1 /*
2 * Copyright (c) 2017 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <arm_neon.h>
12 #include <assert.h>
13 #include <string.h>
14
15 #include "./vpx_config.h"
16 #include "./vpx_dsp_rtcd.h"
17 #include "vpx/vpx_integer.h"
18 #include "vpx_dsp/arm/transpose_neon.h"
19 #include "vpx_dsp/arm/vpx_convolve8_neon.h"
20 #include "vpx_ports/mem.h"
21
scaledconvolve_horiz_w4(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const x_filters,const int x0_q4,const int x_step_q4,const int w,const int h)22 static INLINE void scaledconvolve_horiz_w4(
23 const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
24 const ptrdiff_t dst_stride, const InterpKernel *const x_filters,
25 const int x0_q4, const int x_step_q4, const int w, const int h) {
26 DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
27 int x, y, z;
28
29 src -= SUBPEL_TAPS / 2 - 1;
30
31 y = h;
32 do {
33 int x_q4 = x0_q4;
34 x = 0;
35 do {
36 // process 4 src_x steps
37 for (z = 0; z < 4; ++z) {
38 const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
39 if (x_q4 & SUBPEL_MASK) {
40 const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]);
41 const int16x4_t filter3 = vdup_lane_s16(vget_low_s16(filters), 3);
42 const int16x4_t filter4 = vdup_lane_s16(vget_high_s16(filters), 0);
43 uint8x8_t s[8], d;
44 int16x8_t ss[4];
45 int16x4_t t[8], tt;
46
47 load_u8_8x4(src_x, src_stride, &s[0], &s[1], &s[2], &s[3]);
48 transpose_u8_8x4(&s[0], &s[1], &s[2], &s[3]);
49
50 ss[0] = vreinterpretq_s16_u16(vmovl_u8(s[0]));
51 ss[1] = vreinterpretq_s16_u16(vmovl_u8(s[1]));
52 ss[2] = vreinterpretq_s16_u16(vmovl_u8(s[2]));
53 ss[3] = vreinterpretq_s16_u16(vmovl_u8(s[3]));
54 t[0] = vget_low_s16(ss[0]);
55 t[1] = vget_low_s16(ss[1]);
56 t[2] = vget_low_s16(ss[2]);
57 t[3] = vget_low_s16(ss[3]);
58 t[4] = vget_high_s16(ss[0]);
59 t[5] = vget_high_s16(ss[1]);
60 t[6] = vget_high_s16(ss[2]);
61 t[7] = vget_high_s16(ss[3]);
62
63 tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7],
64 filters, filter3, filter4);
65 d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7);
66 vst1_lane_u32((uint32_t *)&temp[4 * z], vreinterpret_u32_u8(d), 0);
67 } else {
68 int i;
69 for (i = 0; i < 4; ++i) {
70 temp[z * 4 + i] = src_x[i * src_stride + 3];
71 }
72 }
73 x_q4 += x_step_q4;
74 }
75
76 // transpose the 4x4 filters values back to dst
77 {
78 const uint8x8x4_t d4 = vld4_u8(temp);
79 vst1_lane_u32((uint32_t *)&dst[x + 0 * dst_stride],
80 vreinterpret_u32_u8(d4.val[0]), 0);
81 vst1_lane_u32((uint32_t *)&dst[x + 1 * dst_stride],
82 vreinterpret_u32_u8(d4.val[1]), 0);
83 vst1_lane_u32((uint32_t *)&dst[x + 2 * dst_stride],
84 vreinterpret_u32_u8(d4.val[2]), 0);
85 vst1_lane_u32((uint32_t *)&dst[x + 3 * dst_stride],
86 vreinterpret_u32_u8(d4.val[3]), 0);
87 }
88 x += 4;
89 } while (x < w);
90
91 src += src_stride * 4;
92 dst += dst_stride * 4;
93 y -= 4;
94 } while (y > 0);
95 }
96
scaledconvolve_horiz_w8(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const x_filters,const int x0_q4,const int x_step_q4,const int w,const int h)97 static INLINE void scaledconvolve_horiz_w8(
98 const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
99 const ptrdiff_t dst_stride, const InterpKernel *const x_filters,
100 const int x0_q4, const int x_step_q4, const int w, const int h) {
101 DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
102 int x, y, z;
103 src -= SUBPEL_TAPS / 2 - 1;
104
105 // This function processes 8x8 areas. The intermediate height is not always
106 // a multiple of 8, so force it to be a multiple of 8 here.
107 y = (h + 7) & ~7;
108
109 do {
110 int x_q4 = x0_q4;
111 x = 0;
112 do {
113 uint8x8_t d[8];
114 // process 8 src_x steps
115 for (z = 0; z < 8; ++z) {
116 const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
117
118 if (x_q4 & SUBPEL_MASK) {
119 const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]);
120 uint8x8_t s[8];
121 load_u8_8x8(src_x, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4],
122 &s[5], &s[6], &s[7]);
123 transpose_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
124 &s[7]);
125 d[0] = scale_filter_8(s, filters);
126 vst1_u8(&temp[8 * z], d[0]);
127 } else {
128 int i;
129 for (i = 0; i < 8; ++i) {
130 temp[z * 8 + i] = src_x[i * src_stride + 3];
131 }
132 }
133 x_q4 += x_step_q4;
134 }
135
136 // transpose the 8x8 filters values back to dst
137 load_u8_8x8(temp, 8, &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6],
138 &d[7]);
139 transpose_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]);
140 vst1_u8(&dst[x + 0 * dst_stride], d[0]);
141 vst1_u8(&dst[x + 1 * dst_stride], d[1]);
142 vst1_u8(&dst[x + 2 * dst_stride], d[2]);
143 vst1_u8(&dst[x + 3 * dst_stride], d[3]);
144 vst1_u8(&dst[x + 4 * dst_stride], d[4]);
145 vst1_u8(&dst[x + 5 * dst_stride], d[5]);
146 vst1_u8(&dst[x + 6 * dst_stride], d[6]);
147 vst1_u8(&dst[x + 7 * dst_stride], d[7]);
148 x += 8;
149 } while (x < w);
150
151 src += src_stride * 8;
152 dst += dst_stride * 8;
153 } while (y -= 8);
154 }
155
scaledconvolve_vert_w4(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const y_filters,const int y0_q4,const int y_step_q4,const int w,const int h)156 static INLINE void scaledconvolve_vert_w4(
157 const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
158 const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
159 const int y0_q4, const int y_step_q4, const int w, const int h) {
160 int y;
161 int y_q4 = y0_q4;
162
163 src -= src_stride * (SUBPEL_TAPS / 2 - 1);
164 y = h;
165 do {
166 const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
167
168 if (y_q4 & SUBPEL_MASK) {
169 const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]);
170 const int16x4_t filter3 = vdup_lane_s16(vget_low_s16(filters), 3);
171 const int16x4_t filter4 = vdup_lane_s16(vget_high_s16(filters), 0);
172 uint8x8_t s[8], d;
173 int16x4_t t[8], tt;
174
175 load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
176 &s[6], &s[7]);
177 t[0] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[0])));
178 t[1] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[1])));
179 t[2] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[2])));
180 t[3] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[3])));
181 t[4] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[4])));
182 t[5] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[5])));
183 t[6] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[6])));
184 t[7] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[7])));
185
186 tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], filters,
187 filter3, filter4);
188 d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7);
189 vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(d), 0);
190 } else {
191 memcpy(dst, &src_y[3 * src_stride], w);
192 }
193
194 dst += dst_stride;
195 y_q4 += y_step_q4;
196 } while (--y);
197 }
198
scaledconvolve_vert_w8(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const y_filters,const int y0_q4,const int y_step_q4,const int w,const int h)199 static INLINE void scaledconvolve_vert_w8(
200 const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
201 const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
202 const int y0_q4, const int y_step_q4, const int w, const int h) {
203 int y;
204 int y_q4 = y0_q4;
205
206 src -= src_stride * (SUBPEL_TAPS / 2 - 1);
207 y = h;
208 do {
209 const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
210 if (y_q4 & SUBPEL_MASK) {
211 const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]);
212 uint8x8_t s[8], d;
213 load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
214 &s[6], &s[7]);
215 d = scale_filter_8(s, filters);
216 vst1_u8(dst, d);
217 } else {
218 memcpy(dst, &src_y[3 * src_stride], w);
219 }
220 dst += dst_stride;
221 y_q4 += y_step_q4;
222 } while (--y);
223 }
224
scaledconvolve_vert_w16(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const y_filters,const int y0_q4,const int y_step_q4,const int w,const int h)225 static INLINE void scaledconvolve_vert_w16(
226 const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
227 const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
228 const int y0_q4, const int y_step_q4, const int w, const int h) {
229 int x, y;
230 int y_q4 = y0_q4;
231
232 src -= src_stride * (SUBPEL_TAPS / 2 - 1);
233 y = h;
234 do {
235 const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
236 if (y_q4 & SUBPEL_MASK) {
237 x = 0;
238 do {
239 const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]);
240 uint8x16_t ss[8];
241 uint8x8_t s[8], d[2];
242 load_u8_16x8(src_y, src_stride, &ss[0], &ss[1], &ss[2], &ss[3], &ss[4],
243 &ss[5], &ss[6], &ss[7]);
244 s[0] = vget_low_u8(ss[0]);
245 s[1] = vget_low_u8(ss[1]);
246 s[2] = vget_low_u8(ss[2]);
247 s[3] = vget_low_u8(ss[3]);
248 s[4] = vget_low_u8(ss[4]);
249 s[5] = vget_low_u8(ss[5]);
250 s[6] = vget_low_u8(ss[6]);
251 s[7] = vget_low_u8(ss[7]);
252 d[0] = scale_filter_8(s, filters);
253
254 s[0] = vget_high_u8(ss[0]);
255 s[1] = vget_high_u8(ss[1]);
256 s[2] = vget_high_u8(ss[2]);
257 s[3] = vget_high_u8(ss[3]);
258 s[4] = vget_high_u8(ss[4]);
259 s[5] = vget_high_u8(ss[5]);
260 s[6] = vget_high_u8(ss[6]);
261 s[7] = vget_high_u8(ss[7]);
262 d[1] = scale_filter_8(s, filters);
263 vst1q_u8(&dst[x], vcombine_u8(d[0], d[1]));
264 src_y += 16;
265 x += 16;
266 } while (x < w);
267 } else {
268 memcpy(dst, &src_y[3 * src_stride], w);
269 }
270 dst += dst_stride;
271 y_q4 += y_step_q4;
272 } while (--y);
273 }
274
vpx_scaled_2d_neon(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,const InterpKernel * filter,int x0_q4,int x_step_q4,int y0_q4,int y_step_q4,int w,int h)275 void vpx_scaled_2d_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
276 ptrdiff_t dst_stride, const InterpKernel *filter,
277 int x0_q4, int x_step_q4, int y0_q4, int y_step_q4,
278 int w, int h) {
279 // Note: Fixed size intermediate buffer, temp, places limits on parameters.
280 // 2d filtering proceeds in 2 steps:
281 // (1) Interpolate horizontally into an intermediate buffer, temp.
282 // (2) Interpolate temp vertically to derive the sub-pixel result.
283 // Deriving the maximum number of rows in the temp buffer (135):
284 // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
285 // --Largest block size is 64x64 pixels.
286 // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
287 // original frame (in 1/16th pixel units).
288 // --Must round-up because block may be located at sub-pixel position.
289 // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
290 // --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
291 // --Require an additional 8 rows for the horiz_w8 transpose tail.
292 // When calling in frame scaling function, the smallest scaling factor is x1/4
293 // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still
294 // big enough.
295 DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]);
296 const int intermediate_height =
297 (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
298
299 assert(w <= 64);
300 assert(h <= 64);
301 assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32));
302 assert(x_step_q4 <= 64);
303
304 if (w >= 8) {
305 scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
306 src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
307 intermediate_height);
308 } else {
309 scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
310 src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
311 intermediate_height);
312 }
313
314 if (w >= 16) {
315 scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
316 dst_stride, filter, y0_q4, y_step_q4, w, h);
317 } else if (w == 8) {
318 scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
319 dst_stride, filter, y0_q4, y_step_q4, w, h);
320 } else {
321 scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
322 dst_stride, filter, y0_q4, y_step_q4, w, h);
323 }
324 }
325