1 //===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 /// The pass tries to use the 32-bit encoding for instructions when possible.
9 //===----------------------------------------------------------------------===//
10 //
11
12 #include "AMDGPU.h"
13 #include "AMDGPUMCInstLower.h"
14 #include "AMDGPUSubtarget.h"
15 #include "SIInstrInfo.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/CodeGen/MachineFunctionPass.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Target/TargetMachine.h"
26
27 #define DEBUG_TYPE "si-shrink-instructions"
28
29 STATISTIC(NumInstructionsShrunk,
30 "Number of 64-bit instruction reduced to 32-bit.");
31 STATISTIC(NumLiteralConstantsFolded,
32 "Number of literal constants folded into 32-bit instructions.");
33
34 using namespace llvm;
35
36 namespace {
37
38 class SIShrinkInstructions : public MachineFunctionPass {
39 public:
40 static char ID;
41
42 public:
SIShrinkInstructions()43 SIShrinkInstructions() : MachineFunctionPass(ID) {
44 }
45
46 bool runOnMachineFunction(MachineFunction &MF) override;
47
getPassName() const48 const char *getPassName() const override {
49 return "SI Shrink Instructions";
50 }
51
getAnalysisUsage(AnalysisUsage & AU) const52 void getAnalysisUsage(AnalysisUsage &AU) const override {
53 AU.setPreservesCFG();
54 MachineFunctionPass::getAnalysisUsage(AU);
55 }
56 };
57
58 } // End anonymous namespace.
59
60 INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE,
61 "SI Shrink Instructions", false, false)
62
63 char SIShrinkInstructions::ID = 0;
64
createSIShrinkInstructionsPass()65 FunctionPass *llvm::createSIShrinkInstructionsPass() {
66 return new SIShrinkInstructions();
67 }
68
isVGPR(const MachineOperand * MO,const SIRegisterInfo & TRI,const MachineRegisterInfo & MRI)69 static bool isVGPR(const MachineOperand *MO, const SIRegisterInfo &TRI,
70 const MachineRegisterInfo &MRI) {
71 if (!MO->isReg())
72 return false;
73
74 if (TargetRegisterInfo::isVirtualRegister(MO->getReg()))
75 return TRI.hasVGPRs(MRI.getRegClass(MO->getReg()));
76
77 return TRI.hasVGPRs(TRI.getPhysRegClass(MO->getReg()));
78 }
79
canShrink(MachineInstr & MI,const SIInstrInfo * TII,const SIRegisterInfo & TRI,const MachineRegisterInfo & MRI)80 static bool canShrink(MachineInstr &MI, const SIInstrInfo *TII,
81 const SIRegisterInfo &TRI,
82 const MachineRegisterInfo &MRI) {
83
84 const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2);
85 // Can't shrink instruction with three operands.
86 // FIXME: v_cndmask_b32 has 3 operands and is shrinkable, but we need to add
87 // a special case for it. It can only be shrunk if the third operand
88 // is vcc. We should handle this the same way we handle vopc, by addding
89 // a register allocation hint pre-regalloc and then do the shrining
90 // post-regalloc.
91 if (Src2) {
92 switch (MI.getOpcode()) {
93 default: return false;
94
95 case AMDGPU::V_MAC_F32_e64:
96 if (!isVGPR(Src2, TRI, MRI) ||
97 TII->hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers))
98 return false;
99 break;
100
101 case AMDGPU::V_CNDMASK_B32_e64:
102 break;
103 }
104 }
105
106 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
107 const MachineOperand *Src1Mod =
108 TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
109
110 if (Src1 && (!isVGPR(Src1, TRI, MRI) || (Src1Mod && Src1Mod->getImm() != 0)))
111 return false;
112
113 // We don't need to check src0, all input types are legal, so just make sure
114 // src0 isn't using any modifiers.
115 if (TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers))
116 return false;
117
118 // Check output modifiers
119 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
120 return false;
121
122 return !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp);
123 }
124
125 /// \brief This function checks \p MI for operands defined by a move immediate
126 /// instruction and then folds the literal constant into the instruction if it
127 /// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instruction
128 /// and will only fold literal constants if we are still in SSA.
foldImmediates(MachineInstr & MI,const SIInstrInfo * TII,MachineRegisterInfo & MRI,bool TryToCommute=true)129 static void foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
130 MachineRegisterInfo &MRI, bool TryToCommute = true) {
131
132 if (!MRI.isSSA())
133 return;
134
135 assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI));
136
137 const SIRegisterInfo &TRI = TII->getRegisterInfo();
138 int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
139 MachineOperand &Src0 = MI.getOperand(Src0Idx);
140
141 // Only one literal constant is allowed per instruction, so if src0 is a
142 // literal constant then we can't do any folding.
143 if (Src0.isImm() &&
144 TII->isLiteralConstant(Src0, TII->getOpSize(MI, Src0Idx)))
145 return;
146
147 // Literal constants and SGPRs can only be used in Src0, so if Src0 is an
148 // SGPR, we cannot commute the instruction, so we can't fold any literal
149 // constants.
150 if (Src0.isReg() && !isVGPR(&Src0, TRI, MRI))
151 return;
152
153 // Try to fold Src0
154 if (Src0.isReg() && MRI.hasOneUse(Src0.getReg())) {
155 unsigned Reg = Src0.getReg();
156 MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
157 if (Def && Def->isMoveImmediate()) {
158 MachineOperand &MovSrc = Def->getOperand(1);
159 bool ConstantFolded = false;
160
161 if (MovSrc.isImm() && isUInt<32>(MovSrc.getImm())) {
162 Src0.ChangeToImmediate(MovSrc.getImm());
163 ConstantFolded = true;
164 }
165 if (ConstantFolded) {
166 if (MRI.use_empty(Reg))
167 Def->eraseFromParent();
168 ++NumLiteralConstantsFolded;
169 return;
170 }
171 }
172 }
173
174 // We have failed to fold src0, so commute the instruction and try again.
175 if (TryToCommute && MI.isCommutable() && TII->commuteInstruction(MI))
176 foldImmediates(MI, TII, MRI, false);
177
178 }
179
180 // Copy MachineOperand with all flags except setting it as implicit.
copyFlagsToImplicitVCC(MachineInstr & MI,const MachineOperand & Orig)181 static void copyFlagsToImplicitVCC(MachineInstr &MI,
182 const MachineOperand &Orig) {
183
184 for (MachineOperand &Use : MI.implicit_operands()) {
185 if (Use.getReg() == AMDGPU::VCC) {
186 Use.setIsUndef(Orig.isUndef());
187 Use.setIsKill(Orig.isKill());
188 return;
189 }
190 }
191 }
192
isKImmOperand(const SIInstrInfo * TII,const MachineOperand & Src)193 static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
194 return isInt<16>(Src.getImm()) && !TII->isInlineConstant(Src, 4);
195 }
196
runOnMachineFunction(MachineFunction & MF)197 bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
198 if (skipFunction(*MF.getFunction()))
199 return false;
200
201 MachineRegisterInfo &MRI = MF.getRegInfo();
202 const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
203 const SIInstrInfo *TII = ST.getInstrInfo();
204 const SIRegisterInfo &TRI = TII->getRegisterInfo();
205
206 std::vector<unsigned> I1Defs;
207
208 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
209 BI != BE; ++BI) {
210
211 MachineBasicBlock &MBB = *BI;
212 MachineBasicBlock::iterator I, Next;
213 for (I = MBB.begin(); I != MBB.end(); I = Next) {
214 Next = std::next(I);
215 MachineInstr &MI = *I;
216
217 if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) {
218 // If this has a literal constant source that is the same as the
219 // reversed bits of an inline immediate, replace with a bitreverse of
220 // that constant. This saves 4 bytes in the common case of materializing
221 // sign bits.
222
223 // Test if we are after regalloc. We only want to do this after any
224 // optimizations happen because this will confuse them.
225 // XXX - not exactly a check for post-regalloc run.
226 MachineOperand &Src = MI.getOperand(1);
227 if (Src.isImm() &&
228 TargetRegisterInfo::isPhysicalRegister(MI.getOperand(0).getReg())) {
229 int64_t Imm = Src.getImm();
230 if (isInt<32>(Imm) && !TII->isInlineConstant(Src, 4)) {
231 int32_t ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Imm));
232 if (ReverseImm >= -16 && ReverseImm <= 64) {
233 MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32));
234 Src.setImm(ReverseImm);
235 continue;
236 }
237 }
238 }
239 }
240
241 // Combine adjacent s_nops to use the immediate operand encoding how long
242 // to wait.
243 //
244 // s_nop N
245 // s_nop M
246 // =>
247 // s_nop (N + M)
248 if (MI.getOpcode() == AMDGPU::S_NOP &&
249 Next != MBB.end() &&
250 (*Next).getOpcode() == AMDGPU::S_NOP) {
251
252 MachineInstr &NextMI = *Next;
253 // The instruction encodes the amount to wait with an offset of 1,
254 // i.e. 0 is wait 1 cycle. Convert both to cycles and then convert back
255 // after adding.
256 uint8_t Nop0 = MI.getOperand(0).getImm() + 1;
257 uint8_t Nop1 = NextMI.getOperand(0).getImm() + 1;
258
259 // Make sure we don't overflow the bounds.
260 if (Nop0 + Nop1 <= 8) {
261 NextMI.getOperand(0).setImm(Nop0 + Nop1 - 1);
262 MI.eraseFromParent();
263 }
264
265 continue;
266 }
267
268 // FIXME: We also need to consider movs of constant operands since
269 // immediate operands are not folded if they have more than one use, and
270 // the operand folding pass is unaware if the immediate will be free since
271 // it won't know if the src == dest constraint will end up being
272 // satisfied.
273 if (MI.getOpcode() == AMDGPU::S_ADD_I32 ||
274 MI.getOpcode() == AMDGPU::S_MUL_I32) {
275 const MachineOperand &Dest = MI.getOperand(0);
276 const MachineOperand &Src0 = MI.getOperand(1);
277 const MachineOperand &Src1 = MI.getOperand(2);
278
279 // FIXME: This could work better if hints worked with subregisters. If
280 // we have a vector add of a constant, we usually don't get the correct
281 // allocation due to the subregister usage.
282 if (TargetRegisterInfo::isVirtualRegister(Dest.getReg()) &&
283 Src0.isReg()) {
284 MRI.setRegAllocationHint(Dest.getReg(), 0, Src0.getReg());
285 continue;
286 }
287
288 if (Src0.isReg() && Src0.getReg() == Dest.getReg()) {
289 if (Src1.isImm() && isKImmOperand(TII, Src1)) {
290 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ?
291 AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32;
292
293 MI.setDesc(TII->get(Opc));
294 MI.tieOperands(0, 1);
295 }
296 }
297 }
298
299 // Try to use S_MOVK_I32, which will save 4 bytes for small immediates.
300 if (MI.getOpcode() == AMDGPU::S_MOV_B32) {
301 const MachineOperand &Src = MI.getOperand(1);
302
303 if (Src.isImm() && isKImmOperand(TII, Src))
304 MI.setDesc(TII->get(AMDGPU::S_MOVK_I32));
305
306 continue;
307 }
308
309 if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
310 continue;
311
312 if (!canShrink(MI, TII, TRI, MRI)) {
313 // Try commuting the instruction and see if that enables us to shrink
314 // it.
315 if (!MI.isCommutable() || !TII->commuteInstruction(MI) ||
316 !canShrink(MI, TII, TRI, MRI))
317 continue;
318 }
319
320 // getVOPe32 could be -1 here if we started with an instruction that had
321 // a 32-bit encoding and then commuted it to an instruction that did not.
322 if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
323 continue;
324
325 int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
326
327 if (TII->isVOPC(Op32)) {
328 unsigned DstReg = MI.getOperand(0).getReg();
329 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
330 // VOPC instructions can only write to the VCC register. We can't
331 // force them to use VCC here, because this is only one register and
332 // cannot deal with sequences which would require multiple copies of
333 // VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...)
334 //
335 // So, instead of forcing the instruction to write to VCC, we provide
336 // a hint to the register allocator to use VCC and then we we will run
337 // this pass again after RA and shrink it if it outputs to VCC.
338 MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC);
339 continue;
340 }
341 if (DstReg != AMDGPU::VCC)
342 continue;
343 }
344
345 if (Op32 == AMDGPU::V_CNDMASK_B32_e32) {
346 // We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC
347 // instructions.
348 const MachineOperand *Src2 =
349 TII->getNamedOperand(MI, AMDGPU::OpName::src2);
350 if (!Src2->isReg())
351 continue;
352 unsigned SReg = Src2->getReg();
353 if (TargetRegisterInfo::isVirtualRegister(SReg)) {
354 MRI.setRegAllocationHint(SReg, 0, AMDGPU::VCC);
355 continue;
356 }
357 if (SReg != AMDGPU::VCC)
358 continue;
359 }
360
361 // We can shrink this instruction
362 DEBUG(dbgs() << "Shrinking " << MI);
363
364 MachineInstrBuilder Inst32 =
365 BuildMI(MBB, I, MI.getDebugLoc(), TII->get(Op32));
366
367 // Add the dst operand if the 32-bit encoding also has an explicit $vdst.
368 // For VOPC instructions, this is replaced by an implicit def of vcc.
369 int Op32DstIdx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::vdst);
370 if (Op32DstIdx != -1) {
371 // dst
372 Inst32.addOperand(MI.getOperand(0));
373 } else {
374 assert(MI.getOperand(0).getReg() == AMDGPU::VCC &&
375 "Unexpected case");
376 }
377
378
379 Inst32.addOperand(*TII->getNamedOperand(MI, AMDGPU::OpName::src0));
380
381 const MachineOperand *Src1 =
382 TII->getNamedOperand(MI, AMDGPU::OpName::src1);
383 if (Src1)
384 Inst32.addOperand(*Src1);
385
386 const MachineOperand *Src2 =
387 TII->getNamedOperand(MI, AMDGPU::OpName::src2);
388 if (Src2) {
389 int Op32Src2Idx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2);
390 if (Op32Src2Idx != -1) {
391 Inst32.addOperand(*Src2);
392 } else {
393 // In the case of V_CNDMASK_B32_e32, the explicit operand src2 is
394 // replaced with an implicit read of vcc. This was already added
395 // during the initial BuildMI, so find it to preserve the flags.
396 copyFlagsToImplicitVCC(*Inst32, *Src2);
397 }
398 }
399
400 ++NumInstructionsShrunk;
401 MI.eraseFromParent();
402
403 foldImmediates(*Inst32, TII, MRI);
404 DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
405
406
407 }
408 }
409 return false;
410 }
411