1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_
18 #define ART_RUNTIME_MIRROR_ARRAY_INL_H_
19
20 #include "array.h"
21
22 #include <android-base/logging.h>
23 #include <android-base/stringprintf.h>
24
25 #include "base/bit_utils.h"
26 #include "base/casts.h"
27 #include "class.h"
28 #include "gc/heap-inl.h"
29 #include "obj_ptr-inl.h"
30 #include "thread-current-inl.h"
31
32 namespace art {
33 namespace mirror {
34
ClassSize(PointerSize pointer_size)35 inline uint32_t Array::ClassSize(PointerSize pointer_size) {
36 uint32_t vtable_entries = Object::kVTableLength;
37 return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
38 }
39
40 template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
SizeOf()41 inline size_t Array::SizeOf() {
42 // This is safe from overflow because the array was already allocated, so we know it's sane.
43 size_t component_size_shift = GetClass<kVerifyFlags, kReadBarrierOption>()->
44 template GetComponentSizeShift<kReadBarrierOption>();
45 // Don't need to check this since we already check this in GetClass.
46 int32_t component_count =
47 GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>();
48 size_t header_size = DataOffset(1U << component_size_shift).SizeValue();
49 size_t data_size = component_count << component_size_shift;
50 return header_size + data_size;
51 }
52
DataOffset(size_t component_size)53 inline MemberOffset Array::DataOffset(size_t component_size) {
54 DCHECK(IsPowerOfTwo(component_size)) << component_size;
55 size_t data_offset = RoundUp(OFFSETOF_MEMBER(Array, first_element_), component_size);
56 DCHECK_EQ(RoundUp(data_offset, component_size), data_offset)
57 << "Array data offset isn't aligned with component size";
58 return MemberOffset(data_offset);
59 }
60
61 template<VerifyObjectFlags kVerifyFlags>
CheckIsValidIndex(int32_t index)62 inline bool Array::CheckIsValidIndex(int32_t index) {
63 if (UNLIKELY(static_cast<uint32_t>(index) >=
64 static_cast<uint32_t>(GetLength<kVerifyFlags>()))) {
65 ThrowArrayIndexOutOfBoundsException(index);
66 return false;
67 }
68 return true;
69 }
70
ComputeArraySize(int32_t component_count,size_t component_size_shift)71 static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) {
72 DCHECK_GE(component_count, 0);
73
74 size_t component_size = 1U << component_size_shift;
75 size_t header_size = Array::DataOffset(component_size).SizeValue();
76 size_t data_size = static_cast<size_t>(component_count) << component_size_shift;
77 size_t size = header_size + data_size;
78
79 // Check for size_t overflow if this was an unreasonable request
80 // but let the caller throw OutOfMemoryError.
81 #ifdef __LP64__
82 // 64-bit. No overflow as component_count is 32-bit and the maximum
83 // component size is 8.
84 DCHECK_LE((1U << component_size_shift), 8U);
85 #else
86 // 32-bit.
87 DCHECK_NE(header_size, 0U);
88 DCHECK_EQ(RoundUp(header_size, component_size), header_size);
89 // The array length limit (exclusive).
90 const size_t length_limit = (0U - header_size) >> component_size_shift;
91 if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) {
92 return 0; // failure
93 }
94 #endif
95 return size;
96 }
97
98 // Used for setting the array length in the allocation code path to ensure it is guarded by a
99 // StoreStore fence.
100 class SetLengthVisitor {
101 public:
SetLengthVisitor(int32_t length)102 explicit SetLengthVisitor(int32_t length) : length_(length) {
103 }
104
operator()105 void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const
106 REQUIRES_SHARED(Locks::mutator_lock_) {
107 // Avoid AsArray as object is not yet in live bitmap or allocation stack.
108 ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
109 // DCHECK(array->IsArrayInstance());
110 array->SetLength(length_);
111 }
112
113 private:
114 const int32_t length_;
115
116 DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor);
117 };
118
119 // Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an
120 // array.
121 class SetLengthToUsableSizeVisitor {
122 public:
SetLengthToUsableSizeVisitor(int32_t min_length,size_t header_size,size_t component_size_shift)123 SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size,
124 size_t component_size_shift) :
125 minimum_length_(min_length), header_size_(header_size),
126 component_size_shift_(component_size_shift) {
127 }
128
operator()129 void operator()(ObjPtr<Object> obj, size_t usable_size) const
130 REQUIRES_SHARED(Locks::mutator_lock_) {
131 // Avoid AsArray as object is not yet in live bitmap or allocation stack.
132 ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
133 // DCHECK(array->IsArrayInstance());
134 int32_t length = (usable_size - header_size_) >> component_size_shift_;
135 DCHECK_GE(length, minimum_length_);
136 uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
137 minimum_length_));
138 uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
139 length));
140 // Ensure space beyond original allocation is zeroed.
141 memset(old_end, 0, new_end - old_end);
142 array->SetLength(length);
143 }
144
145 private:
146 const int32_t minimum_length_;
147 const size_t header_size_;
148 const size_t component_size_shift_;
149
150 DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor);
151 };
152
153 template <bool kIsInstrumented, bool kFillUsable>
Alloc(Thread * self,ObjPtr<Class> array_class,int32_t component_count,size_t component_size_shift,gc::AllocatorType allocator_type)154 inline Array* Array::Alloc(Thread* self,
155 ObjPtr<Class> array_class,
156 int32_t component_count,
157 size_t component_size_shift,
158 gc::AllocatorType allocator_type) {
159 DCHECK(allocator_type != gc::kAllocatorTypeLOS);
160 DCHECK(array_class != nullptr);
161 DCHECK(array_class->IsArrayClass());
162 DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift);
163 DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift));
164 size_t size = ComputeArraySize(component_count, component_size_shift);
165 #ifdef __LP64__
166 // 64-bit. No size_t overflow.
167 DCHECK_NE(size, 0U);
168 #else
169 // 32-bit.
170 if (UNLIKELY(size == 0)) {
171 self->ThrowOutOfMemoryError(android::base::StringPrintf("%s of length %d would overflow",
172 array_class->PrettyDescriptor().c_str(),
173 component_count).c_str());
174 return nullptr;
175 }
176 #endif
177 gc::Heap* heap = Runtime::Current()->GetHeap();
178 Array* result;
179 if (!kFillUsable) {
180 SetLengthVisitor visitor(component_count);
181 result = down_cast<Array*>(
182 heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
183 allocator_type, visitor));
184 } else {
185 SetLengthToUsableSizeVisitor visitor(component_count,
186 DataOffset(1U << component_size_shift).SizeValue(),
187 component_size_shift);
188 result = down_cast<Array*>(
189 heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
190 allocator_type, visitor));
191 }
192 if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) {
193 array_class = result->GetClass(); // In case the array class moved.
194 CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift);
195 if (!kFillUsable) {
196 CHECK_EQ(result->SizeOf(), size);
197 } else {
198 CHECK_GE(result->SizeOf(), size);
199 }
200 }
201 return result;
202 }
203
204 template<class T>
VisitRoots(RootVisitor * visitor)205 inline void PrimitiveArray<T>::VisitRoots(RootVisitor* visitor) {
206 array_class_.VisitRootIfNonNull(visitor, RootInfo(kRootStickyClass));
207 }
208
209 template<typename T>
AllocateAndFill(Thread * self,const T * data,size_t length)210 inline PrimitiveArray<T>* PrimitiveArray<T>::AllocateAndFill(Thread* self,
211 const T* data,
212 size_t length) {
213 StackHandleScope<1> hs(self);
214 Handle<PrimitiveArray<T>> arr(hs.NewHandle(PrimitiveArray<T>::Alloc(self, length)));
215 if (!arr.IsNull()) {
216 // Copy it in. Just skip if it's null
217 memcpy(arr->GetData(), data, sizeof(T) * length);
218 }
219 return arr.Get();
220 }
221
222 template<typename T>
Alloc(Thread * self,size_t length)223 inline PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) {
224 Array* raw_array = Array::Alloc<true>(self,
225 GetArrayClass(),
226 length,
227 ComponentSizeShiftWidth(sizeof(T)),
228 Runtime::Current()->GetHeap()->GetCurrentAllocator());
229 return down_cast<PrimitiveArray<T>*>(raw_array);
230 }
231
232 template<typename T>
Get(int32_t i)233 inline T PrimitiveArray<T>::Get(int32_t i) {
234 if (!CheckIsValidIndex(i)) {
235 DCHECK(Thread::Current()->IsExceptionPending());
236 return T(0);
237 }
238 return GetWithoutChecks(i);
239 }
240
241 template<typename T>
Set(int32_t i,T value)242 inline void PrimitiveArray<T>::Set(int32_t i, T value) {
243 if (Runtime::Current()->IsActiveTransaction()) {
244 Set<true>(i, value);
245 } else {
246 Set<false>(i, value);
247 }
248 }
249
250 template<typename T>
251 template<bool kTransactionActive, bool kCheckTransaction>
Set(int32_t i,T value)252 inline void PrimitiveArray<T>::Set(int32_t i, T value) {
253 if (CheckIsValidIndex(i)) {
254 SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value);
255 } else {
256 DCHECK(Thread::Current()->IsExceptionPending());
257 }
258 }
259
260 template<typename T>
261 template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
SetWithoutChecks(int32_t i,T value)262 inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) {
263 if (kCheckTransaction) {
264 DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
265 }
266 if (kTransactionActive) {
267 Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i));
268 }
269 DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
270 GetData()[i] = value;
271 }
272 // Backward copy where elements are of aligned appropriately for T. Count is in T sized units.
273 // Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
274 template<typename T>
ArrayBackwardCopy(T * d,const T * s,int32_t count)275 static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) {
276 d += count;
277 s += count;
278 for (int32_t i = 0; i < count; ++i) {
279 d--;
280 s--;
281 *d = *s;
282 }
283 }
284
285 // Forward copy where elements are of aligned appropriately for T. Count is in T sized units.
286 // Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
287 template<typename T>
ArrayForwardCopy(T * d,const T * s,int32_t count)288 static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) {
289 for (int32_t i = 0; i < count; ++i) {
290 *d = *s;
291 d++;
292 s++;
293 }
294 }
295
296 template<class T>
Memmove(int32_t dst_pos,ObjPtr<PrimitiveArray<T>> src,int32_t src_pos,int32_t count)297 inline void PrimitiveArray<T>::Memmove(int32_t dst_pos,
298 ObjPtr<PrimitiveArray<T>> src,
299 int32_t src_pos,
300 int32_t count) {
301 if (UNLIKELY(count == 0)) {
302 return;
303 }
304 DCHECK_GE(dst_pos, 0);
305 DCHECK_GE(src_pos, 0);
306 DCHECK_GT(count, 0);
307 DCHECK(src != nullptr);
308 DCHECK_LT(dst_pos, GetLength());
309 DCHECK_LE(dst_pos, GetLength() - count);
310 DCHECK_LT(src_pos, src->GetLength());
311 DCHECK_LE(src_pos, src->GetLength() - count);
312
313 // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
314 // in our implementation, because they may copy byte-by-byte.
315 if (LIKELY(src != this)) {
316 // Memcpy ok for guaranteed non-overlapping distinct arrays.
317 Memcpy(dst_pos, src, src_pos, count);
318 } else {
319 // Handle copies within the same array using the appropriate direction copy.
320 void* dst_raw = GetRawData(sizeof(T), dst_pos);
321 const void* src_raw = src->GetRawData(sizeof(T), src_pos);
322 if (sizeof(T) == sizeof(uint8_t)) {
323 uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw);
324 const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw);
325 memmove(d, s, count);
326 } else {
327 const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count);
328 if (sizeof(T) == sizeof(uint16_t)) {
329 uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
330 const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
331 if (copy_forward) {
332 ArrayForwardCopy<uint16_t>(d, s, count);
333 } else {
334 ArrayBackwardCopy<uint16_t>(d, s, count);
335 }
336 } else if (sizeof(T) == sizeof(uint32_t)) {
337 uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
338 const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
339 if (copy_forward) {
340 ArrayForwardCopy<uint32_t>(d, s, count);
341 } else {
342 ArrayBackwardCopy<uint32_t>(d, s, count);
343 }
344 } else {
345 DCHECK_EQ(sizeof(T), sizeof(uint64_t));
346 uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
347 const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
348 if (copy_forward) {
349 ArrayForwardCopy<uint64_t>(d, s, count);
350 } else {
351 ArrayBackwardCopy<uint64_t>(d, s, count);
352 }
353 }
354 }
355 }
356 }
357
358 template<class T>
Memcpy(int32_t dst_pos,ObjPtr<PrimitiveArray<T>> src,int32_t src_pos,int32_t count)359 inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos,
360 ObjPtr<PrimitiveArray<T>> src,
361 int32_t src_pos,
362 int32_t count) {
363 if (UNLIKELY(count == 0)) {
364 return;
365 }
366 DCHECK_GE(dst_pos, 0);
367 DCHECK_GE(src_pos, 0);
368 DCHECK_GT(count, 0);
369 DCHECK(src != nullptr);
370 DCHECK_LT(dst_pos, GetLength());
371 DCHECK_LE(dst_pos, GetLength() - count);
372 DCHECK_LT(src_pos, src->GetLength());
373 DCHECK_LE(src_pos, src->GetLength() - count);
374
375 // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
376 // in our implementation, because they may copy byte-by-byte.
377 void* dst_raw = GetRawData(sizeof(T), dst_pos);
378 const void* src_raw = src->GetRawData(sizeof(T), src_pos);
379 if (sizeof(T) == sizeof(uint8_t)) {
380 memcpy(dst_raw, src_raw, count);
381 } else if (sizeof(T) == sizeof(uint16_t)) {
382 uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
383 const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
384 ArrayForwardCopy<uint16_t>(d, s, count);
385 } else if (sizeof(T) == sizeof(uint32_t)) {
386 uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
387 const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
388 ArrayForwardCopy<uint32_t>(d, s, count);
389 } else {
390 DCHECK_EQ(sizeof(T), sizeof(uint64_t));
391 uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
392 const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
393 ArrayForwardCopy<uint64_t>(d, s, count);
394 }
395 }
396
397 template<typename T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
GetElementPtrSize(uint32_t idx,PointerSize ptr_size)398 inline T PointerArray::GetElementPtrSize(uint32_t idx, PointerSize ptr_size) {
399 // C style casts here since we sometimes have T be a pointer, or sometimes an integer
400 // (for stack traces).
401 if (ptr_size == PointerSize::k64) {
402 return (T)static_cast<uintptr_t>(
403 AsLongArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx));
404 }
405 return (T)static_cast<uintptr_t>(static_cast<uint32_t>(
406 AsIntArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx)));
407 }
408
409 template<bool kTransactionActive, bool kUnchecked>
SetElementPtrSize(uint32_t idx,uint64_t element,PointerSize ptr_size)410 inline void PointerArray::SetElementPtrSize(uint32_t idx, uint64_t element, PointerSize ptr_size) {
411 if (ptr_size == PointerSize::k64) {
412 (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this)) : AsLongArray())->
413 SetWithoutChecks<kTransactionActive>(idx, element);
414 } else {
415 DCHECK_LE(element, static_cast<uint64_t>(0xFFFFFFFFu));
416 (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this)) : AsIntArray())
417 ->SetWithoutChecks<kTransactionActive>(idx, static_cast<uint32_t>(element));
418 }
419 }
420
421 template<bool kTransactionActive, bool kUnchecked, typename T>
SetElementPtrSize(uint32_t idx,T * element,PointerSize ptr_size)422 inline void PointerArray::SetElementPtrSize(uint32_t idx, T* element, PointerSize ptr_size) {
423 SetElementPtrSize<kTransactionActive, kUnchecked>(idx,
424 reinterpret_cast<uintptr_t>(element),
425 ptr_size);
426 }
427
428 template <VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor>
Fixup(mirror::PointerArray * dest,PointerSize pointer_size,const Visitor & visitor)429 inline void PointerArray::Fixup(mirror::PointerArray* dest,
430 PointerSize pointer_size,
431 const Visitor& visitor) {
432 for (size_t i = 0, count = GetLength(); i < count; ++i) {
433 void* ptr = GetElementPtrSize<void*, kVerifyFlags, kReadBarrierOption>(i, pointer_size);
434 void* new_ptr = visitor(ptr);
435 if (ptr != new_ptr) {
436 dest->SetElementPtrSize<false, true>(i, new_ptr, pointer_size);
437 }
438 }
439 }
440
441 template<bool kUnchecked>
Memcpy(int32_t dst_pos,ObjPtr<PointerArray> src,int32_t src_pos,int32_t count,PointerSize ptr_size)442 void PointerArray::Memcpy(int32_t dst_pos,
443 ObjPtr<PointerArray> src,
444 int32_t src_pos,
445 int32_t count,
446 PointerSize ptr_size) {
447 DCHECK(!Runtime::Current()->IsActiveTransaction());
448 DCHECK(!src.IsNull());
449 if (ptr_size == PointerSize::k64) {
450 LongArray* l_this = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this))
451 : AsLongArray());
452 LongArray* l_src = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(src.Ptr()))
453 : src->AsLongArray());
454 l_this->Memcpy(dst_pos, l_src, src_pos, count);
455 } else {
456 IntArray* i_this = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this))
457 : AsIntArray());
458 IntArray* i_src = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(src.Ptr()))
459 : src->AsIntArray());
460 i_this->Memcpy(dst_pos, i_src, src_pos, count);
461 }
462 }
463
464 template<typename T>
SetArrayClass(ObjPtr<Class> array_class)465 inline void PrimitiveArray<T>::SetArrayClass(ObjPtr<Class> array_class) {
466 CHECK(array_class_.IsNull());
467 CHECK(array_class != nullptr);
468 array_class_ = GcRoot<Class>(array_class);
469 }
470
471 } // namespace mirror
472 } // namespace art
473
474 #endif // ART_RUNTIME_MIRROR_ARRAY_INL_H_
475