1 // Copyright 2015, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 // * Redistributions of source code must retain the above copyright notice,
8 // this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above copyright notice,
10 // this list of conditions and the following disclaimer in the documentation
11 // and/or other materials provided with the distribution.
12 // * Neither the name of ARM Limited nor the names of its contributors may be
13 // used to endorse or promote products derived from this software without
14 // specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 #ifndef VIXL_UTILS_H
28 #define VIXL_UTILS_H
29
30 #include <cmath>
31 #include <cstring>
32 #include <vector>
33
34 #include "compiler-intrinsics-vixl.h"
35 #include "globals-vixl.h"
36
37 namespace vixl {
38
39 // Macros for compile-time format checking.
40 #if GCC_VERSION_OR_NEWER(4, 4, 0)
41 #define PRINTF_CHECK(format_index, varargs_index) \
42 __attribute__((format(gnu_printf, format_index, varargs_index)))
43 #else
44 #define PRINTF_CHECK(format_index, varargs_index)
45 #endif
46
47 #ifdef __GNUC__
48 #define VIXL_HAS_DEPRECATED_WITH_MSG
49 #elif defined(__clang__)
50 #ifdef __has_extension(attribute_deprecated_with_message)
51 #define VIXL_HAS_DEPRECATED_WITH_MSG
52 #endif
53 #endif
54
55 #ifdef VIXL_HAS_DEPRECATED_WITH_MSG
56 #define VIXL_DEPRECATED(replaced_by, declarator) \
57 __attribute__((deprecated("Use \"" replaced_by "\" instead"))) declarator
58 #else
59 #define VIXL_DEPRECATED(replaced_by, declarator) declarator
60 #endif
61
62 #ifdef VIXL_DEBUG
63 #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_UNREACHABLE()
64 #else
65 #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_FALLTHROUGH()
66 #endif
67
68 // Check number width.
69 // TODO: Refactor these using templates.
IsIntN(unsigned n,uint32_t x)70 inline bool IsIntN(unsigned n, uint32_t x) {
71 VIXL_ASSERT((0 < n) && (n < 32));
72 uint32_t limit = UINT32_C(1) << (n - 1);
73 return x < limit;
74 }
IsIntN(unsigned n,int32_t x)75 inline bool IsIntN(unsigned n, int32_t x) {
76 VIXL_ASSERT((0 < n) && (n < 32));
77 int32_t limit = INT32_C(1) << (n - 1);
78 return (-limit <= x) && (x < limit);
79 }
IsIntN(unsigned n,uint64_t x)80 inline bool IsIntN(unsigned n, uint64_t x) {
81 VIXL_ASSERT((0 < n) && (n < 64));
82 uint64_t limit = UINT64_C(1) << (n - 1);
83 return x < limit;
84 }
IsIntN(unsigned n,int64_t x)85 inline bool IsIntN(unsigned n, int64_t x) {
86 VIXL_ASSERT((0 < n) && (n < 64));
87 int64_t limit = INT64_C(1) << (n - 1);
88 return (-limit <= x) && (x < limit);
89 }
is_intn(unsigned n,int64_t x)90 VIXL_DEPRECATED("IsIntN", inline bool is_intn(unsigned n, int64_t x)) {
91 return IsIntN(n, x);
92 }
93
IsUintN(unsigned n,uint32_t x)94 inline bool IsUintN(unsigned n, uint32_t x) {
95 VIXL_ASSERT((0 < n) && (n < 32));
96 return !(x >> n);
97 }
IsUintN(unsigned n,int32_t x)98 inline bool IsUintN(unsigned n, int32_t x) {
99 VIXL_ASSERT((0 < n) && (n < 32));
100 // Convert to an unsigned integer to avoid implementation-defined behavior.
101 return !(static_cast<uint32_t>(x) >> n);
102 }
IsUintN(unsigned n,uint64_t x)103 inline bool IsUintN(unsigned n, uint64_t x) {
104 VIXL_ASSERT((0 < n) && (n < 64));
105 return !(x >> n);
106 }
IsUintN(unsigned n,int64_t x)107 inline bool IsUintN(unsigned n, int64_t x) {
108 VIXL_ASSERT((0 < n) && (n < 64));
109 // Convert to an unsigned integer to avoid implementation-defined behavior.
110 return !(static_cast<uint64_t>(x) >> n);
111 }
is_uintn(unsigned n,int64_t x)112 VIXL_DEPRECATED("IsUintN", inline bool is_uintn(unsigned n, int64_t x)) {
113 return IsUintN(n, x);
114 }
115
TruncateToUintN(unsigned n,uint64_t x)116 inline uint64_t TruncateToUintN(unsigned n, uint64_t x) {
117 VIXL_ASSERT((0 < n) && (n < 64));
118 return static_cast<uint64_t>(x) & ((UINT64_C(1) << n) - 1);
119 }
120 VIXL_DEPRECATED("TruncateToUintN",
121 inline uint64_t truncate_to_intn(unsigned n, int64_t x)) {
122 return TruncateToUintN(n, x);
123 }
124
125 // clang-format off
126 #define INT_1_TO_32_LIST(V) \
127 V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \
128 V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \
129 V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \
130 V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)
131
132 #define INT_33_TO_63_LIST(V) \
133 V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \
134 V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \
135 V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \
136 V(57) V(58) V(59) V(60) V(61) V(62) V(63)
137
138 #define INT_1_TO_63_LIST(V) INT_1_TO_32_LIST(V) INT_33_TO_63_LIST(V)
139
140 // clang-format on
141
142 #define DECLARE_IS_INT_N(N) \
143 inline bool IsInt##N(int64_t x) { return IsIntN(N, x); } \
144 VIXL_DEPRECATED("IsInt" #N, inline bool is_int##N(int64_t x)) { \
145 return IsIntN(N, x); \
146 }
147
148 #define DECLARE_IS_UINT_N(N) \
149 inline bool IsUint##N(int64_t x) { return IsUintN(N, x); } \
150 VIXL_DEPRECATED("IsUint" #N, inline bool is_uint##N(int64_t x)) { \
151 return IsUintN(N, x); \
152 }
153
154 #define DECLARE_TRUNCATE_TO_UINT_32(N) \
155 inline uint32_t TruncateToUint##N(uint64_t x) { \
156 return static_cast<uint32_t>(TruncateToUintN(N, x)); \
157 } \
158 VIXL_DEPRECATED("TruncateToUint" #N, \
159 inline uint32_t truncate_to_int##N(int64_t x)) { \
160 return TruncateToUint##N(x); \
161 }
162
163 INT_1_TO_63_LIST(DECLARE_IS_INT_N)
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)164 INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
165 INT_1_TO_32_LIST(DECLARE_TRUNCATE_TO_UINT_32)
166
167 #undef DECLARE_IS_INT_N
168 #undef DECLARE_IS_UINT_N
169 #undef DECLARE_TRUNCATE_TO_INT_N
170
171 // Bit field extraction.
172 inline uint64_t ExtractUnsignedBitfield64(int msb, int lsb, uint64_t x) {
173 VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
174 (msb >= lsb));
175 if ((msb == 63) && (lsb == 0)) return x;
176 return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
177 }
178
179
ExtractUnsignedBitfield32(int msb,int lsb,uint32_t x)180 inline uint32_t ExtractUnsignedBitfield32(int msb, int lsb, uint32_t x) {
181 VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
182 (msb >= lsb));
183 return TruncateToUint32(ExtractUnsignedBitfield64(msb, lsb, x));
184 }
185
186
ExtractSignedBitfield64(int msb,int lsb,int64_t x)187 inline int64_t ExtractSignedBitfield64(int msb, int lsb, int64_t x) {
188 VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
189 (msb >= lsb));
190 uint64_t temp = ExtractUnsignedBitfield64(msb, lsb, x);
191 // If the highest extracted bit is set, sign extend.
192 if ((temp >> (msb - lsb)) == 1) {
193 temp |= ~UINT64_C(0) << (msb - lsb);
194 }
195 int64_t result;
196 memcpy(&result, &temp, sizeof(result));
197 return result;
198 }
199
200
ExtractSignedBitfield32(int msb,int lsb,int32_t x)201 inline int32_t ExtractSignedBitfield32(int msb, int lsb, int32_t x) {
202 VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
203 (msb >= lsb));
204 uint32_t temp = TruncateToUint32(ExtractSignedBitfield64(msb, lsb, x));
205 int32_t result;
206 memcpy(&result, &temp, sizeof(result));
207 return result;
208 }
209
210
RotateRight(uint64_t value,unsigned int rotate,unsigned int width)211 inline uint64_t RotateRight(uint64_t value,
212 unsigned int rotate,
213 unsigned int width) {
214 VIXL_ASSERT((width > 0) && (width <= 64));
215 uint64_t width_mask = ~UINT64_C(0) >> (64 - width);
216 rotate &= 63;
217 if (rotate > 0) {
218 value &= width_mask;
219 value = (value << (width - rotate)) | (value >> rotate);
220 }
221 return value & width_mask;
222 }
223
224
225 // Floating point representation.
226 uint32_t FloatToRawbits(float value);
227 VIXL_DEPRECATED("FloatToRawbits",
228 inline uint32_t float_to_rawbits(float value)) {
229 return FloatToRawbits(value);
230 }
231
232 uint64_t DoubleToRawbits(double value);
233 VIXL_DEPRECATED("DoubleToRawbits",
234 inline uint64_t double_to_rawbits(double value)) {
235 return DoubleToRawbits(value);
236 }
237
238 float RawbitsToFloat(uint32_t bits);
239 VIXL_DEPRECATED("RawbitsToFloat",
rawbits_to_float(uint32_t bits)240 inline float rawbits_to_float(uint32_t bits)) {
241 return RawbitsToFloat(bits);
242 }
243
244 double RawbitsToDouble(uint64_t bits);
245 VIXL_DEPRECATED("RawbitsToDouble",
rawbits_to_double(uint64_t bits)246 inline double rawbits_to_double(uint64_t bits)) {
247 return RawbitsToDouble(bits);
248 }
249
250 uint32_t FloatSign(float value);
251 VIXL_DEPRECATED("FloatSign", inline uint32_t float_sign(float value)) {
252 return FloatSign(value);
253 }
254
255 uint32_t FloatExp(float value);
256 VIXL_DEPRECATED("FloatExp", inline uint32_t float_exp(float value)) {
257 return FloatExp(value);
258 }
259
260 uint32_t FloatMantissa(float value);
261 VIXL_DEPRECATED("FloatMantissa", inline uint32_t float_mantissa(float value)) {
262 return FloatMantissa(value);
263 }
264
265 uint32_t DoubleSign(double value);
266 VIXL_DEPRECATED("DoubleSign", inline uint32_t double_sign(double value)) {
267 return DoubleSign(value);
268 }
269
270 uint32_t DoubleExp(double value);
271 VIXL_DEPRECATED("DoubleExp", inline uint32_t double_exp(double value)) {
272 return DoubleExp(value);
273 }
274
275 uint64_t DoubleMantissa(double value);
276 VIXL_DEPRECATED("DoubleMantissa",
277 inline uint64_t double_mantissa(double value)) {
278 return DoubleMantissa(value);
279 }
280
281 float FloatPack(uint32_t sign, uint32_t exp, uint32_t mantissa);
282 VIXL_DEPRECATED("FloatPack",
float_pack(uint32_t sign,uint32_t exp,uint32_t mantissa)283 inline float float_pack(uint32_t sign,
284 uint32_t exp,
285 uint32_t mantissa)) {
286 return FloatPack(sign, exp, mantissa);
287 }
288
289 double DoublePack(uint64_t sign, uint64_t exp, uint64_t mantissa);
290 VIXL_DEPRECATED("DoublePack",
double_pack(uint32_t sign,uint32_t exp,uint64_t mantissa)291 inline double double_pack(uint32_t sign,
292 uint32_t exp,
293 uint64_t mantissa)) {
294 return DoublePack(sign, exp, mantissa);
295 }
296
297 // An fpclassify() function for 16-bit half-precision floats.
298 int Float16Classify(float16 value);
float16classify(float16 value)299 VIXL_DEPRECATED("Float16Classify", inline int float16classify(float16 value)) {
300 return Float16Classify(value);
301 }
302
303 // NaN tests.
IsSignallingNaN(double num)304 inline bool IsSignallingNaN(double num) {
305 const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
306 uint64_t raw = DoubleToRawbits(num);
307 if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
308 return true;
309 }
310 return false;
311 }
312
313
IsSignallingNaN(float num)314 inline bool IsSignallingNaN(float num) {
315 const uint32_t kFP32QuietNaNMask = 0x00400000;
316 uint32_t raw = FloatToRawbits(num);
317 if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
318 return true;
319 }
320 return false;
321 }
322
323
IsSignallingNaN(float16 num)324 inline bool IsSignallingNaN(float16 num) {
325 const uint16_t kFP16QuietNaNMask = 0x0200;
326 return (Float16Classify(num) == FP_NAN) && ((num & kFP16QuietNaNMask) == 0);
327 }
328
329
330 template <typename T>
IsQuietNaN(T num)331 inline bool IsQuietNaN(T num) {
332 return std::isnan(num) && !IsSignallingNaN(num);
333 }
334
335
336 // Convert the NaN in 'num' to a quiet NaN.
ToQuietNaN(double num)337 inline double ToQuietNaN(double num) {
338 const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
339 VIXL_ASSERT(std::isnan(num));
340 return RawbitsToDouble(DoubleToRawbits(num) | kFP64QuietNaNMask);
341 }
342
343
ToQuietNaN(float num)344 inline float ToQuietNaN(float num) {
345 const uint32_t kFP32QuietNaNMask = 0x00400000;
346 VIXL_ASSERT(std::isnan(num));
347 return RawbitsToFloat(FloatToRawbits(num) | kFP32QuietNaNMask);
348 }
349
350
351 // Fused multiply-add.
FusedMultiplyAdd(double op1,double op2,double a)352 inline double FusedMultiplyAdd(double op1, double op2, double a) {
353 return fma(op1, op2, a);
354 }
355
356
FusedMultiplyAdd(float op1,float op2,float a)357 inline float FusedMultiplyAdd(float op1, float op2, float a) {
358 return fmaf(op1, op2, a);
359 }
360
361
LowestSetBit(uint64_t value)362 inline uint64_t LowestSetBit(uint64_t value) { return value & -value; }
363
364
365 template <typename T>
HighestSetBitPosition(T value)366 inline int HighestSetBitPosition(T value) {
367 VIXL_ASSERT(value != 0);
368 return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
369 }
370
371
372 template <typename V>
WhichPowerOf2(V value)373 inline int WhichPowerOf2(V value) {
374 VIXL_ASSERT(IsPowerOf2(value));
375 return CountTrailingZeros(value);
376 }
377
378
379 unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
380
381
382 int BitCount(uint64_t value);
383
384
385 template <typename T>
ReverseBits(T value)386 T ReverseBits(T value) {
387 VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
388 (sizeof(value) == 4) || (sizeof(value) == 8));
389 T result = 0;
390 for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
391 result = (result << 1) | (value & 1);
392 value >>= 1;
393 }
394 return result;
395 }
396
397
398 template <typename T>
SignExtend(T val,int bitSize)399 inline T SignExtend(T val, int bitSize) {
400 VIXL_ASSERT(bitSize > 0);
401 T mask = (T(2) << (bitSize - 1)) - T(1);
402 val &= mask;
403 T sign = -(val >> (bitSize - 1));
404 val |= (sign << bitSize);
405 return val;
406 }
407
408
409 template <typename T>
ReverseBytes(T value,int block_bytes_log2)410 T ReverseBytes(T value, int block_bytes_log2) {
411 VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
412 VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
413 // Split the 64-bit value into an 8-bit array, where b[0] is the least
414 // significant byte, and b[7] is the most significant.
415 uint8_t bytes[8];
416 uint64_t mask = UINT64_C(0xff00000000000000);
417 for (int i = 7; i >= 0; i--) {
418 bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
419 mask >>= 8;
420 }
421
422 // Permutation tables for REV instructions.
423 // permute_table[0] is used by REV16_x, REV16_w
424 // permute_table[1] is used by REV32_x, REV_w
425 // permute_table[2] is used by REV_x
426 VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
427 static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1},
428 {4, 5, 6, 7, 0, 1, 2, 3},
429 {0, 1, 2, 3, 4, 5, 6, 7}};
430 uint64_t temp = 0;
431 for (int i = 0; i < 8; i++) {
432 temp <<= 8;
433 temp |= bytes[permute_table[block_bytes_log2 - 1][i]];
434 }
435
436 T result;
437 VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(temp));
438 memcpy(&result, &temp, sizeof(result));
439 return result;
440 }
441
442 template <unsigned MULTIPLE, typename T>
IsMultiple(T value)443 inline bool IsMultiple(T value) {
444 VIXL_ASSERT(IsPowerOf2(MULTIPLE));
445 return (value & (MULTIPLE - 1)) == 0;
446 }
447
448 template <typename T>
IsMultiple(T value,unsigned multiple)449 inline bool IsMultiple(T value, unsigned multiple) {
450 VIXL_ASSERT(IsPowerOf2(multiple));
451 return (value & (multiple - 1)) == 0;
452 }
453
454 template <typename T>
IsAligned(T pointer,int alignment)455 inline bool IsAligned(T pointer, int alignment) {
456 VIXL_ASSERT(IsPowerOf2(alignment));
457 return (pointer & (alignment - 1)) == 0;
458 }
459
460 // Pointer alignment
461 // TODO: rename/refactor to make it specific to instructions.
462 template <unsigned ALIGN, typename T>
IsAligned(T pointer)463 inline bool IsAligned(T pointer) {
464 VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof)
465 // Use C-style casts to get static_cast behaviour for integral types (T), and
466 // reinterpret_cast behaviour for other types.
467 return IsAligned((intptr_t)(pointer), ALIGN);
468 }
469
470 template <typename T>
IsWordAligned(T pointer)471 bool IsWordAligned(T pointer) {
472 return IsAligned<4>(pointer);
473 }
474
475 // Increment a pointer until it has the specified alignment. The alignment must
476 // be a power of two.
477 template <class T>
AlignUp(T pointer,typename Unsigned<sizeof (T)* kBitsPerByte>::type alignment)478 T AlignUp(T pointer,
479 typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
480 VIXL_ASSERT(IsPowerOf2(alignment));
481 // Use C-style casts to get static_cast behaviour for integral types (T), and
482 // reinterpret_cast behaviour for other types.
483
484 typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
485 (typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer;
486 VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
487
488 size_t mask = alignment - 1;
489 T result = (T)((pointer_raw + mask) & ~mask);
490 VIXL_ASSERT(result >= pointer);
491
492 return result;
493 }
494
495 // Decrement a pointer until it has the specified alignment. The alignment must
496 // be a power of two.
497 template <class T>
AlignDown(T pointer,typename Unsigned<sizeof (T)* kBitsPerByte>::type alignment)498 T AlignDown(T pointer,
499 typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
500 VIXL_ASSERT(IsPowerOf2(alignment));
501 // Use C-style casts to get static_cast behaviour for integral types (T), and
502 // reinterpret_cast behaviour for other types.
503
504 typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
505 (typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer;
506 VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
507
508 size_t mask = alignment - 1;
509 return (T)(pointer_raw & ~mask);
510 }
511
512
513 template <typename T>
ExtractBit(T value,unsigned bit)514 inline T ExtractBit(T value, unsigned bit) {
515 return (value >> bit) & T(1);
516 }
517
518 template <typename Ts, typename Td>
ExtractBits(Ts value,int least_significant_bit,Td mask)519 inline Td ExtractBits(Ts value, int least_significant_bit, Td mask) {
520 return Td((value >> least_significant_bit) & Ts(mask));
521 }
522
523 template <typename Ts, typename Td>
AssignBit(Td & dst,int bit,Ts value)524 inline void AssignBit(Td& dst, // NOLINT(runtime/references)
525 int bit,
526 Ts value) {
527 VIXL_ASSERT((value == Ts(0)) || (value == Ts(1)));
528 VIXL_ASSERT(bit >= 0);
529 VIXL_ASSERT(bit < static_cast<int>(sizeof(Td) * 8));
530 Td mask(1);
531 dst &= ~(mask << bit);
532 dst |= Td(value) << bit;
533 }
534
535 template <typename Td, typename Ts>
AssignBits(Td & dst,int least_significant_bit,Ts mask,Ts value)536 inline void AssignBits(Td& dst, // NOLINT(runtime/references)
537 int least_significant_bit,
538 Ts mask,
539 Ts value) {
540 VIXL_ASSERT(least_significant_bit >= 0);
541 VIXL_ASSERT(least_significant_bit < static_cast<int>(sizeof(Td) * 8));
542 VIXL_ASSERT(((Td(mask) << least_significant_bit) >> least_significant_bit) ==
543 Td(mask));
544 VIXL_ASSERT((value & mask) == value);
545 dst &= ~(Td(mask) << least_significant_bit);
546 dst |= Td(value) << least_significant_bit;
547 }
548
549 class VFP {
550 public:
FP32ToImm8(float imm)551 static uint32_t FP32ToImm8(float imm) {
552 // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
553 uint32_t bits = FloatToRawbits(imm);
554 // bit7: a000.0000
555 uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
556 // bit6: 0b00.0000
557 uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
558 // bit5_to_0: 00cd.efgh
559 uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
560 return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
561 }
FP64ToImm8(double imm)562 static uint32_t FP64ToImm8(double imm) {
563 // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
564 // 0000.0000.0000.0000.0000.0000.0000.0000
565 uint64_t bits = DoubleToRawbits(imm);
566 // bit7: a000.0000
567 uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
568 // bit6: 0b00.0000
569 uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
570 // bit5_to_0: 00cd.efgh
571 uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
572
573 return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
574 }
Imm8ToFP32(uint32_t imm8)575 static float Imm8ToFP32(uint32_t imm8) {
576 // Imm8: abcdefgh (8 bits)
577 // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
578 // where B is b ^ 1
579 uint32_t bits = imm8;
580 uint32_t bit7 = (bits >> 7) & 0x1;
581 uint32_t bit6 = (bits >> 6) & 0x1;
582 uint32_t bit5_to_0 = bits & 0x3f;
583 uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
584
585 return RawbitsToFloat(result);
586 }
Imm8ToFP64(uint32_t imm8)587 static double Imm8ToFP64(uint32_t imm8) {
588 // Imm8: abcdefgh (8 bits)
589 // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
590 // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
591 // where B is b ^ 1
592 uint32_t bits = imm8;
593 uint64_t bit7 = (bits >> 7) & 0x1;
594 uint64_t bit6 = (bits >> 6) & 0x1;
595 uint64_t bit5_to_0 = bits & 0x3f;
596 uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
597 return RawbitsToDouble(result);
598 }
IsImmFP32(float imm)599 static bool IsImmFP32(float imm) {
600 // Valid values will have the form:
601 // aBbb.bbbc.defg.h000.0000.0000.0000.0000
602 uint32_t bits = FloatToRawbits(imm);
603 // bits[19..0] are cleared.
604 if ((bits & 0x7ffff) != 0) {
605 return false;
606 }
607
608
609 // bits[29..25] are all set or all cleared.
610 uint32_t b_pattern = (bits >> 16) & 0x3e00;
611 if (b_pattern != 0 && b_pattern != 0x3e00) {
612 return false;
613 }
614 // bit[30] and bit[29] are opposite.
615 if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
616 return false;
617 }
618 return true;
619 }
IsImmFP64(double imm)620 static bool IsImmFP64(double imm) {
621 // Valid values will have the form:
622 // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
623 // 0000.0000.0000.0000.0000.0000.0000.0000
624 uint64_t bits = DoubleToRawbits(imm);
625 // bits[47..0] are cleared.
626 if ((bits & 0x0000ffffffffffff) != 0) {
627 return false;
628 }
629 // bits[61..54] are all set or all cleared.
630 uint32_t b_pattern = (bits >> 48) & 0x3fc0;
631 if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
632 return false;
633 }
634 // bit[62] and bit[61] are opposite.
635 if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
636 return false;
637 }
638 return true;
639 }
640 };
641
642 class BitField {
643 // ForEachBitHelper is a functor that will call
644 // bool ForEachBitHelper::execute(ElementType id) const
645 // and expects a boolean in return whether to continue (if true)
646 // or stop (if false)
647 // check_set will check if the bits are on (true) or off(false)
648 template <typename ForEachBitHelper, bool check_set>
ForEachBit(const ForEachBitHelper & helper)649 bool ForEachBit(const ForEachBitHelper& helper) {
650 for (int i = 0; static_cast<size_t>(i) < bitfield_.size(); i++) {
651 if (bitfield_[i] == check_set)
652 if (!helper.execute(i)) return false;
653 }
654 return true;
655 }
656
657 public:
BitField(unsigned size)658 explicit BitField(unsigned size) : bitfield_(size, 0) {}
659
Set(int i)660 void Set(int i) {
661 VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
662 bitfield_[i] = true;
663 }
664
Unset(int i)665 void Unset(int i) {
666 VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
667 bitfield_[i] = true;
668 }
669
IsSet(int i)670 bool IsSet(int i) const { return bitfield_[i]; }
671
672 // For each bit not set in the bitfield call the execute functor
673 // execute.
674 // ForEachBitSetHelper::execute returns true if the iteration through
675 // the bits can continue, otherwise it will stop.
676 // struct ForEachBitSetHelper {
677 // bool execute(int /*id*/) { return false; }
678 // };
679 template <typename ForEachBitNotSetHelper>
ForEachBitNotSet(const ForEachBitNotSetHelper & helper)680 bool ForEachBitNotSet(const ForEachBitNotSetHelper& helper) {
681 return ForEachBit<ForEachBitNotSetHelper, false>(helper);
682 }
683
684 // For each bit set in the bitfield call the execute functor
685 // execute.
686 template <typename ForEachBitSetHelper>
ForEachBitSet(const ForEachBitSetHelper & helper)687 bool ForEachBitSet(const ForEachBitSetHelper& helper) {
688 return ForEachBit<ForEachBitSetHelper, true>(helper);
689 }
690
691 private:
692 std::vector<bool> bitfield_;
693 };
694
695 typedef int64_t Int64;
696 class Uint64;
697 class Uint128;
698
699 class Uint32 {
700 uint32_t data_;
701
702 public:
703 // Unlike uint32_t, Uint32 has a default constructor.
Uint32()704 Uint32() { data_ = 0; }
Uint32(uint32_t data)705 explicit Uint32(uint32_t data) : data_(data) {}
706 inline explicit Uint32(Uint64 data);
Get()707 uint32_t Get() const { return data_; }
708 template <int N>
GetSigned()709 int32_t GetSigned() const {
710 return ExtractSignedBitfield32(N - 1, 0, data_);
711 }
GetSigned()712 int32_t GetSigned() const { return data_; }
713 Uint32 operator~() const { return Uint32(~data_); }
714 Uint32 operator-() const { return Uint32(-data_); }
715 bool operator==(Uint32 value) const { return data_ == value.data_; }
716 bool operator!=(Uint32 value) const { return data_ != value.data_; }
717 bool operator>(Uint32 value) const { return data_ > value.data_; }
718 Uint32 operator+(Uint32 value) const { return Uint32(data_ + value.data_); }
719 Uint32 operator-(Uint32 value) const { return Uint32(data_ - value.data_); }
720 Uint32 operator&(Uint32 value) const { return Uint32(data_ & value.data_); }
721 Uint32 operator&=(Uint32 value) {
722 data_ &= value.data_;
723 return *this;
724 }
725 Uint32 operator^(Uint32 value) const { return Uint32(data_ ^ value.data_); }
726 Uint32 operator^=(Uint32 value) {
727 data_ ^= value.data_;
728 return *this;
729 }
730 Uint32 operator|(Uint32 value) const { return Uint32(data_ | value.data_); }
731 Uint32 operator|=(Uint32 value) {
732 data_ |= value.data_;
733 return *this;
734 }
735 // Unlike uint32_t, the shift functions can accept negative shift and
736 // return 0 when the shift is too big.
737 Uint32 operator>>(int shift) const {
738 if (shift == 0) return *this;
739 if (shift < 0) {
740 int tmp = -shift;
741 if (tmp >= 32) return Uint32(0);
742 return Uint32(data_ << tmp);
743 }
744 int tmp = shift;
745 if (tmp >= 32) return Uint32(0);
746 return Uint32(data_ >> tmp);
747 }
748 Uint32 operator<<(int shift) const {
749 if (shift == 0) return *this;
750 if (shift < 0) {
751 int tmp = -shift;
752 if (tmp >= 32) return Uint32(0);
753 return Uint32(data_ >> tmp);
754 }
755 int tmp = shift;
756 if (tmp >= 32) return Uint32(0);
757 return Uint32(data_ << tmp);
758 }
759 };
760
761 class Uint64 {
762 uint64_t data_;
763
764 public:
765 // Unlike uint64_t, Uint64 has a default constructor.
Uint64()766 Uint64() { data_ = 0; }
Uint64(uint64_t data)767 explicit Uint64(uint64_t data) : data_(data) {}
Uint64(Uint32 data)768 explicit Uint64(Uint32 data) : data_(data.Get()) {}
769 inline explicit Uint64(Uint128 data);
Get()770 uint64_t Get() const { return data_; }
GetSigned(int N)771 int64_t GetSigned(int N) const {
772 return ExtractSignedBitfield64(N - 1, 0, data_);
773 }
GetSigned()774 int64_t GetSigned() const { return data_; }
ToUint32()775 Uint32 ToUint32() const {
776 VIXL_ASSERT((data_ >> 32) == 0);
777 return Uint32(static_cast<uint32_t>(data_));
778 }
GetHigh32()779 Uint32 GetHigh32() const { return Uint32(data_ >> 32); }
GetLow32()780 Uint32 GetLow32() const { return Uint32(data_ & 0xffffffff); }
781 Uint64 operator~() const { return Uint64(~data_); }
782 Uint64 operator-() const { return Uint64(-data_); }
783 bool operator==(Uint64 value) const { return data_ == value.data_; }
784 bool operator!=(Uint64 value) const { return data_ != value.data_; }
785 Uint64 operator+(Uint64 value) const { return Uint64(data_ + value.data_); }
786 Uint64 operator-(Uint64 value) const { return Uint64(data_ - value.data_); }
787 Uint64 operator&(Uint64 value) const { return Uint64(data_ & value.data_); }
788 Uint64 operator&=(Uint64 value) {
789 data_ &= value.data_;
790 return *this;
791 }
792 Uint64 operator^(Uint64 value) const { return Uint64(data_ ^ value.data_); }
793 Uint64 operator^=(Uint64 value) {
794 data_ ^= value.data_;
795 return *this;
796 }
797 Uint64 operator|(Uint64 value) const { return Uint64(data_ | value.data_); }
798 Uint64 operator|=(Uint64 value) {
799 data_ |= value.data_;
800 return *this;
801 }
802 // Unlike uint64_t, the shift functions can accept negative shift and
803 // return 0 when the shift is too big.
804 Uint64 operator>>(int shift) const {
805 if (shift == 0) return *this;
806 if (shift < 0) {
807 int tmp = -shift;
808 if (tmp >= 64) return Uint64(0);
809 return Uint64(data_ << tmp);
810 }
811 int tmp = shift;
812 if (tmp >= 64) return Uint64(0);
813 return Uint64(data_ >> tmp);
814 }
815 Uint64 operator<<(int shift) const {
816 if (shift == 0) return *this;
817 if (shift < 0) {
818 int tmp = -shift;
819 if (tmp >= 64) return Uint64(0);
820 return Uint64(data_ >> tmp);
821 }
822 int tmp = shift;
823 if (tmp >= 64) return Uint64(0);
824 return Uint64(data_ << tmp);
825 }
826 };
827
828 class Uint128 {
829 uint64_t data_high_;
830 uint64_t data_low_;
831
832 public:
Uint128()833 Uint128() : data_high_(0), data_low_(0) {}
Uint128(uint64_t data_low)834 explicit Uint128(uint64_t data_low) : data_high_(0), data_low_(data_low) {}
Uint128(Uint64 data_low)835 explicit Uint128(Uint64 data_low)
836 : data_high_(0), data_low_(data_low.Get()) {}
Uint128(uint64_t data_high,uint64_t data_low)837 Uint128(uint64_t data_high, uint64_t data_low)
838 : data_high_(data_high), data_low_(data_low) {}
ToUint64()839 Uint64 ToUint64() const {
840 VIXL_ASSERT(data_high_ == 0);
841 return Uint64(data_low_);
842 }
GetHigh64()843 Uint64 GetHigh64() const { return Uint64(data_high_); }
GetLow64()844 Uint64 GetLow64() const { return Uint64(data_low_); }
845 Uint128 operator~() const { return Uint128(~data_high_, ~data_low_); }
846 bool operator==(Uint128 value) const {
847 return (data_high_ == value.data_high_) && (data_low_ == value.data_low_);
848 }
849 Uint128 operator&(Uint128 value) const {
850 return Uint128(data_high_ & value.data_high_, data_low_ & value.data_low_);
851 }
852 Uint128 operator&=(Uint128 value) {
853 data_high_ &= value.data_high_;
854 data_low_ &= value.data_low_;
855 return *this;
856 }
857 Uint128 operator|=(Uint128 value) {
858 data_high_ |= value.data_high_;
859 data_low_ |= value.data_low_;
860 return *this;
861 }
862 Uint128 operator>>(int shift) const {
863 VIXL_ASSERT((shift >= 0) && (shift < 128));
864 if (shift == 0) return *this;
865 if (shift >= 64) {
866 return Uint128(0, data_high_ >> (shift - 64));
867 }
868 uint64_t tmp = (data_high_ << (64 - shift)) | (data_low_ >> shift);
869 return Uint128(data_high_ >> shift, tmp);
870 }
871 Uint128 operator<<(int shift) const {
872 VIXL_ASSERT((shift >= 0) && (shift < 128));
873 if (shift == 0) return *this;
874 if (shift >= 64) {
875 return Uint128(data_low_ << (shift - 64), 0);
876 }
877 uint64_t tmp = (data_high_ << shift) | (data_low_ >> (64 - shift));
878 return Uint128(tmp, data_low_ << shift);
879 }
880 };
881
Uint32(Uint64 data)882 Uint32::Uint32(Uint64 data) : data_(data.ToUint32().Get()) {}
Uint64(Uint128 data)883 Uint64::Uint64(Uint128 data) : data_(data.ToUint64().Get()) {}
884
885 Int64 BitCount(Uint32 value);
886
887 } // namespace vixl
888
889 #endif // VIXL_UTILS_H
890