• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #ifndef OPENSSL_HEADER_AEAD_H
16 #define OPENSSL_HEADER_AEAD_H
17 
18 #include <openssl/base.h>
19 
20 #if defined(__cplusplus)
21 extern "C" {
22 #endif
23 
24 
25 // Authenticated Encryption with Additional Data.
26 //
27 // AEAD couples confidentiality and integrity in a single primitive. AEAD
28 // algorithms take a key and then can seal and open individual messages. Each
29 // message has a unique, per-message nonce and, optionally, additional data
30 // which is authenticated but not included in the ciphertext.
31 //
32 // The |EVP_AEAD_CTX_init| function initialises an |EVP_AEAD_CTX| structure and
33 // performs any precomputation needed to use |aead| with |key|. The length of
34 // the key, |key_len|, is given in bytes.
35 //
36 // The |tag_len| argument contains the length of the tags, in bytes, and allows
37 // for the processing of truncated authenticators. A zero value indicates that
38 // the default tag length should be used and this is defined as
39 // |EVP_AEAD_DEFAULT_TAG_LENGTH| in order to make the code clear. Using
40 // truncated tags increases an attacker's chance of creating a valid forgery.
41 // Be aware that the attacker's chance may increase more than exponentially as
42 // would naively be expected.
43 //
44 // When no longer needed, the initialised |EVP_AEAD_CTX| structure must be
45 // passed to |EVP_AEAD_CTX_cleanup|, which will deallocate any memory used.
46 //
47 // With an |EVP_AEAD_CTX| in hand, one can seal and open messages. These
48 // operations are intended to meet the standard notions of privacy and
49 // authenticity for authenticated encryption. For formal definitions see
50 // Bellare and Namprempre, "Authenticated encryption: relations among notions
51 // and analysis of the generic composition paradigm," Lecture Notes in Computer
52 // Science B<1976> (2000), 531–545,
53 // http://www-cse.ucsd.edu/~mihir/papers/oem.html.
54 //
55 // When sealing messages, a nonce must be given. The length of the nonce is
56 // fixed by the AEAD in use and is returned by |EVP_AEAD_nonce_length|. *The
57 // nonce must be unique for all messages with the same key*. This is critically
58 // important - nonce reuse may completely undermine the security of the AEAD.
59 // Nonces may be predictable and public, so long as they are unique. Uniqueness
60 // may be achieved with a simple counter or, if large enough, may be generated
61 // randomly. The nonce must be passed into the "open" operation by the receiver
62 // so must either be implicit (e.g. a counter), or must be transmitted along
63 // with the sealed message.
64 //
65 // The "seal" and "open" operations are atomic - an entire message must be
66 // encrypted or decrypted in a single call. Large messages may have to be split
67 // up in order to accommodate this. When doing so, be mindful of the need not to
68 // repeat nonces and the possibility that an attacker could duplicate, reorder
69 // or drop message chunks. For example, using a single key for a given (large)
70 // message and sealing chunks with nonces counting from zero would be secure as
71 // long as the number of chunks was securely transmitted. (Otherwise an
72 // attacker could truncate the message by dropping chunks from the end.)
73 //
74 // The number of chunks could be transmitted by prefixing it to the plaintext,
75 // for example. This also assumes that no other message would ever use the same
76 // key otherwise the rule that nonces must be unique for a given key would be
77 // violated.
78 //
79 // The "seal" and "open" operations also permit additional data to be
80 // authenticated via the |ad| parameter. This data is not included in the
81 // ciphertext and must be identical for both the "seal" and "open" call. This
82 // permits implicit context to be authenticated but may be empty if not needed.
83 //
84 // The "seal" and "open" operations may work in-place if the |out| and |in|
85 // arguments are equal. Otherwise, if |out| and |in| alias, input data may be
86 // overwritten before it is read. This situation will cause an error.
87 //
88 // The "seal" and "open" operations return one on success and zero on error.
89 
90 
91 // AEAD algorithms.
92 
93 // EVP_aead_aes_128_gcm is AES-128 in Galois Counter Mode.
94 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm(void);
95 
96 // EVP_aead_aes_256_gcm is AES-256 in Galois Counter Mode.
97 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm(void);
98 
99 // EVP_aead_chacha20_poly1305 is the AEAD built from ChaCha20 and
100 // Poly1305 as described in RFC 7539.
101 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_chacha20_poly1305(void);
102 
103 // EVP_aead_aes_128_ctr_hmac_sha256 is AES-128 in CTR mode with HMAC-SHA256 for
104 // authentication. The nonce is 12 bytes; the bottom 32-bits are used as the
105 // block counter, thus the maximum plaintext size is 64GB.
106 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void);
107 
108 // EVP_aead_aes_256_ctr_hmac_sha256 is AES-256 in CTR mode with HMAC-SHA256 for
109 // authentication. See |EVP_aead_aes_128_ctr_hmac_sha256| for details.
110 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void);
111 
112 // EVP_aead_aes_128_gcm_siv is AES-128 in GCM-SIV mode. See
113 // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02
114 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void);
115 
116 // EVP_aead_aes_256_gcm_siv is AES-256 in GCM-SIV mode. See
117 // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02
118 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void);
119 
120 // EVP_has_aes_hardware returns one if we enable hardware support for fast and
121 // constant-time AES-GCM.
122 OPENSSL_EXPORT int EVP_has_aes_hardware(void);
123 
124 
125 // Utility functions.
126 
127 // EVP_AEAD_key_length returns the length, in bytes, of the keys used by
128 // |aead|.
129 OPENSSL_EXPORT size_t EVP_AEAD_key_length(const EVP_AEAD *aead);
130 
131 // EVP_AEAD_nonce_length returns the length, in bytes, of the per-message nonce
132 // for |aead|.
133 OPENSSL_EXPORT size_t EVP_AEAD_nonce_length(const EVP_AEAD *aead);
134 
135 // EVP_AEAD_max_overhead returns the maximum number of additional bytes added
136 // by the act of sealing data with |aead|.
137 OPENSSL_EXPORT size_t EVP_AEAD_max_overhead(const EVP_AEAD *aead);
138 
139 // EVP_AEAD_max_tag_len returns the maximum tag length when using |aead|. This
140 // is the largest value that can be passed as |tag_len| to
141 // |EVP_AEAD_CTX_init|.
142 OPENSSL_EXPORT size_t EVP_AEAD_max_tag_len(const EVP_AEAD *aead);
143 
144 
145 // AEAD operations.
146 
147 // An EVP_AEAD_CTX represents an AEAD algorithm configured with a specific key
148 // and message-independent IV.
149 typedef struct evp_aead_ctx_st {
150   const EVP_AEAD *aead;
151   // aead_state is an opaque pointer to whatever state the AEAD needs to
152   // maintain.
153   void *aead_state;
154   // tag_len may contain the actual length of the authentication tag if it is
155   // known at initialization time.
156   uint8_t tag_len;
157 } EVP_AEAD_CTX;
158 
159 // EVP_AEAD_MAX_KEY_LENGTH contains the maximum key length used by
160 // any AEAD defined in this header.
161 #define EVP_AEAD_MAX_KEY_LENGTH 80
162 
163 // EVP_AEAD_MAX_NONCE_LENGTH contains the maximum nonce length used by
164 // any AEAD defined in this header.
165 #define EVP_AEAD_MAX_NONCE_LENGTH 16
166 
167 // EVP_AEAD_MAX_OVERHEAD contains the maximum overhead used by any AEAD
168 // defined in this header.
169 #define EVP_AEAD_MAX_OVERHEAD 64
170 
171 // EVP_AEAD_DEFAULT_TAG_LENGTH is a magic value that can be passed to
172 // EVP_AEAD_CTX_init to indicate that the default tag length for an AEAD should
173 // be used.
174 #define EVP_AEAD_DEFAULT_TAG_LENGTH 0
175 
176 // EVP_AEAD_CTX_zero sets an uninitialized |ctx| to the zero state. It must be
177 // initialized with |EVP_AEAD_CTX_init| before use. It is safe, but not
178 // necessary, to call |EVP_AEAD_CTX_cleanup| in this state. This may be used for
179 // more uniform cleanup of |EVP_AEAD_CTX|.
180 OPENSSL_EXPORT void EVP_AEAD_CTX_zero(EVP_AEAD_CTX *ctx);
181 
182 // EVP_AEAD_CTX_new allocates an |EVP_AEAD_CTX|, calls |EVP_AEAD_CTX_init| and
183 // returns the |EVP_AEAD_CTX|, or NULL on error.
184 OPENSSL_EXPORT EVP_AEAD_CTX *EVP_AEAD_CTX_new(const EVP_AEAD *aead,
185                                               const uint8_t *key,
186                                               size_t key_len, size_t tag_len);
187 
188 // EVP_AEAD_CTX_free calls |EVP_AEAD_CTX_cleanup| and |OPENSSL_free| on
189 // |ctx|.
190 OPENSSL_EXPORT void EVP_AEAD_CTX_free(EVP_AEAD_CTX *ctx);
191 
192 // EVP_AEAD_CTX_init initializes |ctx| for the given AEAD algorithm. The |impl|
193 // argument is ignored and should be NULL. Authentication tags may be truncated
194 // by passing a size as |tag_len|. A |tag_len| of zero indicates the default
195 // tag length and this is defined as EVP_AEAD_DEFAULT_TAG_LENGTH for
196 // readability.
197 //
198 // Returns 1 on success. Otherwise returns 0 and pushes to the error stack. In
199 // the error case, you do not need to call |EVP_AEAD_CTX_cleanup|, but it's
200 // harmless to do so.
201 OPENSSL_EXPORT int EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead,
202                                      const uint8_t *key, size_t key_len,
203                                      size_t tag_len, ENGINE *impl);
204 
205 // EVP_AEAD_CTX_cleanup frees any data allocated by |ctx|. It is a no-op to
206 // call |EVP_AEAD_CTX_cleanup| on a |EVP_AEAD_CTX| that has been |memset| to
207 // all zeros.
208 OPENSSL_EXPORT void EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx);
209 
210 // EVP_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
211 // authenticates |ad_len| bytes from |ad| and writes the result to |out|. It
212 // returns one on success and zero otherwise.
213 //
214 // This function may be called concurrently with itself or any other seal/open
215 // function on the same |EVP_AEAD_CTX|.
216 //
217 // At most |max_out_len| bytes are written to |out| and, in order to ensure
218 // success, |max_out_len| should be |in_len| plus the result of
219 // |EVP_AEAD_max_overhead|. On successful return, |*out_len| is set to the
220 // actual number of bytes written.
221 //
222 // The length of |nonce|, |nonce_len|, must be equal to the result of
223 // |EVP_AEAD_nonce_length| for this AEAD.
224 //
225 // |EVP_AEAD_CTX_seal| never results in a partial output. If |max_out_len| is
226 // insufficient, zero will be returned. If any error occurs, |out| will be
227 // filled with zero bytes and |*out_len| set to zero.
228 //
229 // If |in| and |out| alias then |out| must be == |in|.
230 OPENSSL_EXPORT int EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
231                                      size_t *out_len, size_t max_out_len,
232                                      const uint8_t *nonce, size_t nonce_len,
233                                      const uint8_t *in, size_t in_len,
234                                      const uint8_t *ad, size_t ad_len);
235 
236 // EVP_AEAD_CTX_open authenticates |in_len| bytes from |in| and |ad_len| bytes
237 // from |ad| and decrypts at most |in_len| bytes into |out|. It returns one on
238 // success and zero otherwise.
239 //
240 // This function may be called concurrently with itself or any other seal/open
241 // function on the same |EVP_AEAD_CTX|.
242 //
243 // At most |in_len| bytes are written to |out|. In order to ensure success,
244 // |max_out_len| should be at least |in_len|. On successful return, |*out_len|
245 // is set to the the actual number of bytes written.
246 //
247 // The length of |nonce|, |nonce_len|, must be equal to the result of
248 // |EVP_AEAD_nonce_length| for this AEAD.
249 //
250 // |EVP_AEAD_CTX_open| never results in a partial output. If |max_out_len| is
251 // insufficient, zero will be returned. If any error occurs, |out| will be
252 // filled with zero bytes and |*out_len| set to zero.
253 //
254 // If |in| and |out| alias then |out| must be == |in|.
255 OPENSSL_EXPORT int EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
256                                      size_t *out_len, size_t max_out_len,
257                                      const uint8_t *nonce, size_t nonce_len,
258                                      const uint8_t *in, size_t in_len,
259                                      const uint8_t *ad, size_t ad_len);
260 
261 // EVP_AEAD_CTX_seal_scatter encrypts and authenticates |in_len| bytes from |in|
262 // and authenticates |ad_len| bytes from |ad|. It writes |in_len| bytes of
263 // ciphertext to |out| and the authentication tag to |out_tag|. It returns one
264 // on success and zero otherwise.
265 //
266 // This function may be called concurrently with itself or any other seal/open
267 // function on the same |EVP_AEAD_CTX|.
268 //
269 // Exactly |in_len| bytes are written to |out|, and up to
270 // |EVP_AEAD_max_overhead+extra_in_len| bytes to |out_tag|. On successful
271 // return, |*out_tag_len| is set to the actual number of bytes written to
272 // |out_tag|.
273 //
274 // |extra_in| may point to an additional plaintext input buffer if the cipher
275 // supports it. If present, |extra_in_len| additional bytes of plaintext are
276 // encrypted and authenticated, and the ciphertext is written (before the tag)
277 // to |out_tag|. |max_out_tag_len| must be sized to allow for the additional
278 // |extra_in_len| bytes.
279 //
280 // The length of |nonce|, |nonce_len|, must be equal to the result of
281 // |EVP_AEAD_nonce_length| for this AEAD.
282 //
283 // |EVP_AEAD_CTX_seal_scatter| never results in a partial output. If
284 // |max_out_tag_len| is insufficient, zero will be returned. If any error
285 // occurs, |out| and |out_tag| will be filled with zero bytes and |*out_tag_len|
286 // set to zero.
287 //
288 // If |in| and |out| alias then |out| must be == |in|. |out_tag| may not alias
289 // any other argument.
290 OPENSSL_EXPORT int EVP_AEAD_CTX_seal_scatter(
291     const EVP_AEAD_CTX *ctx, uint8_t *out,
292     uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len,
293     const uint8_t *nonce, size_t nonce_len,
294     const uint8_t *in, size_t in_len,
295     const uint8_t *extra_in, size_t extra_in_len,
296     const uint8_t *ad, size_t ad_len);
297 
298 // EVP_AEAD_CTX_open_gather decrypts and authenticates |in_len| bytes from |in|
299 // and authenticates |ad_len| bytes from |ad| using |in_tag_len| bytes of
300 // authentication tag from |in_tag|. If successful, it writes |in_len| bytes of
301 // plaintext to |out|. It returns one on success and zero otherwise.
302 //
303 // This function may be called concurrently with itself or any other seal/open
304 // function on the same |EVP_AEAD_CTX|.
305 //
306 // The length of |nonce|, |nonce_len|, must be equal to the result of
307 // |EVP_AEAD_nonce_length| for this AEAD.
308 //
309 // |EVP_AEAD_CTX_open_gather| never results in a partial output. If any error
310 // occurs, |out| will be filled with zero bytes.
311 //
312 // If |in| and |out| alias then |out| must be == |in|.
313 OPENSSL_EXPORT int EVP_AEAD_CTX_open_gather(
314     const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce,
315     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag,
316     size_t in_tag_len, const uint8_t *ad, size_t ad_len);
317 
318 // EVP_AEAD_CTX_aead returns the underlying AEAD for |ctx|, or NULL if one has
319 // not been set.
320 OPENSSL_EXPORT const EVP_AEAD *EVP_AEAD_CTX_aead(const EVP_AEAD_CTX *ctx);
321 
322 
323 // TLS-specific AEAD algorithms.
324 //
325 // These AEAD primitives do not meet the definition of generic AEADs. They are
326 // all specific to TLS and should not be used outside of that context. They must
327 // be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful, and may
328 // not be used concurrently. Any nonces are used as IVs, so they must be
329 // unpredictable. They only accept an |ad| parameter of length 11 (the standard
330 // TLS one with length omitted).
331 
332 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void);
333 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void);
334 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void);
335 
336 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void);
337 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void);
338 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void);
339 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void);
340 
341 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void);
342 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void);
343 
344 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_tls(void);
345 
346 // EVP_aead_aes_128_gcm_tls12 is AES-128 in Galois Counter Mode using the TLS
347 // 1.2 nonce construction.
348 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls12(void);
349 
350 // EVP_aead_aes_256_gcm_tls12 is AES-256 in Galois Counter Mode using the TLS
351 // 1.2 nonce construction.
352 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls12(void);
353 
354 
355 // SSLv3-specific AEAD algorithms.
356 //
357 // These AEAD primitives do not meet the definition of generic AEADs. They are
358 // all specific to SSLv3 and should not be used outside of that context. They
359 // must be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful,
360 // and may not be used concurrently. They only accept an |ad| parameter of
361 // length 9 (the standard TLS one with length and version omitted).
362 
363 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_ssl3(void);
364 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_ssl3(void);
365 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_ssl3(void);
366 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_ssl3(void);
367 
368 
369 // Obscure functions.
370 
371 // evp_aead_direction_t denotes the direction of an AEAD operation.
372 enum evp_aead_direction_t {
373   evp_aead_open,
374   evp_aead_seal,
375 };
376 
377 // EVP_AEAD_CTX_init_with_direction calls |EVP_AEAD_CTX_init| for normal
378 // AEADs. For TLS-specific and SSL3-specific AEADs, it initializes |ctx| for a
379 // given direction.
380 OPENSSL_EXPORT int EVP_AEAD_CTX_init_with_direction(
381     EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len,
382     size_t tag_len, enum evp_aead_direction_t dir);
383 
384 // EVP_AEAD_CTX_get_iv sets |*out_len| to the length of the IV for |ctx| and
385 // sets |*out_iv| to point to that many bytes of the current IV. This is only
386 // meaningful for AEADs with implicit IVs (i.e. CBC mode in SSLv3 and TLS 1.0).
387 //
388 // It returns one on success or zero on error.
389 OPENSSL_EXPORT int EVP_AEAD_CTX_get_iv(const EVP_AEAD_CTX *ctx,
390                                        const uint8_t **out_iv, size_t *out_len);
391 
392 // EVP_AEAD_CTX_tag_len computes the exact byte length of the tag written by
393 // |EVP_AEAD_CTX_seal_scatter| and writes it to |*out_tag_len|. It returns one
394 // on success or zero on error. |in_len| and |extra_in_len| must equal the
395 // arguments of the same names passed to |EVP_AEAD_CTX_seal_scatter|.
396 OPENSSL_EXPORT int EVP_AEAD_CTX_tag_len(const EVP_AEAD_CTX *ctx,
397                                         size_t *out_tag_len,
398                                         const size_t in_len,
399                                         const size_t extra_in_len);
400 
401 
402 #if defined(__cplusplus)
403 }  // extern C
404 
405 #if !defined(BORINGSSL_NO_CXX)
406 extern "C++" {
407 
408 namespace bssl {
409 
410 using ScopedEVP_AEAD_CTX =
411     internal::StackAllocated<EVP_AEAD_CTX, void, EVP_AEAD_CTX_zero,
412                              EVP_AEAD_CTX_cleanup>;
413 
414 BORINGSSL_MAKE_DELETER(EVP_AEAD_CTX, EVP_AEAD_CTX_free)
415 
416 }  // namespace bssl
417 
418 }  // extern C++
419 #endif
420 
421 #endif
422 
423 #endif  // OPENSSL_HEADER_AEAD_H
424