• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2017 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <arm_neon.h>
12 
13 #include "./vpx_config.h"
14 #include "./vpx_dsp_rtcd.h"
15 #include "vpx_dsp/txfm_common.h"
16 #include "vpx_dsp/arm/mem_neon.h"
17 #include "vpx_dsp/arm/transpose_neon.h"
18 
19 // Some builds of gcc 4.9.2 and .3 have trouble with some of the inline
20 // functions.
21 #if !defined(__clang__) && !defined(__ANDROID__) && defined(__GNUC__) && \
22     __GNUC__ == 4 && __GNUC_MINOR__ == 9 && __GNUC_PATCHLEVEL__ < 4
23 
vpx_fdct16x16_neon(const int16_t * input,tran_low_t * output,int stride)24 void vpx_fdct16x16_neon(const int16_t *input, tran_low_t *output, int stride) {
25   vpx_fdct16x16_c(input, output, stride);
26 }
27 
28 #else
29 
load(const int16_t * a,int stride,int16x8_t * b)30 static INLINE void load(const int16_t *a, int stride, int16x8_t *b /*[16]*/) {
31   b[0] = vld1q_s16(a);
32   a += stride;
33   b[1] = vld1q_s16(a);
34   a += stride;
35   b[2] = vld1q_s16(a);
36   a += stride;
37   b[3] = vld1q_s16(a);
38   a += stride;
39   b[4] = vld1q_s16(a);
40   a += stride;
41   b[5] = vld1q_s16(a);
42   a += stride;
43   b[6] = vld1q_s16(a);
44   a += stride;
45   b[7] = vld1q_s16(a);
46   a += stride;
47   b[8] = vld1q_s16(a);
48   a += stride;
49   b[9] = vld1q_s16(a);
50   a += stride;
51   b[10] = vld1q_s16(a);
52   a += stride;
53   b[11] = vld1q_s16(a);
54   a += stride;
55   b[12] = vld1q_s16(a);
56   a += stride;
57   b[13] = vld1q_s16(a);
58   a += stride;
59   b[14] = vld1q_s16(a);
60   a += stride;
61   b[15] = vld1q_s16(a);
62 }
63 
64 // Store 8 16x8 values, assuming stride == 16.
store(tran_low_t * a,const int16x8_t * b)65 static INLINE void store(tran_low_t *a, const int16x8_t *b /*[8]*/) {
66   store_s16q_to_tran_low(a, b[0]);
67   a += 16;
68   store_s16q_to_tran_low(a, b[1]);
69   a += 16;
70   store_s16q_to_tran_low(a, b[2]);
71   a += 16;
72   store_s16q_to_tran_low(a, b[3]);
73   a += 16;
74   store_s16q_to_tran_low(a, b[4]);
75   a += 16;
76   store_s16q_to_tran_low(a, b[5]);
77   a += 16;
78   store_s16q_to_tran_low(a, b[6]);
79   a += 16;
80   store_s16q_to_tran_low(a, b[7]);
81 }
82 
83 // Load step of each pass. Add and subtract clear across the input, requiring
84 // all 16 values to be loaded. For the first pass it also multiplies by 4.
85 
86 // To maybe reduce register usage this could be combined with the load() step to
87 // get the first 4 and last 4 values, cross those, then load the middle 8 values
88 // and cross them.
cross_input(const int16x8_t * a,int16x8_t * b,const int pass)89 static INLINE void cross_input(const int16x8_t *a /*[16]*/,
90                                int16x8_t *b /*[16]*/, const int pass) {
91   if (pass == 0) {
92     b[0] = vshlq_n_s16(vaddq_s16(a[0], a[15]), 2);
93     b[1] = vshlq_n_s16(vaddq_s16(a[1], a[14]), 2);
94     b[2] = vshlq_n_s16(vaddq_s16(a[2], a[13]), 2);
95     b[3] = vshlq_n_s16(vaddq_s16(a[3], a[12]), 2);
96     b[4] = vshlq_n_s16(vaddq_s16(a[4], a[11]), 2);
97     b[5] = vshlq_n_s16(vaddq_s16(a[5], a[10]), 2);
98     b[6] = vshlq_n_s16(vaddq_s16(a[6], a[9]), 2);
99     b[7] = vshlq_n_s16(vaddq_s16(a[7], a[8]), 2);
100 
101     b[8] = vshlq_n_s16(vsubq_s16(a[7], a[8]), 2);
102     b[9] = vshlq_n_s16(vsubq_s16(a[6], a[9]), 2);
103     b[10] = vshlq_n_s16(vsubq_s16(a[5], a[10]), 2);
104     b[11] = vshlq_n_s16(vsubq_s16(a[4], a[11]), 2);
105     b[12] = vshlq_n_s16(vsubq_s16(a[3], a[12]), 2);
106     b[13] = vshlq_n_s16(vsubq_s16(a[2], a[13]), 2);
107     b[14] = vshlq_n_s16(vsubq_s16(a[1], a[14]), 2);
108     b[15] = vshlq_n_s16(vsubq_s16(a[0], a[15]), 2);
109   } else {
110     b[0] = vaddq_s16(a[0], a[15]);
111     b[1] = vaddq_s16(a[1], a[14]);
112     b[2] = vaddq_s16(a[2], a[13]);
113     b[3] = vaddq_s16(a[3], a[12]);
114     b[4] = vaddq_s16(a[4], a[11]);
115     b[5] = vaddq_s16(a[5], a[10]);
116     b[6] = vaddq_s16(a[6], a[9]);
117     b[7] = vaddq_s16(a[7], a[8]);
118 
119     b[8] = vsubq_s16(a[7], a[8]);
120     b[9] = vsubq_s16(a[6], a[9]);
121     b[10] = vsubq_s16(a[5], a[10]);
122     b[11] = vsubq_s16(a[4], a[11]);
123     b[12] = vsubq_s16(a[3], a[12]);
124     b[13] = vsubq_s16(a[2], a[13]);
125     b[14] = vsubq_s16(a[1], a[14]);
126     b[15] = vsubq_s16(a[0], a[15]);
127   }
128 }
129 
130 // Quarter round at the beginning of the second pass. Can't use vrshr (rounding)
131 // because this only adds 1, not 1 << 2.
partial_round_shift(int16x8_t * a)132 static INLINE void partial_round_shift(int16x8_t *a /*[16]*/) {
133   const int16x8_t one = vdupq_n_s16(1);
134   a[0] = vshrq_n_s16(vaddq_s16(a[0], one), 2);
135   a[1] = vshrq_n_s16(vaddq_s16(a[1], one), 2);
136   a[2] = vshrq_n_s16(vaddq_s16(a[2], one), 2);
137   a[3] = vshrq_n_s16(vaddq_s16(a[3], one), 2);
138   a[4] = vshrq_n_s16(vaddq_s16(a[4], one), 2);
139   a[5] = vshrq_n_s16(vaddq_s16(a[5], one), 2);
140   a[6] = vshrq_n_s16(vaddq_s16(a[6], one), 2);
141   a[7] = vshrq_n_s16(vaddq_s16(a[7], one), 2);
142   a[8] = vshrq_n_s16(vaddq_s16(a[8], one), 2);
143   a[9] = vshrq_n_s16(vaddq_s16(a[9], one), 2);
144   a[10] = vshrq_n_s16(vaddq_s16(a[10], one), 2);
145   a[11] = vshrq_n_s16(vaddq_s16(a[11], one), 2);
146   a[12] = vshrq_n_s16(vaddq_s16(a[12], one), 2);
147   a[13] = vshrq_n_s16(vaddq_s16(a[13], one), 2);
148   a[14] = vshrq_n_s16(vaddq_s16(a[14], one), 2);
149   a[15] = vshrq_n_s16(vaddq_s16(a[15], one), 2);
150 }
151 
152 // fdct_round_shift((a +/- b) * c)
butterfly_one_coeff(const int16x8_t a,const int16x8_t b,const tran_high_t c,int16x8_t * add,int16x8_t * sub)153 static INLINE void butterfly_one_coeff(const int16x8_t a, const int16x8_t b,
154                                        const tran_high_t c, int16x8_t *add,
155                                        int16x8_t *sub) {
156   const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), c);
157   const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), c);
158   const int32x4_t sum0 = vmlal_n_s16(a0, vget_low_s16(b), c);
159   const int32x4_t sum1 = vmlal_n_s16(a1, vget_high_s16(b), c);
160   const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), c);
161   const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), c);
162   const int16x4_t rounded0 = vqrshrn_n_s32(sum0, 14);
163   const int16x4_t rounded1 = vqrshrn_n_s32(sum1, 14);
164   const int16x4_t rounded2 = vqrshrn_n_s32(diff0, 14);
165   const int16x4_t rounded3 = vqrshrn_n_s32(diff1, 14);
166   *add = vcombine_s16(rounded0, rounded1);
167   *sub = vcombine_s16(rounded2, rounded3);
168 }
169 
170 // fdct_round_shift(a * c0 +/- b * c1)
butterfly_two_coeff(const int16x8_t a,const int16x8_t b,const tran_coef_t c0,const tran_coef_t c1,int16x8_t * add,int16x8_t * sub)171 static INLINE void butterfly_two_coeff(const int16x8_t a, const int16x8_t b,
172                                        const tran_coef_t c0,
173                                        const tran_coef_t c1, int16x8_t *add,
174                                        int16x8_t *sub) {
175   const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), c0);
176   const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), c0);
177   const int32x4_t a2 = vmull_n_s16(vget_low_s16(a), c1);
178   const int32x4_t a3 = vmull_n_s16(vget_high_s16(a), c1);
179   const int32x4_t sum0 = vmlal_n_s16(a2, vget_low_s16(b), c0);
180   const int32x4_t sum1 = vmlal_n_s16(a3, vget_high_s16(b), c0);
181   const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), c1);
182   const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), c1);
183   const int16x4_t rounded0 = vqrshrn_n_s32(sum0, 14);
184   const int16x4_t rounded1 = vqrshrn_n_s32(sum1, 14);
185   const int16x4_t rounded2 = vqrshrn_n_s32(diff0, 14);
186   const int16x4_t rounded3 = vqrshrn_n_s32(diff1, 14);
187   *add = vcombine_s16(rounded0, rounded1);
188   *sub = vcombine_s16(rounded2, rounded3);
189 }
190 
191 // Transpose 8x8 to a new location. Don't use transpose_neon.h because those
192 // are all in-place.
transpose_8x8(const int16x8_t * a,int16x8_t * b)193 static INLINE void transpose_8x8(const int16x8_t *a /*[8]*/,
194                                  int16x8_t *b /*[8]*/) {
195   // Swap 16 bit elements.
196   const int16x8x2_t c0 = vtrnq_s16(a[0], a[1]);
197   const int16x8x2_t c1 = vtrnq_s16(a[2], a[3]);
198   const int16x8x2_t c2 = vtrnq_s16(a[4], a[5]);
199   const int16x8x2_t c3 = vtrnq_s16(a[6], a[7]);
200 
201   // Swap 32 bit elements.
202   const int32x4x2_t d0 = vtrnq_s32(vreinterpretq_s32_s16(c0.val[0]),
203                                    vreinterpretq_s32_s16(c1.val[0]));
204   const int32x4x2_t d1 = vtrnq_s32(vreinterpretq_s32_s16(c0.val[1]),
205                                    vreinterpretq_s32_s16(c1.val[1]));
206   const int32x4x2_t d2 = vtrnq_s32(vreinterpretq_s32_s16(c2.val[0]),
207                                    vreinterpretq_s32_s16(c3.val[0]));
208   const int32x4x2_t d3 = vtrnq_s32(vreinterpretq_s32_s16(c2.val[1]),
209                                    vreinterpretq_s32_s16(c3.val[1]));
210 
211   // Swap 64 bit elements
212   const int16x8x2_t e0 = vpx_vtrnq_s64_to_s16(d0.val[0], d2.val[0]);
213   const int16x8x2_t e1 = vpx_vtrnq_s64_to_s16(d1.val[0], d3.val[0]);
214   const int16x8x2_t e2 = vpx_vtrnq_s64_to_s16(d0.val[1], d2.val[1]);
215   const int16x8x2_t e3 = vpx_vtrnq_s64_to_s16(d1.val[1], d3.val[1]);
216 
217   b[0] = e0.val[0];
218   b[1] = e1.val[0];
219   b[2] = e2.val[0];
220   b[3] = e3.val[0];
221   b[4] = e0.val[1];
222   b[5] = e1.val[1];
223   b[6] = e2.val[1];
224   b[7] = e3.val[1];
225 }
226 
227 // Main body of fdct16x16.
dct_body(const int16x8_t * in,int16x8_t * out)228 static void dct_body(const int16x8_t *in /*[16]*/, int16x8_t *out /*[16]*/) {
229   int16x8_t s[8];
230   int16x8_t x[4];
231   int16x8_t step[8];
232 
233   // stage 1
234   // From fwd_txfm.c: Work on the first eight values; fdct8(input,
235   // even_results);"
236   s[0] = vaddq_s16(in[0], in[7]);
237   s[1] = vaddq_s16(in[1], in[6]);
238   s[2] = vaddq_s16(in[2], in[5]);
239   s[3] = vaddq_s16(in[3], in[4]);
240   s[4] = vsubq_s16(in[3], in[4]);
241   s[5] = vsubq_s16(in[2], in[5]);
242   s[6] = vsubq_s16(in[1], in[6]);
243   s[7] = vsubq_s16(in[0], in[7]);
244 
245   // fdct4(step, step);
246   x[0] = vaddq_s16(s[0], s[3]);
247   x[1] = vaddq_s16(s[1], s[2]);
248   x[2] = vsubq_s16(s[1], s[2]);
249   x[3] = vsubq_s16(s[0], s[3]);
250 
251   // out[0] = fdct_round_shift((x0 + x1) * cospi_16_64)
252   // out[8] = fdct_round_shift((x0 - x1) * cospi_16_64)
253   butterfly_one_coeff(x[0], x[1], cospi_16_64, &out[0], &out[8]);
254   // out[4] = fdct_round_shift(x3 * cospi_8_64 + x2 * cospi_24_64);
255   // out[12] = fdct_round_shift(x3 * cospi_24_64 - x2 * cospi_8_64);
256   butterfly_two_coeff(x[3], x[2], cospi_24_64, cospi_8_64, &out[4], &out[12]);
257 
258   //  Stage 2
259   // Re-using source s5/s6
260   // s5 = fdct_round_shift((s6 - s5) * cospi_16_64)
261   // s6 = fdct_round_shift((s6 + s5) * cospi_16_64)
262   butterfly_one_coeff(s[6], s[5], cospi_16_64, &s[6], &s[5]);
263 
264   //  Stage 3
265   x[0] = vaddq_s16(s[4], s[5]);
266   x[1] = vsubq_s16(s[4], s[5]);
267   x[2] = vsubq_s16(s[7], s[6]);
268   x[3] = vaddq_s16(s[7], s[6]);
269 
270   // Stage 4
271   // out[2] = fdct_round_shift(x0 * cospi_28_64 + x3 * cospi_4_64)
272   // out[14] = fdct_round_shift(x3 * cospi_28_64 + x0 * -cospi_4_64)
273   butterfly_two_coeff(x[3], x[0], cospi_28_64, cospi_4_64, &out[2], &out[14]);
274   // out[6] = fdct_round_shift(x1 * cospi_12_64 + x2 *  cospi_20_64)
275   // out[10] = fdct_round_shift(x2 * cospi_12_64 + x1 * -cospi_20_64)
276   butterfly_two_coeff(x[2], x[1], cospi_12_64, cospi_20_64, &out[10], &out[6]);
277 
278   // step 2
279   // From fwd_txfm.c: Work on the next eight values; step1 -> odd_results"
280   // That file distinguished between "in_high" and "step1" but the only
281   // difference is that "in_high" is the first 8 values and "step 1" is the
282   // second. Here, since they are all in one array, "step1" values are += 8.
283 
284   // step2[2] = fdct_round_shift((step1[5] - step1[2]) * cospi_16_64)
285   // step2[3] = fdct_round_shift((step1[4] - step1[3]) * cospi_16_64)
286   // step2[4] = fdct_round_shift((step1[4] + step1[3]) * cospi_16_64)
287   // step2[5] = fdct_round_shift((step1[5] + step1[2]) * cospi_16_64)
288   butterfly_one_coeff(in[13], in[10], cospi_16_64, &s[5], &s[2]);
289   butterfly_one_coeff(in[12], in[11], cospi_16_64, &s[4], &s[3]);
290 
291   // step 3
292   s[0] = vaddq_s16(in[8], s[3]);
293   s[1] = vaddq_s16(in[9], s[2]);
294   x[0] = vsubq_s16(in[9], s[2]);
295   x[1] = vsubq_s16(in[8], s[3]);
296   x[2] = vsubq_s16(in[15], s[4]);
297   x[3] = vsubq_s16(in[14], s[5]);
298   s[6] = vaddq_s16(in[14], s[5]);
299   s[7] = vaddq_s16(in[15], s[4]);
300 
301   // step 4
302   // step2[1] = fdct_round_shift(step3[1] *-cospi_8_64 + step3[6] * cospi_24_64)
303   // step2[6] = fdct_round_shift(step3[1] * cospi_24_64 + step3[6] * cospi_8_64)
304   butterfly_two_coeff(s[6], s[1], cospi_24_64, cospi_8_64, &s[6], &s[1]);
305 
306   // step2[2] = fdct_round_shift(step3[2] * cospi_24_64 + step3[5] * cospi_8_64)
307   // step2[5] = fdct_round_shift(step3[2] * cospi_8_64 - step3[5] * cospi_24_64)
308   butterfly_two_coeff(x[0], x[3], cospi_8_64, cospi_24_64, &s[2], &s[5]);
309 
310   // step 5
311   step[0] = vaddq_s16(s[0], s[1]);
312   step[1] = vsubq_s16(s[0], s[1]);
313   step[2] = vaddq_s16(x[1], s[2]);
314   step[3] = vsubq_s16(x[1], s[2]);
315   step[4] = vsubq_s16(x[2], s[5]);
316   step[5] = vaddq_s16(x[2], s[5]);
317   step[6] = vsubq_s16(s[7], s[6]);
318   step[7] = vaddq_s16(s[7], s[6]);
319 
320   // step 6
321   // out[1] = fdct_round_shift(step1[0] * cospi_30_64 + step1[7] * cospi_2_64)
322   // out[9] = fdct_round_shift(step1[1] * cospi_14_64 + step1[6] * cospi_18_64)
323   // out[5] = fdct_round_shift(step1[2] * cospi_22_64 + step1[5] * cospi_10_64)
324   // out[13] = fdct_round_shift(step1[3] * cospi_6_64 + step1[4] * cospi_26_64)
325   // out[3] = fdct_round_shift(step1[3] * -cospi_26_64 + step1[4] * cospi_6_64)
326   // out[11] = fdct_round_shift(step1[2] * -cospi_10_64 + step1[5] *
327   // cospi_22_64)
328   // out[7] = fdct_round_shift(step1[1] * -cospi_18_64 + step1[6] * cospi_14_64)
329   // out[15] = fdct_round_shift(step1[0] * -cospi_2_64 + step1[7] * cospi_30_64)
330   butterfly_two_coeff(step[6], step[1], cospi_14_64, cospi_18_64, &out[9],
331                       &out[7]);
332   butterfly_two_coeff(step[7], step[0], cospi_30_64, cospi_2_64, &out[1],
333                       &out[15]);
334   butterfly_two_coeff(step[4], step[3], cospi_6_64, cospi_26_64, &out[13],
335                       &out[3]);
336   butterfly_two_coeff(step[5], step[2], cospi_22_64, cospi_10_64, &out[5],
337                       &out[11]);
338 }
339 
vpx_fdct16x16_neon(const int16_t * input,tran_low_t * output,int stride)340 void vpx_fdct16x16_neon(const int16_t *input, tran_low_t *output, int stride) {
341   int16x8_t temp0[16];
342   int16x8_t temp1[16];
343   int16x8_t temp2[16];
344   int16x8_t temp3[16];
345 
346   // Left half.
347   load(input, stride, temp0);
348   cross_input(temp0, temp1, 0);
349   dct_body(temp1, temp0);
350 
351   // Right half.
352   load(input + 8, stride, temp1);
353   cross_input(temp1, temp2, 0);
354   dct_body(temp2, temp1);
355 
356   // Transpose top left and top right quarters into one contiguous location to
357   // process to the top half.
358   transpose_8x8(&temp0[0], &temp2[0]);
359   transpose_8x8(&temp1[0], &temp2[8]);
360   partial_round_shift(temp2);
361   cross_input(temp2, temp3, 1);
362   dct_body(temp3, temp2);
363   transpose_s16_8x8(&temp2[0], &temp2[1], &temp2[2], &temp2[3], &temp2[4],
364                     &temp2[5], &temp2[6], &temp2[7]);
365   transpose_s16_8x8(&temp2[8], &temp2[9], &temp2[10], &temp2[11], &temp2[12],
366                     &temp2[13], &temp2[14], &temp2[15]);
367   store(output, temp2);
368   store(output + 8, temp2 + 8);
369   output += 8 * 16;
370 
371   // Transpose bottom left and bottom right quarters into one contiguous
372   // location to process to the bottom half.
373   transpose_8x8(&temp0[8], &temp1[0]);
374   transpose_s16_8x8(&temp1[8], &temp1[9], &temp1[10], &temp1[11], &temp1[12],
375                     &temp1[13], &temp1[14], &temp1[15]);
376   partial_round_shift(temp1);
377   cross_input(temp1, temp0, 1);
378   dct_body(temp0, temp1);
379   transpose_s16_8x8(&temp1[0], &temp1[1], &temp1[2], &temp1[3], &temp1[4],
380                     &temp1[5], &temp1[6], &temp1[7]);
381   transpose_s16_8x8(&temp1[8], &temp1[9], &temp1[10], &temp1[11], &temp1[12],
382                     &temp1[13], &temp1[14], &temp1[15]);
383   store(output, temp1);
384   store(output + 8, temp1 + 8);
385 }
386 #endif  // !defined(__clang__) && !defined(__ANDROID__) && defined(__GNUC__) &&
387         // __GNUC__ == 4 && __GNUC_MINOR__ == 9 && __GNUC_PATCHLEVEL__ < 4
388