfield64(msb, lsb, x));
184 }
185 
186 
ExtractSignedBitfield64(int msb,int lsb,int64_t x)187 inline int64_t ExtractSignedBitfield64(int msb, int lsb, int64_t x) {
188   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
189               (msb >= lsb));
190   uint64_t temp = ExtractUnsignedBitfield64(msb, lsb, x);
191   // If the highest extracted bit is set, sign extend.
192   if ((temp >> (msb - lsb)) == 1) {
193     temp |= ~UINT64_C(0) << (msb - lsb);
194   }
195   int64_t result;
196   memcpy(&result, &temp, sizeof(result));
197   return result;
198 }
199 
200 
ExtractSignedBitfield32(int msb,int lsb,int32_t x)201 inline int32_t ExtractSignedBitfield32(int msb, int lsb, int32_t x) {
202   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
203               (msb >= lsb));
204   uint32_t temp = TruncateToUint32(ExtractSignedBitfield64(msb, lsb, x));
205   int32_t result;
206   memcpy(&result, &temp, sizeof(result));
207   return result;
208 }
209 
210 
RotateRight(uint64_t value,unsigned int rotate,unsigned int width)211 inline uint64_t RotateRight(uint64_t value,
212                             unsigned int rotate,
213                             unsigned int width) {
214   VIXL_ASSERT((width > 0) && (width <= 64));
215   uint64_t width_mask = ~UINT64_C(0) >> (64 - width);
216   rotate &= 63;
217   if (rotate > 0) {
218     value &= width_mask;
219     value = (value << (width - rotate)) | (value >> rotate);
220   }
221   return value & width_mask;
222 }
223 
224 
225 // Floating point representation.
226 uint32_t FloatToRawbits(float value);
227 VIXL_DEPRECATED("FloatToRawbits",
228                 inline uint32_t float_to_rawbits(float value)) {
229   return FloatToRawbits(value);
230 }
231 
232 uint64_t DoubleToRawbits(double value);
233 VIXL_DEPRECATED("DoubleToRawbits",
234                 inline uint64_t double_to_rawbits(double value)) {
235   return DoubleToRawbits(value);
236 }
237 
238 float RawbitsToFloat(uint32_t bits);
239 VIXL_DEPRECATED("RawbitsToFloat",
rawbits_to_float(uint32_t bits)240                 inline float rawbits_to_float(uint32_t bits)) {
241   return RawbitsToFloat(bits);
242 }
243 
244 double RawbitsToDouble(uint64_t bits);
245 VIXL_DEPRECATED("RawbitsToDouble",
rawbits_to_double(uint64_t bits)246                 inline double rawbits_to_double(uint64_t bits)) {
247   return RawbitsToDouble(bits);
248 }
249 
250 uint32_t FloatSign(float value);
251 VIXL_DEPRECATED("FloatSign", inline uint32_t float_sign(float value)) {
252   return FloatSign(value);
253 }
254 
255 uint32_t FloatExp(float value);
256 VIXL_DEPRECATED("FloatExp", inline uint32_t float_exp(float value)) {
257   return FloatExp(value);
258 }
259 
260 uint32_t FloatMantissa(float value);
261 VIXL_DEPRECATED("FloatMantissa", inline uint32_t float_mantissa(float value)) {
262   return FloatMantissa(value);
263 }
264 
265 uint32_t DoubleSign(double value);
266 VIXL_DEPRECATED("DoubleSign", inline uint32_t double_sign(double value)) {
267   return DoubleSign(value);
268 }
269 
270 uint32_t DoubleExp(double value);
271 VIXL_DEPRECATED("DoubleExp", inline uint32_t double_exp(double value)) {
272   return DoubleExp(value);
273 }
274 
275 uint64_t DoubleMantissa(double value);
276 VIXL_DEPRECATED("DoubleMantissa",
277                 inline uint64_t double_mantissa(double value)) {
278   return DoubleMantissa(value);
279 }
280 
281 float FloatPack(uint32_t sign, uint32_t exp, uint32_t mantissa);
282 VIXL_DEPRECATED("FloatPack",
float_pack(uint32_t sign,uint32_t exp,uint32_t mantissa)283                 inline float float_pack(uint32_t sign,
284                                         uint32_t exp,
285                                         uint32_t mantissa)) {
286   return FloatPack(sign, exp, mantissa);
287 }
288 
289 double DoublePack(uint64_t sign, uint64_t exp, uint64_t mantissa);
290 VIXL_DEPRECATED("DoublePack",
double_pack(uint32_t sign,uint32_t exp,uint64_t mantissa)291                 inline double double_pack(uint32_t sign,
292                                           uint32_t exp,
293                                           uint64_t mantissa)) {
294   return DoublePack(sign, exp, mantissa);
295 }
296 
297 // An fpclassify() function for 16-bit half-precision floats.
298 int Float16Classify(float16 value);
float16classify(float16 value)299 VIXL_DEPRECATED("Float16Classify", inline int float16classify(float16 value)) {
300   return Float16Classify(value);
301 }
302 
303 // NaN tests.
IsSignallingNaN(double num)304 inline bool IsSignallingNaN(double num) {
305   const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
306   uint64_t raw = DoubleToRawbits(num);
307   if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
308     return true;
309   }
310   return false;
311 }
312 
313 
IsSignallingNaN(float num)314 inline bool IsSignallingNaN(float num) {
315   const uint32_t kFP32QuietNaNMask = 0x00400000;
316   uint32_t raw = FloatToRawbits(num);
317   if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
318     return true;
319   }
320   return false;
321 }
322 
323 
IsSignallingNaN(float16 num)324 inline bool IsSignallingNaN(float16 num) {
325   const uint16_t kFP16QuietNaNMask = 0x0200;
326   return (Float16Classify(num) == FP_NAN) && ((num & kFP16QuietNaNMask) == 0);
327 }
328 
329 
330 template <typename T>
IsQuietNaN(T num)331 inline bool IsQuietNaN(T num) {
332   return std::isnan(num) && !IsSignallingNaN(num);
333 }
334 
335 
336 // Convert the NaN in 'num' to a quiet NaN.
ToQuietNaN(double num)337 inline double ToQuietNaN(double num) {
338   const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
339   VIXL_ASSERT(std::isnan(num));
340   return RawbitsToDouble(DoubleToRawbits(num) | kFP64QuietNaNMask);
341 }
342 
343 
ToQuietNaN(float num)344 inline float ToQuietNaN(float num) {
345   const uint32_t kFP32QuietNaNMask = 0x00400000;
346   VIXL_ASSERT(std::isnan(num));
347   return RawbitsToFloat(FloatToRawbits(num) | kFP32QuietNaNMask);
348 }
349 
350 
351 // Fused multiply-add.
FusedMultiplyAdd(double op1,double op2,double a)352 inline double FusedMultiplyAdd(double op1, double op2, double a) {
353   return fma(op1, op2, a);
354 }
355 
356 
FusedMultiplyAdd(float op1,float op2,float a)357 inline float FusedMultiplyAdd(float op1, float op2, float a) {
358   return fmaf(op1, op2, a);
359 }
360 
361 
LowestSetBit(uint64_t value)362 inline uint64_t LowestSetBit(uint64_t value) { return value & -value; }
363 
364 
365 template <typename T>
HighestSetBitPosition(T value)366 inline int HighestSetBitPosition(T value) {
367   VIXL_ASSERT(value != 0);
368   return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
369 }
370 
371 
372 template <typename V>
WhichPowerOf2(V value)373 inline int WhichPowerOf2(V value) {
374   VIXL_ASSERT(IsPowerOf2(value));
375   return CountTrailingZeros(value);
376 }
377 
378 
379 unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
380 
381 
382 int BitCount(uint64_t value);
383 
384 
385 template <typename T>
ReverseBits(T value)386 T ReverseBits(T value) {
387   VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
388               (sizeof(value) == 4) || (sizeof(value) == 8));
389   T result = 0;
390   for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
391     result = (result << 1) | (value & 1);
392     value >>= 1;
393   }
394   return result;
395 }
396 
397 
398 template <typename T>
SignExtend(T val,int bitSize)399 inline T SignExtend(T val, int bitSize) {
400   VIXL_ASSERT(bitSize > 0);
401   T mask = (T(2) << (bitSize - 1)) - T(1);
402   val &= mask;
403   T sign = -(val >> (bitSize - 1));
404   val |= (sign << bitSize);
405   return val;
406 }
407 
408 
409 template <typename T>
ReverseBytes(T value,int block_bytes_log2)410 T ReverseBytes(T value, int block_bytes_log2) {
411   VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
412   VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
413   // Split the 64-bit value into an 8-bit array, where b[0] is the least
414   // significant byte, and b[7] is the most significant.
415   uint8_t bytes[8];
416   uint64_t mask = UINT64_C(0xff00000000000000);
417   for (int i = 7; i >= 0; i--) {
418     bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
419     mask >>= 8;
420   }
421 
422   // Permutation tables for REV instructions.
423   //  permute_table[0] is used by REV16_x, REV16_w
424   //  permute_table[1] is used by REV32_x, REV_w
425   //  permute_table[2] is used by REV_x
426   VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
427   static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1},
428                                               {4, 5, 6, 7, 0, 1, 2, 3},
429                                               {0, 1, 2, 3, 4, 5, 6, 7}};
430   uint64_t temp = 0;
431   for (int i = 0; i < 8; i++) {
432     temp <<= 8;
433     temp |= bytes[permute_table[block_bytes_log2 - 1][i]];
434   }
435 
436   T result;
437   VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(temp));
438   memcpy(&result, &temp, sizeof(result));
439   return result;
440 }
441 
442 template <unsigned MULTIPLE, typename T>
IsMultiple(T value)443 inline bool IsMultiple(T value) {
444   VIXL_ASSERT(IsPowerOf2(MULTIPLE));
445   return (value & (MULTIPLE - 1)) == 0;
446 }
447 
448 template <typename T>
IsMultiple(T value,unsigned multiple)449 inline bool IsMultiple(T value, unsigned multiple) {
450   VIXL_ASSERT(IsPowerOf2(multiple));
451   return (value & (multiple - 1)) == 0;
452 }
453 
454 template <typename T>
IsAligned(T pointer,int alignment)455 inline bool IsAligned(T pointer, int alignment) {
456   VIXL_ASSERT(IsPowerOf2(alignment));
457   return (pointer & (alignment - 1)) == 0;
458 }
459 
460 // Pointer alignment
461 // TODO: rename/refactor to make it specific to instructions.
462 template <unsigned ALIGN, typename T>
IsAligned(T pointer)463 inline bool IsAligned(T pointer) {
464   VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));  // NOLINT(runtime/sizeof)
465   // Use C-style casts to get static_cast behaviour for integral types (T), and
466   // reinterpret_cast behaviour for other types.
467   return IsAligned((intptr_t)(pointer), ALIGN);
468 }
469 
470 template <typename T>
IsWordAligned(T pointer)471 bool IsWordAligned(T pointer) {
472   return IsAligned<4>(pointer);
473 }
474 
475 // Increment a pointer until it has the specified alignment. The alignment must
476 // be a power of two.
477 template <class T>
AlignUp(T pointer,typename Unsigned<sizeof (T)* kBitsPerByte>::type alignment)478 T AlignUp(T pointer,
479           typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
480   VIXL_ASSERT(IsPowerOf2(alignment));
481   // Use C-style casts to get static_cast behaviour for integral types (T), and
482   // reinterpret_cast behaviour for other types.
483 
484   typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
485       (typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer;
486   VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
487 
488   size_t mask = alignment - 1;
489   T result = (T)((pointer_raw + mask) & ~mask);
490   VIXL_ASSERT(result >= pointer);
491 
492   return result;
493 }
494 
495 // Decrement a pointer until it has the specified alignment. The alignment must
496 // be a power of two.
497 template <class T>
AlignDown(T pointer,typename Unsigned<sizeof (T)* kBitsPerByte>::type alignment)498 T AlignDown(T pointer,
499             typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
500   VIXL_ASSERT(IsPowerOf2(alignment));
501   // Use C-style casts to get static_cast behaviour for integral types (T), and
502   // reinterpret_cast behaviour for other types.
503 
504   typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
505       (typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer;
506   VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
507 
508   size_t mask = alignment - 1;
509   return (T)(pointer_raw & ~mask);
510 }
511 
512 
513 template <typename T>
ExtractBit(T value,unsigned bit)514 inline T ExtractBit(T value, unsigned bit) {
515   return (value >> bit) & T(1);
516 }
517 
518 template <typename Ts, typename Td>
ExtractBits(Ts value,int least_significant_bit,Td mask)519 inline Td ExtractBits(Ts value, int least_significant_bit, Td mask) {
520   return Td((value >> least_significant_bit) & Ts(mask));
521 }
522 
523 template <typename Ts, typename Td>
AssignBit(Td & dst,int bit,Ts value)524 inline void AssignBit(Td& dst,  // NOLINT(runtime/references)
525                       int bit,
526                       Ts value) {
527   VIXL_ASSERT((value == Ts(0)) || (value == Ts(1)));
528   VIXL_ASSERT(bit >= 0);
529   VIXL_ASSERT(bit < static_cast<int>(sizeof(Td) * 8));
530   Td mask(1);
531   dst &= ~(mask << bit);
532   dst |= Td(value) << bit;
533 }
534 
535 template <typename Td, typename Ts>
AssignBits(Td & dst,int least_significant_bit,Ts mask,Ts value)536 inline void AssignBits(Td& dst,  // NOLINT(runtime/references)
537                        int least_significant_bit,
538                        Ts mask,
539                        Ts value) {
540   VIXL_ASSERT(least_significant_bit >= 0);
541   VIXL_ASSERT(least_significant_bit < static_cast<int>(sizeof(Td) * 8));
542   VIXL_ASSERT(((Td(mask) << least_significant_bit) >> least_significant_bit) ==
543               Td(mask));
544   VIXL_ASSERT((value & mask) == value);
545   dst &= ~(Td(mask) << least_significant_bit);
546   dst |= Td(value) << least_significant_bit;
547 }
548 
549 class VFP {
550  public:
FP32ToImm8(float imm)551   static uint32_t FP32ToImm8(float imm) {
552     // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
553     uint32_t bits = FloatToRawbits(imm);
554     // bit7: a000.0000
555     uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
556     // bit6: 0b00.0000
557     uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
558     // bit5_to_0: 00cd.efgh
559     uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
560     return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
561   }
FP64ToImm8(double imm)562   static uint32_t FP64ToImm8(double imm) {
563     // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
564     //       0000.0000.0000.0000.0000.0000.0000.0000
565     uint64_t bits = DoubleToRawbits(imm);
566     // bit7: a000.0000
567     uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
568     // bit6: 0b00.0000
569     uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
570     // bit5_to_0: 00cd.efgh
571     uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
572 
573     return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
574   }
Imm8ToFP32(uint32_t imm8)575   static float Imm8ToFP32(uint32_t imm8) {
576     //   Imm8: abcdefgh (8 bits)
577     // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
578     // where B is b ^ 1
579     uint32_t bits = imm8;
580     uint32_t bit7 = (bits >> 7) & 0x1;
581     uint32_t bit6 = (bits >> 6) & 0x1;
582     uint32_t bit5_to_0 = bits & 0x3f;
583     uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
584 
585     return RawbitsToFloat(result);
586   }
Imm8ToFP64(uint32_t imm8)587   static double Imm8ToFP64(uint32_t imm8) {
588     //   Imm8: abcdefgh (8 bits)
589     // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
590     //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
591     // where B is b ^ 1
592     uint32_t bits = imm8;
593     uint64_t bit7 = (bits >> 7) & 0x1;
594     uint64_t bit6 = (bits >> 6) & 0x1;
595     uint64_t bit5_to_0 = bits & 0x3f;
596     uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
597     return RawbitsToDouble(result);
598   }
IsImmFP32(float imm)599   static bool IsImmFP32(float imm) {
600     // Valid values will have the form:
601     // aBbb.bbbc.defg.h000.0000.0000.0000.0000
602     uint32_t bits = FloatToRawbits(imm);
603     // bits[19..0] are cleared.
604     if ((bits & 0x7ffff) != 0) {
605       return false;
606     }
607 
608 
609     // bits[29..25] are all set or all cleared.
610     uint32_t b_pattern = (bits >> 16) & 0x3e00;
611     if (b_pattern != 0 && b_pattern != 0x3e00) {
612       return false;
613     }
614     // bit[30] and bit[29] are opposite.
615     if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
616       return false;
617     }
618     return true;
619   }
IsImmFP64(double imm)620   static bool IsImmFP64(double imm) {
621     // Valid values will have the form:
622     // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
623     // 0000.0000.0000.0000.0000.0000.0000.0000
624     uint64_t bits = DoubleToRawbits(imm);
625     // bits[47..0] are cleared.
626     if ((bits & 0x0000ffffffffffff) != 0) {
627       return false;
628     }
629     // bits[61..54] are all set or all cleared.
630     uint32_t b_pattern = (bits >> 48) & 0x3fc0;
631     if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
632       return false;
633     }
634     // bit[62] and bit[61] are opposite.
635     if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
636       return false;
637     }
638     return true;
639   }
640 };
641 
642 class BitField {
643   // ForEachBitHelper is a functor that will call
644   // bool ForEachBitHelper::execute(ElementType id) const
645   //   and expects a boolean in return whether to continue (if true)
646   //   or stop (if false)
647   // check_set will check if the bits are on (true) or off(false)
648   template <typename ForEachBitHelper, bool check_set>
ForEachBit(const ForEachBitHelper & helper)649   bool ForEachBit(const ForEachBitHelper& helper) {
650     for (int i = 0; static_cast<size_t>(i) < bitfield_.size(); i++) {
651       if (bitfield_[i] == check_set)
652         if (!helper.execute(i)) return false;
653     }
654     return true;
655   }
656 
657  public:
BitField(unsigned size)658   explicit BitField(unsigned size) : bitfield_(size, 0) {}
659 
Set(int i)660   void Set(int i) {
661     VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
662     bitfield_[i] = true;
663   }
664 
Unset(int i)665   void Unset(int i) {
666     VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
667     bitfield_[i] = true;
668   }
669 
IsSet(int i)670   bool IsSet(int i) const { return bitfield_[i]; }
671 
672   // For each bit not set in the bitfield call the execute functor
673   // execute.
674   // ForEachBitSetHelper::execute returns true if the iteration through
675   // the bits can continue, otherwise it will stop.
676   // struct ForEachBitSetHelper {
677   //   bool execute(int /*id*/) { return false; }
678   // };
679   template <typename ForEachBitNotSetHelper>
ForEachBitNotSet(const ForEachBitNotSetHelper & helper)680   bool ForEachBitNotSet(const ForEachBitNotSetHelper& helper) {
681     return ForEachBit<ForEachBitNotSetHelper, false>(helper);
682   }
683 
684   // For each bit set in the bitfield call the execute functor
685   // execute.
686   template <typename ForEachBitSetHelper>
ForEachBitSet(const ForEachBitSetHelper & helper)687   bool ForEachBitSet(const ForEachBitSetHelper& helper) {
688     return ForEachBit<ForEachBitSetHelper, true>(helper);
689   }
690 
691  private:
692   std::vector<bool> bitfield_;
693 };
694 
695 typedef int64_t Int64;
696 class Uint64;
697 class Uint128;
698 
699 class Uint32 {
700   uint32_t data_;
701 
702  public:
703   // Unlike uint32_t, Uint32 has a default constructor.
Uint32()704   Uint32() { data_ = 0; }
Uint32(uint32_t data)705   explicit Uint32(uint32_t data) : data_(data) {}
706   inline explicit Uint32(Uint64 data);
Get()707   uint32_t Get() const { return data_; }
708   template <int N>
GetSigned()709   int32_t GetSigned() const {
710     return ExtractSignedBitfield32(N - 1, 0, data_);
711   }
GetSigned()712   int32_t GetSigned() const { return data_; }
713   Uint32 operator~() const { return Uint32(~data_); }
714   Uint32 operator-() const { return Uint32(-data_); }
715   bool operator==(Uint32 value) const { return data_ == value.data_; }
716   bool operator!=(Uint32 value) const { return data_ != value.data_; }
717   bool operator>(Uint32 value) const { return data_ > value.data_; }
718   Uint32 operator+(Uint32 value) const { return Uint32(data_ + value.data_); }
719   Uint32 operator-(Uint32 value) const { return Uint32(data_ - value.data_); }
720   Uint32 operator&(Uint32 value) const { return Uint32(data_ & value.data_); }
721   Uint32 operator&=(Uint32 value) {
722     data_ &= value.data_;
723     return *this;
724   }
725   Uint32 operator^(Uint32 value) const { return Uint32(data_ ^ value.data_); }
726   Uint32 operator^=(Uint32 value) {
727     data_ ^= value.data_;
728     return *this;
729   }
730   Uint32 operator|(Uint32 value) const { return Uint32(data_ | value.data_); }
731   Uint32 operator|=(Uint32 value) {
732     data_ |= value.data_;
733     return *this;
734   }
735   // Unlike uint32_t, the shift functions can accept negative shift and
736   // return 0 when the shift is too big.
737   Uint32 operator>>(int shift) const {
738     if (shift == 0) return *this;
739     if (shift < 0) {
740       int tmp = -shift;
741       if (tmp >= 32) return Uint32(0);
742       return Uint32(data_ << tmp);
743     }
744     int tmp = shift;
745     if (tmp >= 32) return Uint32(0);
746     return Uint32(data_ >> tmp);
747   }
748   Uint32 operator<<(int shift) const {
749     if (shift == 0) return *this;
750     if (shift < 0) {
751       int tmp = -shift;
752       if (tmp >= 32) return Uint32(0);
753       return Uint32(data_ >> tmp);
754     }
755     int tmp = shift;
756     if (tmp >= 32) return Uint32(0);
757     return Uint32(data_ << tmp);
758   }
759 };
760 
761 class Uint64 {
762   uint64_t data_;
763 
764  public:
765   // Unlike uint64_t, Uint64 has a default constructor.
Uint64()766   Uint64() { data_ = 0; }
Uint64(uint64_t data)767   explicit Uint64(uint64_t data) : data_(data) {}
Uint64(Uint32 data)768   explicit Uint64(Uint32 data) : data_(data.Get()) {}
769   inline explicit Uint64(Uint128 data);
Get()770   uint64_t Get() const { return data_; }
GetSigned(int N)771   int64_t GetSigned(int N) const {
772     return ExtractSignedBitfield64(N - 1, 0, data_);
773   }
GetSigned()774   int64_t GetSigned() const { return data_; }
ToUint32()775   Uint32 ToUint32() const {
776     VIXL_ASSERT((data_ >> 32) == 0);
777     return Uint32(static_cast<uint32_t>(data_));
778   }
GetHigh32()779   Uint32 GetHigh32() const { return Uint32(data_ >> 32); }
GetLow32()780   Uint32 GetLow32() const { return Uint32(data_ & 0xffffffff); }
781   Uint64 operator~() const { return Uint64(~data_); }
782   Uint64 operator-() const { return Uint64(-data_); }
783   bool operator==(Uint64 value) const { return data_ == value.data_; }
784   bool operator!=(Uint64 value) const { return data_ != value.data_; }
785   Uint64 operator+(Uint64 value) const { return Uint64(data_ + value.data_); }
786   Uint64 operator-(Uint64 value) const { return Uint64(data_ - value.data_); }
787   Uint64 operator&(Uint64 value) const { return Uint64(data_ & value.data_); }
788   Uint64 operator&=(Uint64 value) {
789     data_ &= value.data_;
790     return *this;
791   }
792   Uint64 operator^(Uint64 value) const { return Uint64(data_ ^ value.data_); }
793   Uint64 operator^=(Uint64 value) {
794     data_ ^= value.data_;
795     return *this;
796   }
797   Uint64 operator|(Uint64 value) const { return Uint64(data_ | value.data_); }
798   Uint64 operator|=(Uint64 value) {
799     data_ |= value.data_;
800     return *this;
801   }
802   // Unlike uint64_t, the shift functions can accept negative shift and
803   // return 0 when the shift is too big.
804   Uint64 operator>>(int shift) const {
805     if (shift == 0) return *this;
806     if (shift < 0) {
807       int tmp = -shift;
808       if (tmp >= 64) return Uint64(0);
809       return Uint64(data_ << tmp);
810     }
811     int tmp = shift;
812     if (tmp >= 64) return Uint64(0);
813     return Uint64(data_ >> tmp);
814   }
815   Uint64 operator<<(int shift) const {
816     if (shift == 0) return *this;
817     if (shift < 0) {
818       int tmp = -shift;
819       if (tmp >= 64) return Uint64(0);
820       return Uint64(data_ >> tmp);
821     }
822     int tmp = shift;
823     if (tmp >= 64) return Uint64(0);
824     return Uint64(data_ << tmp);
825   }
826 };
827 
828 class Uint128 {
829   uint64_t data_high_;
830   uint64_t data_low_;
831 
832  public:
Uint128()833   Uint128() : data_high_(0), data_low_(0) {}
Uint128(uint64_t data_low)834   explicit Uint128(uint64_t data_low) : data_high_(0), data_low_(data_low) {}
Uint128(Uint64 data_low)835   explicit Uint128(Uint64 data_low)
836       : data_high_(0), data_low_(data_low.Get()) {}
Uint128(uint64_t data_high,uint64_t data_low)837   Uint128(uint64_t data_high, uint64_t data_low)
838       : data_high_(data_high), data_low_(data_low) {}
ToUint64()839   Uint64 ToUint64() const {
840     VIXL_ASSERT(data_high_ == 0);
841     return Uint64(data_low_);
842   }
GetHigh64()843   Uint64 GetHigh64() const { return Uint64(data_high_); }
GetLow64()844   Uint64 GetLow64() const { return Uint64(data_low_); }
845   Uint128 operator~() const { return Uint128(~data_high_, ~data_low_); }
846   bool operator==(Uint128 value) const {
847     return (data_high_ == value.data_high_) && (data_low_ == value.data_low_);
848   }
849   Uint128 operator&(Uint128 value) const {
850     return Uint128(data_high_ & value.data_high_, data_low_ & value.data_low_);
851   }
852   Uint128 operator&=(Uint128 value) {
853     data_high_ &= value.data_high_;
854     data_low_ &= value.data_low_;
855     return *this;
856   }
857   Uint128 operator|=(Uint128 value) {
858     data_high_ |= value.data_high_;
859     data_low_ |= value.data_low_;
860     return *this;
861   }
862   Uint128 operator>>(int shift) const {
863     VIXL_ASSERT((shift >= 0) && (shift < 128));
864     if (shift == 0) return *this;
865     if (shift >= 64) {
866       return Uint128(0, data_high_ >> (shift - 64));
867     }
868     uint64_t tmp = (data_high_ << (64 - shift)) | (data_low_ >> shift);
869     return Uint128(data_high_ >> shift, tmp);
870   }
871   Uint128 operator<<(int shift) const {
872     VIXL_ASSERT((shift >= 0) && (shift < 128));
873     if (shift == 0) return *this;
874     if (shift >= 64) {
875       return Uint128(data_low_ << (shift - 64), 0);
876     }
877     uint64_t tmp = (data_high_ << shift) | (data_low_ >> (64 - shift));
878     return Uint128(tmp, data_low_ << shift);
879   }
880 };
881 
Uint32(Uint64 data)882 Uint32::Uint32(Uint64 data) : data_(data.ToUint32().Get()) {}
Uint64(Uint128 data)883 Uint64::Uint64(Uint128 data) : data_(data.ToUint64().Get()) {}
884 
885 Int64 BitCount(Uint32 value);
886 
887 }  // namespace vixl
888 
889 #endif  // VIXL_UTILS_H
890