• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_
18 #define ART_RUNTIME_MIRROR_ARRAY_INL_H_
19 
20 #include "array.h"
21 
22 #include <android-base/logging.h>
23 #include <android-base/stringprintf.h>
24 
25 #include "base/bit_utils.h"
26 #include "base/casts.h"
27 #include "class.h"
28 #include "gc/heap-inl.h"
29 #include "obj_ptr-inl.h"
30 #include "thread-current-inl.h"
31 
32 namespace art {
33 namespace mirror {
34 
ClassSize(PointerSize pointer_size)35 inline uint32_t Array::ClassSize(PointerSize pointer_size) {
36   uint32_t vtable_entries = Object::kVTableLength;
37   return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
38 }
39 
40 template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
SizeOf()41 inline size_t Array::SizeOf() {
42   // This is safe from overflow because the array was already allocated, so we know it's sane.
43   size_t component_size_shift = GetClass<kVerifyFlags, kReadBarrierOption>()->
44       template GetComponentSizeShift<kReadBarrierOption>();
45   // Don't need to check this since we already check this in GetClass.
46   int32_t component_count =
47       GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>();
48   size_t header_size = DataOffset(1U << component_size_shift).SizeValue();
49   size_t data_size = component_count << component_size_shift;
50   return header_size + data_size;
51 }
52 
DataOffset(size_t component_size)53 inline MemberOffset Array::DataOffset(size_t component_size) {
54   DCHECK(IsPowerOfTwo(component_size)) << component_size;
55   size_t data_offset = RoundUp(OFFSETOF_MEMBER(Array, first_element_), component_size);
56   DCHECK_EQ(RoundUp(data_offset, component_size), data_offset)
57       << "Array data offset isn't aligned with component size";
58   return MemberOffset(data_offset);
59 }
60 
61 template<VerifyObjectFlags kVerifyFlags>
CheckIsValidIndex(int32_t index)62 inline bool Array::CheckIsValidIndex(int32_t index) {
63   if (UNLIKELY(static_cast<uint32_t>(index) >=
64                static_cast<uint32_t>(GetLength<kVerifyFlags>()))) {
65     ThrowArrayIndexOutOfBoundsException(index);
66     return false;
67   }
68   return true;
69 }
70 
ComputeArraySize(int32_t component_count,size_t component_size_shift)71 static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) {
72   DCHECK_GE(component_count, 0);
73 
74   size_t component_size = 1U << component_size_shift;
75   size_t header_size = Array::DataOffset(component_size).SizeValue();
76   size_t data_size = static_cast<size_t>(component_count) << component_size_shift;
77   size_t size = header_size + data_size;
78 
79   // Check for size_t overflow if this was an unreasonable request
80   // but let the caller throw OutOfMemoryError.
81 #ifdef __LP64__
82   // 64-bit. No overflow as component_count is 32-bit and the maximum
83   // component size is 8.
84   DCHECK_LE((1U << component_size_shift), 8U);
85 #else
86   // 32-bit.
87   DCHECK_NE(header_size, 0U);
88   DCHECK_EQ(RoundUp(header_size, component_size), header_size);
89   // The array length limit (exclusive).
90   const size_t length_limit = (0U - header_size) >> component_size_shift;
91   if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) {
92     return 0;  // failure
93   }
94 #endif
95   return size;
96 }
97 
98 // Used for setting the array length in the allocation code path to ensure it is guarded by a
99 // StoreStore fence.
100 class SetLengthVisitor {
101  public:
SetLengthVisitor(int32_t length)102   explicit SetLengthVisitor(int32_t length) : length_(length) {
103   }
104 
operator()105   void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const
106       REQUIRES_SHARED(Locks::mutator_lock_) {
107     // Avoid AsArray as object is not yet in live bitmap or allocation stack.
108     ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
109     // DCHECK(array->IsArrayInstance());
110     array->SetLength(length_);
111   }
112 
113  private:
114   const int32_t length_;
115 
116   DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor);
117 };
118 
119 // Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an
120 // array.
121 class SetLengthToUsableSizeVisitor {
122  public:
SetLengthToUsableSizeVisitor(int32_t min_length,size_t header_size,size_t component_size_shift)123   SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size,
124                                size_t component_size_shift) :
125       minimum_length_(min_length), header_size_(header_size),
126       component_size_shift_(component_size_shift) {
127   }
128 
operator()129   void operator()(ObjPtr<Object> obj, size_t usable_size) const
130       REQUIRES_SHARED(Locks::mutator_lock_) {
131     // Avoid AsArray as object is not yet in live bitmap or allocation stack.
132     ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
133     // DCHECK(array->IsArrayInstance());
134     int32_t length = (usable_size - header_size_) >> component_size_shift_;
135     DCHECK_GE(length, minimum_length_);
136     uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
137                                                                     minimum_length_));
138     uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
139                                                                     length));
140     // Ensure space beyond original allocation is zeroed.
141     memset(old_end, 0, new_end - old_end);
142     array->SetLength(length);
143   }
144 
145  private:
146   const int32_t minimum_length_;
147   const size_t header_size_;
148   const size_t component_size_shift_;
149 
150   DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor);
151 };
152 
153 template <bool kIsInstrumented, bool kFillUsable>
Alloc(Thread * self,ObjPtr<Class> array_class,int32_t component_count,size_t component_size_shift,gc::AllocatorType allocator_type)154 inline Array* Array::Alloc(Thread* self,
155                            ObjPtr<Class> array_class,
156                            int32_t component_count,
157                            size_t component_size_shift,
158                            gc::AllocatorType allocator_type) {
159   DCHECK(allocator_type != gc::kAllocatorTypeLOS);
160   DCHECK(array_class != nullptr);
161   DCHECK(array_class->IsArrayClass());
162   DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift);
163   DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift));
164   size_t size = ComputeArraySize(component_count, component_size_shift);
165 #ifdef __LP64__
166   // 64-bit. No size_t overflow.
167   DCHECK_NE(size, 0U);
168 #else
169   // 32-bit.
170   if (UNLIKELY(size == 0)) {
171     self->ThrowOutOfMemoryError(android::base::StringPrintf("%s of length %d would overflow",
172                                                             array_class->PrettyDescriptor().c_str(),
173                                                             component_count).c_str());
174     return nullptr;
175   }
176 #endif
177   gc::Heap* heap = Runtime::Current()->GetHeap();
178   Array* result;
179   if (!kFillUsable) {
180     SetLengthVisitor visitor(component_count);
181     result = down_cast<Array*>(
182         heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
183                                                               allocator_type, visitor));
184   } else {
185     SetLengthToUsableSizeVisitor visitor(component_count,
186                                          DataOffset(1U << component_size_shift).SizeValue(),
187                                          component_size_shift);
188     result = down_cast<Array*>(
189         heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
190                                                               allocator_type, visitor));
191   }
192   if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) {
193     array_class = result->GetClass();  // In case the array class moved.
194     CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift);
195     if (!kFillUsable) {
196       CHECK_EQ(result->SizeOf(), size);
197     } else {
198       CHECK_GE(result->SizeOf(), size);
199     }
200   }
201   return result;
202 }
203 
204 template<class T>
VisitRoots(RootVisitor * visitor)205 inline void PrimitiveArray<T>::VisitRoots(RootVisitor* visitor) {
206   array_class_.VisitRootIfNonNull(visitor, RootInfo(kRootStickyClass));
207 }
208 
209 template<typename T>
AllocateAndFill(Thread * self,const T * data,size_t length)210 inline PrimitiveArray<T>* PrimitiveArray<T>::AllocateAndFill(Thread* self,
211                                                              const T* data,
212                                                              size_t length) {
213   StackHandleScope<1> hs(self);
214   Handle<PrimitiveArray<T>> arr(hs.NewHandle(PrimitiveArray<T>::Alloc(self, length)));
215   if (!arr.IsNull()) {
216     // Copy it in. Just skip if it's null
217     memcpy(arr->GetData(), data, sizeof(T) * length);
218   }
219   return arr.Get();
220 }
221 
222 template<typename T>
Alloc(Thread * self,size_t length)223 inline PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) {
224   Array* raw_array = Array::Alloc<true>(self,
225                                         GetArrayClass(),
226                                         length,
227                                         ComponentSizeShiftWidth(sizeof(T)),
228                                         Runtime::Current()->GetHeap()->GetCurrentAllocator());
229   return down_cast<PrimitiveArray<T>*>(raw_array);
230 }
231 
232 template<typename T>
Get(int32_t i)233 inline T PrimitiveArray<T>::Get(int32_t i) {
234   if (!CheckIsValidIndex(i)) {
235     DCHECK(Thread::Current()->IsExceptionPending());
236     return T(0);
237   }
238   return GetWithoutChecks(i);
239 }
240 
241 template<typename T>
Set(int32_t i,T value)242 inline void PrimitiveArray<T>::Set(int32_t i, T value) {
243   if (Runtime::Current()->IsActiveTransaction()) {
244     Set<true>(i, value);
245   } else {
246     Set<false>(i, value);
247   }
248 }
249 
250 template<typename T>
251 template<bool kTransactionActive, bool kCheckTransaction>
Set(int32_t i,T value)252 inline void PrimitiveArray<T>::Set(int32_t i, T value) {
253   if (CheckIsValidIndex(i)) {
254     SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value);
255   } else {
256     DCHECK(Thread::Current()->IsExceptionPending());
257   }
258 }
259 
260 template<typename T>
261 template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
SetWithoutChecks(int32_t i,T value)262 inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) {
263   if (kCheckTransaction) {
264     DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
265   }
266   if (kTransactionActive) {
267     Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i));
268   }
269   DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
270   GetData()[i] = value;
271 }
272 // Backward copy where elements are of aligned appropriately for T. Count is in T sized units.
273 // Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
274 template<typename T>
ArrayBackwardCopy(T * d,const T * s,int32_t count)275 static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) {
276   d += count;
277   s += count;
278   for (int32_t i = 0; i < count; ++i) {
279     d--;
280     s--;
281     *d = *s;
282   }
283 }
284 
285 // Forward copy where elements are of aligned appropriately for T. Count is in T sized units.
286 // Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
287 template<typename T>
ArrayForwardCopy(T * d,const T * s,int32_t count)288 static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) {
289   for (int32_t i = 0; i < count; ++i) {
290     *d = *s;
291     d++;
292     s++;
293   }
294 }
295 
296 template<class T>
Memmove(int32_t dst_pos,ObjPtr<PrimitiveArray<T>> src,int32_t src_pos,int32_t count)297 inline void PrimitiveArray<T>::Memmove(int32_t dst_pos,
298                                        ObjPtr<PrimitiveArray<T>> src,
299                                        int32_t src_pos,
300                                        int32_t count) {
301   if (UNLIKELY(count == 0)) {
302     return;
303   }
304   DCHECK_GE(dst_pos, 0);
305   DCHECK_GE(src_pos, 0);
306   DCHECK_GT(count, 0);
307   DCHECK(src != nullptr);
308   DCHECK_LT(dst_pos, GetLength());
309   DCHECK_LE(dst_pos, GetLength() - count);
310   DCHECK_LT(src_pos, src->GetLength());
311   DCHECK_LE(src_pos, src->GetLength() - count);
312 
313   // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
314   // in our implementation, because they may copy byte-by-byte.
315   if (LIKELY(src != this)) {
316     // Memcpy ok for guaranteed non-overlapping distinct arrays.
317     Memcpy(dst_pos, src, src_pos, count);
318   } else {
319     // Handle copies within the same array using the appropriate direction copy.
320     void* dst_raw = GetRawData(sizeof(T), dst_pos);
321     const void* src_raw = src->GetRawData(sizeof(T), src_pos);
322     if (sizeof(T) == sizeof(uint8_t)) {
323       uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw);
324       const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw);
325       memmove(d, s, count);
326     } else {
327       const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count);
328       if (sizeof(T) == sizeof(uint16_t)) {
329         uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
330         const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
331         if (copy_forward) {
332           ArrayForwardCopy<uint16_t>(d, s, count);
333         } else {
334           ArrayBackwardCopy<uint16_t>(d, s, count);
335         }
336       } else if (sizeof(T) == sizeof(uint32_t)) {
337         uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
338         const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
339         if (copy_forward) {
340           ArrayForwardCopy<uint32_t>(d, s, count);
341         } else {
342           ArrayBackwardCopy<uint32_t>(d, s, count);
343         }
344       } else {
345         DCHECK_EQ(sizeof(T), sizeof(uint64_t));
346         uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
347         const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
348         if (copy_forward) {
349           ArrayForwardCopy<uint64_t>(d, s, count);
350         } else {
351           ArrayBackwardCopy<uint64_t>(d, s, count);
352         }
353       }
354     }
355   }
356 }
357 
358 template<class T>
Memcpy(int32_t dst_pos,ObjPtr<PrimitiveArray<T>> src,int32_t src_pos,int32_t count)359 inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos,
360                                       ObjPtr<PrimitiveArray<T>> src,
361                                       int32_t src_pos,
362                                       int32_t count) {
363   if (UNLIKELY(count == 0)) {
364     return;
365   }
366   DCHECK_GE(dst_pos, 0);
367   DCHECK_GE(src_pos, 0);
368   DCHECK_GT(count, 0);
369   DCHECK(src != nullptr);
370   DCHECK_LT(dst_pos, GetLength());
371   DCHECK_LE(dst_pos, GetLength() - count);
372   DCHECK_LT(src_pos, src->GetLength());
373   DCHECK_LE(src_pos, src->GetLength() - count);
374 
375   // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
376   // in our implementation, because they may copy byte-by-byte.
377   void* dst_raw = GetRawData(sizeof(T), dst_pos);
378   const void* src_raw = src->GetRawData(sizeof(T), src_pos);
379   if (sizeof(T) == sizeof(uint8_t)) {
380     memcpy(dst_raw, src_raw, count);
381   } else if (sizeof(T) == sizeof(uint16_t)) {
382     uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
383     const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
384     ArrayForwardCopy<uint16_t>(d, s, count);
385   } else if (sizeof(T) == sizeof(uint32_t)) {
386     uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
387     const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
388     ArrayForwardCopy<uint32_t>(d, s, count);
389   } else {
390     DCHECK_EQ(sizeof(T), sizeof(uint64_t));
391     uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
392     const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
393     ArrayForwardCopy<uint64_t>(d, s, count);
394   }
395 }
396 
397 template<typename T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
GetElementPtrSize(uint32_t idx,PointerSize ptr_size)398 inline T PointerArray::GetElementPtrSize(uint32_t idx, PointerSize ptr_size) {
399   // C style casts here since we sometimes have T be a pointer, or sometimes an integer
400   // (for stack traces).
401   if (ptr_size == PointerSize::k64) {
402     return (T)static_cast<uintptr_t>(
403         AsLongArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx));
404   }
405   return (T)static_cast<uintptr_t>(static_cast<uint32_t>(
406       AsIntArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx)));
407 }
408 
409 template<bool kTransactionActive, bool kUnchecked>
SetElementPtrSize(uint32_t idx,uint64_t element,PointerSize ptr_size)410 inline void PointerArray::SetElementPtrSize(uint32_t idx, uint64_t element, PointerSize ptr_size) {
411   if (ptr_size == PointerSize::k64) {
412     (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this)) : AsLongArray())->
413         SetWithoutChecks<kTransactionActive>(idx, element);
414   } else {
415     DCHECK_LE(element, static_cast<uint64_t>(0xFFFFFFFFu));
416     (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this)) : AsIntArray())
417         ->SetWithoutChecks<kTransactionActive>(idx, static_cast<uint32_t>(element));
418   }
419 }
420 
421 template<bool kTransactionActive, bool kUnchecked, typename T>
SetElementPtrSize(uint32_t idx,T * element,PointerSize ptr_size)422 inline void PointerArray::SetElementPtrSize(uint32_t idx, T* element, PointerSize ptr_size) {
423   SetElementPtrSize<kTransactionActive, kUnchecked>(idx,
424                                                     reinterpret_cast<uintptr_t>(element),
425                                                     ptr_size);
426 }
427 
428 template <VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor>
Fixup(mirror::PointerArray * dest,PointerSize pointer_size,const Visitor & visitor)429 inline void PointerArray::Fixup(mirror::PointerArray* dest,
430                                 PointerSize pointer_size,
431                                 const Visitor& visitor) {
432   for (size_t i = 0, count = GetLength(); i < count; ++i) {
433     void* ptr = GetElementPtrSize<void*, kVerifyFlags, kReadBarrierOption>(i, pointer_size);
434     void* new_ptr = visitor(ptr);
435     if (ptr != new_ptr) {
436       dest->SetElementPtrSize<false, true>(i, new_ptr, pointer_size);
437     }
438   }
439 }
440 
441 template<bool kUnchecked>
Memcpy(int32_t dst_pos,ObjPtr<PointerArray> src,int32_t src_pos,int32_t count,PointerSize ptr_size)442 void PointerArray::Memcpy(int32_t dst_pos,
443                           ObjPtr<PointerArray> src,
444                           int32_t src_pos,
445                           int32_t count,
446                           PointerSize ptr_size) {
447   DCHECK(!Runtime::Current()->IsActiveTransaction());
448   DCHECK(!src.IsNull());
449   if (ptr_size == PointerSize::k64) {
450     LongArray* l_this = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this))
451                                     : AsLongArray());
452     LongArray* l_src = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(src.Ptr()))
453                                    : src->AsLongArray());
454     l_this->Memcpy(dst_pos, l_src, src_pos, count);
455   } else {
456     IntArray* i_this = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this))
457                                    : AsIntArray());
458     IntArray* i_src = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(src.Ptr()))
459                                   : src->AsIntArray());
460     i_this->Memcpy(dst_pos, i_src, src_pos, count);
461   }
462 }
463 
464 template<typename T>
SetArrayClass(ObjPtr<Class> array_class)465 inline void PrimitiveArray<T>::SetArrayClass(ObjPtr<Class> array_class) {
466   CHECK(array_class_.IsNull());
467   CHECK(array_class != nullptr);
468   array_class_ = GcRoot<Class>(array_class);
469 }
470 
471 }  // namespace mirror
472 }  // namespace art
473 
474 #endif  // ART_RUNTIME_MIRROR_ARRAY_INL_H_
475