• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
18 #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
19 
20 #include "arch/instruction_set.h"
21 #include "arch/instruction_set_features.h"
22 #include "base/arena_containers.h"
23 #include "base/arena_object.h"
24 #include "base/bit_field.h"
25 #include "base/bit_utils.h"
26 #include "base/enums.h"
27 #include "dex/string_reference.h"
28 #include "dex/type_reference.h"
29 #include "globals.h"
30 #include "graph_visualizer.h"
31 #include "locations.h"
32 #include "memory_region.h"
33 #include "nodes.h"
34 #include "optimizing_compiler_stats.h"
35 #include "read_barrier_option.h"
36 #include "stack.h"
37 #include "stack_map.h"
38 #include "utils/label.h"
39 
40 namespace art {
41 
42 // Binary encoding of 2^32 for type double.
43 static int64_t constexpr k2Pow32EncodingForDouble = INT64_C(0x41F0000000000000);
44 // Binary encoding of 2^31 for type double.
45 static int64_t constexpr k2Pow31EncodingForDouble = INT64_C(0x41E0000000000000);
46 
47 // Minimum value for a primitive integer.
48 static int32_t constexpr kPrimIntMin = 0x80000000;
49 // Minimum value for a primitive long.
50 static int64_t constexpr kPrimLongMin = INT64_C(0x8000000000000000);
51 
52 // Maximum value for a primitive integer.
53 static int32_t constexpr kPrimIntMax = 0x7fffffff;
54 // Maximum value for a primitive long.
55 static int64_t constexpr kPrimLongMax = INT64_C(0x7fffffffffffffff);
56 
57 static constexpr ReadBarrierOption kCompilerReadBarrierOption =
58     kEmitCompilerReadBarrier ? kWithReadBarrier : kWithoutReadBarrier;
59 
60 class Assembler;
61 class CodeGenerator;
62 class CompilerDriver;
63 class CompilerOptions;
64 class StackMapStream;
65 class ParallelMoveResolver;
66 
67 namespace linker {
68 class LinkerPatch;
69 }  // namespace linker
70 
71 class CodeAllocator {
72  public:
CodeAllocator()73   CodeAllocator() {}
~CodeAllocator()74   virtual ~CodeAllocator() {}
75 
76   virtual uint8_t* Allocate(size_t size) = 0;
77 
78  private:
79   DISALLOW_COPY_AND_ASSIGN(CodeAllocator);
80 };
81 
82 class SlowPathCode : public DeletableArenaObject<kArenaAllocSlowPaths> {
83  public:
SlowPathCode(HInstruction * instruction)84   explicit SlowPathCode(HInstruction* instruction) : instruction_(instruction) {
85     for (size_t i = 0; i < kMaximumNumberOfExpectedRegisters; ++i) {
86       saved_core_stack_offsets_[i] = kRegisterNotSaved;
87       saved_fpu_stack_offsets_[i] = kRegisterNotSaved;
88     }
89   }
90 
~SlowPathCode()91   virtual ~SlowPathCode() {}
92 
93   virtual void EmitNativeCode(CodeGenerator* codegen) = 0;
94 
95   // Save live core and floating-point caller-save registers and
96   // update the stack mask in `locations` for registers holding object
97   // references.
98   virtual void SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations);
99   // Restore live core and floating-point caller-save registers.
100   virtual void RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations);
101 
IsCoreRegisterSaved(int reg)102   bool IsCoreRegisterSaved(int reg) const {
103     return saved_core_stack_offsets_[reg] != kRegisterNotSaved;
104   }
105 
IsFpuRegisterSaved(int reg)106   bool IsFpuRegisterSaved(int reg) const {
107     return saved_fpu_stack_offsets_[reg] != kRegisterNotSaved;
108   }
109 
GetStackOffsetOfCoreRegister(int reg)110   uint32_t GetStackOffsetOfCoreRegister(int reg) const {
111     return saved_core_stack_offsets_[reg];
112   }
113 
GetStackOffsetOfFpuRegister(int reg)114   uint32_t GetStackOffsetOfFpuRegister(int reg) const {
115     return saved_fpu_stack_offsets_[reg];
116   }
117 
IsFatal()118   virtual bool IsFatal() const { return false; }
119 
120   virtual const char* GetDescription() const = 0;
121 
GetEntryLabel()122   Label* GetEntryLabel() { return &entry_label_; }
GetExitLabel()123   Label* GetExitLabel() { return &exit_label_; }
124 
GetInstruction()125   HInstruction* GetInstruction() const {
126     return instruction_;
127   }
128 
GetDexPc()129   uint32_t GetDexPc() const {
130     return instruction_ != nullptr ? instruction_->GetDexPc() : kNoDexPc;
131   }
132 
133  protected:
134   static constexpr size_t kMaximumNumberOfExpectedRegisters = 32;
135   static constexpr uint32_t kRegisterNotSaved = -1;
136   // The instruction where this slow path is happening.
137   HInstruction* instruction_;
138   uint32_t saved_core_stack_offsets_[kMaximumNumberOfExpectedRegisters];
139   uint32_t saved_fpu_stack_offsets_[kMaximumNumberOfExpectedRegisters];
140 
141  private:
142   Label entry_label_;
143   Label exit_label_;
144 
145   DISALLOW_COPY_AND_ASSIGN(SlowPathCode);
146 };
147 
148 class InvokeDexCallingConventionVisitor {
149  public:
150   virtual Location GetNextLocation(DataType::Type type) = 0;
151   virtual Location GetReturnLocation(DataType::Type type) const = 0;
152   virtual Location GetMethodLocation() const = 0;
153 
154  protected:
InvokeDexCallingConventionVisitor()155   InvokeDexCallingConventionVisitor() {}
~InvokeDexCallingConventionVisitor()156   virtual ~InvokeDexCallingConventionVisitor() {}
157 
158   // The current index for core registers.
159   uint32_t gp_index_ = 0u;
160   // The current index for floating-point registers.
161   uint32_t float_index_ = 0u;
162   // The current stack index.
163   uint32_t stack_index_ = 0u;
164 
165  private:
166   DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitor);
167 };
168 
169 class FieldAccessCallingConvention {
170  public:
171   virtual Location GetObjectLocation() const = 0;
172   virtual Location GetFieldIndexLocation() const = 0;
173   virtual Location GetReturnLocation(DataType::Type type) const = 0;
174   virtual Location GetSetValueLocation(DataType::Type type, bool is_instance) const = 0;
175   virtual Location GetFpuLocation(DataType::Type type) const = 0;
~FieldAccessCallingConvention()176   virtual ~FieldAccessCallingConvention() {}
177 
178  protected:
FieldAccessCallingConvention()179   FieldAccessCallingConvention() {}
180 
181  private:
182   DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConvention);
183 };
184 
185 class CodeGenerator : public DeletableArenaObject<kArenaAllocCodeGenerator> {
186  public:
187   // Compiles the graph to executable instructions.
188   void Compile(CodeAllocator* allocator);
189   static std::unique_ptr<CodeGenerator> Create(HGraph* graph,
190                                                InstructionSet instruction_set,
191                                                const InstructionSetFeatures& isa_features,
192                                                const CompilerOptions& compiler_options,
193                                                OptimizingCompilerStats* stats = nullptr);
194   virtual ~CodeGenerator();
195 
196   // Get the graph. This is the outermost graph, never the graph of a method being inlined.
GetGraph()197   HGraph* GetGraph() const { return graph_; }
198 
199   HBasicBlock* GetNextBlockToEmit() const;
200   HBasicBlock* FirstNonEmptyBlock(HBasicBlock* block) const;
201   bool GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const;
202 
GetStackSlotOfParameter(HParameterValue * parameter)203   size_t GetStackSlotOfParameter(HParameterValue* parameter) const {
204     // Note that this follows the current calling convention.
205     return GetFrameSize()
206         + static_cast<size_t>(InstructionSetPointerSize(GetInstructionSet()))  // Art method
207         + parameter->GetIndex() * kVRegSize;
208   }
209 
210   virtual void Initialize() = 0;
211   virtual void Finalize(CodeAllocator* allocator);
212   virtual void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches);
213   virtual void GenerateFrameEntry() = 0;
214   virtual void GenerateFrameExit() = 0;
215   virtual void Bind(HBasicBlock* block) = 0;
216   virtual void MoveConstant(Location destination, int32_t value) = 0;
217   virtual void MoveLocation(Location dst, Location src, DataType::Type dst_type) = 0;
218   virtual void AddLocationAsTemp(Location location, LocationSummary* locations) = 0;
219 
220   virtual Assembler* GetAssembler() = 0;
221   virtual const Assembler& GetAssembler() const = 0;
222   virtual size_t GetWordSize() const = 0;
223   virtual size_t GetFloatingPointSpillSlotSize() const = 0;
224   virtual uintptr_t GetAddressOf(HBasicBlock* block) = 0;
225   void InitializeCodeGeneration(size_t number_of_spill_slots,
226                                 size_t maximum_safepoint_spill_size,
227                                 size_t number_of_out_slots,
228                                 const ArenaVector<HBasicBlock*>& block_order);
229   // Backends can override this as necessary. For most, no special alignment is required.
GetPreferredSlotsAlignment()230   virtual uint32_t GetPreferredSlotsAlignment() const { return 1; }
231 
GetFrameSize()232   uint32_t GetFrameSize() const { return frame_size_; }
SetFrameSize(uint32_t size)233   void SetFrameSize(uint32_t size) { frame_size_ = size; }
GetCoreSpillMask()234   uint32_t GetCoreSpillMask() const { return core_spill_mask_; }
GetFpuSpillMask()235   uint32_t GetFpuSpillMask() const { return fpu_spill_mask_; }
236 
GetNumberOfCoreRegisters()237   size_t GetNumberOfCoreRegisters() const { return number_of_core_registers_; }
GetNumberOfFloatingPointRegisters()238   size_t GetNumberOfFloatingPointRegisters() const { return number_of_fpu_registers_; }
239   virtual void SetupBlockedRegisters() const = 0;
240 
ComputeSpillMask()241   virtual void ComputeSpillMask() {
242     core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
243     DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
244     fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
245   }
246 
ComputeRegisterMask(const int * registers,size_t length)247   static uint32_t ComputeRegisterMask(const int* registers, size_t length) {
248     uint32_t mask = 0;
249     for (size_t i = 0, e = length; i < e; ++i) {
250       mask |= (1 << registers[i]);
251     }
252     return mask;
253   }
254 
255   virtual void DumpCoreRegister(std::ostream& stream, int reg) const = 0;
256   virtual void DumpFloatingPointRegister(std::ostream& stream, int reg) const = 0;
257   virtual InstructionSet GetInstructionSet() const = 0;
258 
GetCompilerOptions()259   const CompilerOptions& GetCompilerOptions() const { return compiler_options_; }
260 
261   // Saves the register in the stack. Returns the size taken on stack.
262   virtual size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) = 0;
263   // Restores the register from the stack. Returns the size taken on stack.
264   virtual size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) = 0;
265 
266   virtual size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0;
267   virtual size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0;
268 
269   virtual bool NeedsTwoRegisters(DataType::Type type) const = 0;
270   // Returns whether we should split long moves in parallel moves.
ShouldSplitLongMoves()271   virtual bool ShouldSplitLongMoves() const { return false; }
272 
GetNumberOfCoreCalleeSaveRegisters()273   size_t GetNumberOfCoreCalleeSaveRegisters() const {
274     return POPCOUNT(core_callee_save_mask_);
275   }
276 
GetNumberOfCoreCallerSaveRegisters()277   size_t GetNumberOfCoreCallerSaveRegisters() const {
278     DCHECK_GE(GetNumberOfCoreRegisters(), GetNumberOfCoreCalleeSaveRegisters());
279     return GetNumberOfCoreRegisters() - GetNumberOfCoreCalleeSaveRegisters();
280   }
281 
IsCoreCalleeSaveRegister(int reg)282   bool IsCoreCalleeSaveRegister(int reg) const {
283     return (core_callee_save_mask_ & (1 << reg)) != 0;
284   }
285 
IsFloatingPointCalleeSaveRegister(int reg)286   bool IsFloatingPointCalleeSaveRegister(int reg) const {
287     return (fpu_callee_save_mask_ & (1 << reg)) != 0;
288   }
289 
GetSlowPathSpills(LocationSummary * locations,bool core_registers)290   uint32_t GetSlowPathSpills(LocationSummary* locations, bool core_registers) const {
291     DCHECK(locations->OnlyCallsOnSlowPath() ||
292            (locations->Intrinsified() && locations->CallsOnMainAndSlowPath() &&
293                !locations->HasCustomSlowPathCallingConvention()));
294     uint32_t live_registers = core_registers
295         ? locations->GetLiveRegisters()->GetCoreRegisters()
296         : locations->GetLiveRegisters()->GetFloatingPointRegisters();
297     if (locations->HasCustomSlowPathCallingConvention()) {
298       // Save only the live registers that the custom calling convention wants us to save.
299       uint32_t caller_saves = core_registers
300           ? locations->GetCustomSlowPathCallerSaves().GetCoreRegisters()
301           : locations->GetCustomSlowPathCallerSaves().GetFloatingPointRegisters();
302       return live_registers & caller_saves;
303     } else {
304       // Default ABI, we need to spill non-callee-save live registers.
305       uint32_t callee_saves = core_registers ? core_callee_save_mask_ : fpu_callee_save_mask_;
306       return live_registers & ~callee_saves;
307     }
308   }
309 
GetNumberOfSlowPathSpills(LocationSummary * locations,bool core_registers)310   size_t GetNumberOfSlowPathSpills(LocationSummary* locations, bool core_registers) const {
311     return POPCOUNT(GetSlowPathSpills(locations, core_registers));
312   }
313 
GetStackOffsetOfShouldDeoptimizeFlag()314   size_t GetStackOffsetOfShouldDeoptimizeFlag() const {
315     DCHECK(GetGraph()->HasShouldDeoptimizeFlag());
316     DCHECK_GE(GetFrameSize(), FrameEntrySpillSize() + kShouldDeoptimizeFlagSize);
317     return GetFrameSize() - FrameEntrySpillSize() - kShouldDeoptimizeFlagSize;
318   }
319 
320   // Record native to dex mapping for a suspend point.  Required by runtime.
321   void RecordPcInfo(HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path = nullptr);
322   // Check whether we have already recorded mapping at this PC.
323   bool HasStackMapAtCurrentPc();
324   // Record extra stack maps if we support native debugging.
325   void MaybeRecordNativeDebugInfo(HInstruction* instruction,
326                                   uint32_t dex_pc,
327                                   SlowPathCode* slow_path = nullptr);
328 
329   bool CanMoveNullCheckToUser(HNullCheck* null_check);
330   void MaybeRecordImplicitNullCheck(HInstruction* instruction);
331   LocationSummary* CreateThrowingSlowPathLocations(
332       HInstruction* instruction, RegisterSet caller_saves = RegisterSet::Empty());
333   void GenerateNullCheck(HNullCheck* null_check);
334   virtual void GenerateImplicitNullCheck(HNullCheck* null_check) = 0;
335   virtual void GenerateExplicitNullCheck(HNullCheck* null_check) = 0;
336 
337   // Records a stack map which the runtime might use to set catch phi values
338   // during exception delivery.
339   // TODO: Replace with a catch-entering instruction that records the environment.
340   void RecordCatchBlockInfo();
341 
342   // Get the ScopedArenaAllocator used for codegen memory allocation.
343   ScopedArenaAllocator* GetScopedAllocator();
344 
345   void AddSlowPath(SlowPathCode* slow_path);
346 
347   void BuildStackMaps(MemoryRegion stack_map_region,
348                       MemoryRegion method_info_region,
349                       const DexFile::CodeItem* code_item_for_osr_check);
350   void ComputeStackMapAndMethodInfoSize(size_t* stack_map_size, size_t* method_info_size);
351   size_t GetNumberOfJitRoots() const;
352 
353   // Fills the `literals` array with literals collected during code generation.
354   // Also emits literal patches.
355   void EmitJitRoots(uint8_t* code,
356                     Handle<mirror::ObjectArray<mirror::Object>> roots,
357                     const uint8_t* roots_data)
358       REQUIRES_SHARED(Locks::mutator_lock_);
359 
IsLeafMethod()360   bool IsLeafMethod() const {
361     return is_leaf_;
362   }
363 
MarkNotLeaf()364   void MarkNotLeaf() {
365     is_leaf_ = false;
366     requires_current_method_ = true;
367   }
368 
SetRequiresCurrentMethod()369   void SetRequiresCurrentMethod() {
370     requires_current_method_ = true;
371   }
372 
RequiresCurrentMethod()373   bool RequiresCurrentMethod() const {
374     return requires_current_method_;
375   }
376 
377   // Clears the spill slots taken by loop phis in the `LocationSummary` of the
378   // suspend check. This is called when the code generator generates code
379   // for the suspend check at the back edge (instead of where the suspend check
380   // is, which is the loop entry). At this point, the spill slots for the phis
381   // have not been written to.
382   void ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
383                                              HParallelMove* spills) const;
384 
GetBlockedCoreRegisters()385   bool* GetBlockedCoreRegisters() const { return blocked_core_registers_; }
GetBlockedFloatingPointRegisters()386   bool* GetBlockedFloatingPointRegisters() const { return blocked_fpu_registers_; }
387 
IsBlockedCoreRegister(size_t i)388   bool IsBlockedCoreRegister(size_t i) { return blocked_core_registers_[i]; }
IsBlockedFloatingPointRegister(size_t i)389   bool IsBlockedFloatingPointRegister(size_t i) { return blocked_fpu_registers_[i]; }
390 
391   // Helper that returns the offset of the array's length field.
392   // Note: Besides the normal arrays, we also use the HArrayLength for
393   // accessing the String's `count` field in String intrinsics.
394   static uint32_t GetArrayLengthOffset(HArrayLength* array_length);
395 
396   // Helper that returns the offset of the array's data.
397   // Note: Besides the normal arrays, we also use the HArrayGet for
398   // accessing the String's `value` field in String intrinsics.
399   static uint32_t GetArrayDataOffset(HArrayGet* array_get);
400 
401   void EmitParallelMoves(Location from1,
402                          Location to1,
403                          DataType::Type type1,
404                          Location from2,
405                          Location to2,
406                          DataType::Type type2);
407 
InstanceOfNeedsReadBarrier(HInstanceOf * instance_of)408   static bool InstanceOfNeedsReadBarrier(HInstanceOf* instance_of) {
409     // Used only for kExactCheck, kAbstractClassCheck, kClassHierarchyCheck and kArrayObjectCheck.
410     DCHECK(instance_of->GetTypeCheckKind() == TypeCheckKind::kExactCheck ||
411            instance_of->GetTypeCheckKind() == TypeCheckKind::kAbstractClassCheck ||
412            instance_of->GetTypeCheckKind() == TypeCheckKind::kClassHierarchyCheck ||
413            instance_of->GetTypeCheckKind() == TypeCheckKind::kArrayObjectCheck)
414         << instance_of->GetTypeCheckKind();
415     // If the target class is in the boot image, it's non-moveable and it doesn't matter
416     // if we compare it with a from-space or to-space reference, the result is the same.
417     // It's OK to traverse a class hierarchy jumping between from-space and to-space.
418     return kEmitCompilerReadBarrier && !instance_of->GetTargetClass()->IsInBootImage();
419   }
420 
ReadBarrierOptionForInstanceOf(HInstanceOf * instance_of)421   static ReadBarrierOption ReadBarrierOptionForInstanceOf(HInstanceOf* instance_of) {
422     return InstanceOfNeedsReadBarrier(instance_of) ? kWithReadBarrier : kWithoutReadBarrier;
423   }
424 
IsTypeCheckSlowPathFatal(HCheckCast * check_cast)425   static bool IsTypeCheckSlowPathFatal(HCheckCast* check_cast) {
426     switch (check_cast->GetTypeCheckKind()) {
427       case TypeCheckKind::kExactCheck:
428       case TypeCheckKind::kAbstractClassCheck:
429       case TypeCheckKind::kClassHierarchyCheck:
430       case TypeCheckKind::kArrayObjectCheck:
431       case TypeCheckKind::kInterfaceCheck: {
432         bool needs_read_barrier =
433             kEmitCompilerReadBarrier && !check_cast->GetTargetClass()->IsInBootImage();
434         // We do not emit read barriers for HCheckCast, so we can get false negatives
435         // and the slow path shall re-check and simply return if the cast is actually OK.
436         return !needs_read_barrier;
437       }
438       case TypeCheckKind::kArrayCheck:
439       case TypeCheckKind::kUnresolvedCheck:
440         return false;
441     }
442     LOG(FATAL) << "Unreachable";
443     UNREACHABLE();
444   }
445 
GetCheckCastCallKind(HCheckCast * check_cast)446   static LocationSummary::CallKind GetCheckCastCallKind(HCheckCast* check_cast) {
447     return (IsTypeCheckSlowPathFatal(check_cast) && !check_cast->CanThrowIntoCatchBlock())
448         ? LocationSummary::kNoCall  // In fact, call on a fatal (non-returning) slow path.
449         : LocationSummary::kCallOnSlowPath;
450   }
451 
StoreNeedsWriteBarrier(DataType::Type type,HInstruction * value)452   static bool StoreNeedsWriteBarrier(DataType::Type type, HInstruction* value) {
453     // Check that null value is not represented as an integer constant.
454     DCHECK(type != DataType::Type::kReference || !value->IsIntConstant());
455     return type == DataType::Type::kReference && !value->IsNullConstant();
456   }
457 
458 
459   // Performs checks pertaining to an InvokeRuntime call.
460   void ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
461                              HInstruction* instruction,
462                              SlowPathCode* slow_path);
463 
464   // Performs checks pertaining to an InvokeRuntimeWithoutRecordingPcInfo call.
465   static void ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
466                                                           SlowPathCode* slow_path);
467 
AddAllocatedRegister(Location location)468   void AddAllocatedRegister(Location location) {
469     allocated_registers_.Add(location);
470   }
471 
HasAllocatedRegister(bool is_core,int reg)472   bool HasAllocatedRegister(bool is_core, int reg) const {
473     return is_core
474         ? allocated_registers_.ContainsCoreRegister(reg)
475         : allocated_registers_.ContainsFloatingPointRegister(reg);
476   }
477 
478   void AllocateLocations(HInstruction* instruction);
479 
480   // Tells whether the stack frame of the compiled method is
481   // considered "empty", that is either actually having a size of zero,
482   // or just containing the saved return address register.
HasEmptyFrame()483   bool HasEmptyFrame() const {
484     return GetFrameSize() == (CallPushesPC() ? GetWordSize() : 0);
485   }
486 
GetInt8ValueOf(HConstant * constant)487   static int8_t GetInt8ValueOf(HConstant* constant) {
488     DCHECK(constant->IsIntConstant());
489     return constant->AsIntConstant()->GetValue();
490   }
491 
GetInt16ValueOf(HConstant * constant)492   static int16_t GetInt16ValueOf(HConstant* constant) {
493     DCHECK(constant->IsIntConstant());
494     return constant->AsIntConstant()->GetValue();
495   }
496 
GetInt32ValueOf(HConstant * constant)497   static int32_t GetInt32ValueOf(HConstant* constant) {
498     if (constant->IsIntConstant()) {
499       return constant->AsIntConstant()->GetValue();
500     } else if (constant->IsNullConstant()) {
501       return 0;
502     } else {
503       DCHECK(constant->IsFloatConstant());
504       return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue());
505     }
506   }
507 
GetInt64ValueOf(HConstant * constant)508   static int64_t GetInt64ValueOf(HConstant* constant) {
509     if (constant->IsIntConstant()) {
510       return constant->AsIntConstant()->GetValue();
511     } else if (constant->IsNullConstant()) {
512       return 0;
513     } else if (constant->IsFloatConstant()) {
514       return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue());
515     } else if (constant->IsLongConstant()) {
516       return constant->AsLongConstant()->GetValue();
517     } else {
518       DCHECK(constant->IsDoubleConstant());
519       return bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue());
520     }
521   }
522 
GetFirstRegisterSlotInSlowPath()523   size_t GetFirstRegisterSlotInSlowPath() const {
524     return first_register_slot_in_slow_path_;
525   }
526 
FrameEntrySpillSize()527   uint32_t FrameEntrySpillSize() const {
528     return GetFpuSpillSize() + GetCoreSpillSize();
529   }
530 
531   virtual ParallelMoveResolver* GetMoveResolver() = 0;
532 
533   static void CreateCommonInvokeLocationSummary(
534       HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor);
535 
536   void GenerateInvokeStaticOrDirectRuntimeCall(
537       HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path);
538   void GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke);
539 
540   void GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke);
541 
542   void CreateUnresolvedFieldLocationSummary(
543       HInstruction* field_access,
544       DataType::Type field_type,
545       const FieldAccessCallingConvention& calling_convention);
546 
547   void GenerateUnresolvedFieldAccess(
548       HInstruction* field_access,
549       DataType::Type field_type,
550       uint32_t field_index,
551       uint32_t dex_pc,
552       const FieldAccessCallingConvention& calling_convention);
553 
554   static void CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
555                                                         Location runtime_type_index_location,
556                                                         Location runtime_return_location);
557   void GenerateLoadClassRuntimeCall(HLoadClass* cls);
558 
559   static void CreateSystemArrayCopyLocationSummary(HInvoke* invoke);
560 
SetDisassemblyInformation(DisassemblyInformation * info)561   void SetDisassemblyInformation(DisassemblyInformation* info) { disasm_info_ = info; }
GetDisassemblyInformation()562   DisassemblyInformation* GetDisassemblyInformation() const { return disasm_info_; }
563 
564   virtual void InvokeRuntime(QuickEntrypointEnum entrypoint,
565                              HInstruction* instruction,
566                              uint32_t dex_pc,
567                              SlowPathCode* slow_path = nullptr) = 0;
568 
569   // Check if the desired_string_load_kind is supported. If it is, return it,
570   // otherwise return a fall-back kind that should be used instead.
571   virtual HLoadString::LoadKind GetSupportedLoadStringKind(
572       HLoadString::LoadKind desired_string_load_kind) = 0;
573 
574   // Check if the desired_class_load_kind is supported. If it is, return it,
575   // otherwise return a fall-back kind that should be used instead.
576   virtual HLoadClass::LoadKind GetSupportedLoadClassKind(
577       HLoadClass::LoadKind desired_class_load_kind) = 0;
578 
GetLoadStringCallKind(HLoadString * load)579   static LocationSummary::CallKind GetLoadStringCallKind(HLoadString* load) {
580     switch (load->GetLoadKind()) {
581       case HLoadString::LoadKind::kBssEntry:
582         DCHECK(load->NeedsEnvironment());
583         return LocationSummary::kCallOnSlowPath;
584       case HLoadString::LoadKind::kRuntimeCall:
585         DCHECK(load->NeedsEnvironment());
586         return LocationSummary::kCallOnMainOnly;
587       case HLoadString::LoadKind::kJitTableAddress:
588         DCHECK(!load->NeedsEnvironment());
589         return kEmitCompilerReadBarrier
590             ? LocationSummary::kCallOnSlowPath
591             : LocationSummary::kNoCall;
592         break;
593       default:
594         DCHECK(!load->NeedsEnvironment());
595         return LocationSummary::kNoCall;
596     }
597   }
598 
599   // Check if the desired_dispatch_info is supported. If it is, return it,
600   // otherwise return a fall-back info that should be used instead.
601   virtual HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch(
602       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
603       HInvokeStaticOrDirect* invoke) = 0;
604 
605   // Generate a call to a static or direct method.
606   virtual void GenerateStaticOrDirectCall(
607       HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0;
608   // Generate a call to a virtual method.
609   virtual void GenerateVirtualCall(
610       HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0;
611 
612   // Copy the result of a call into the given target.
613   virtual void MoveFromReturnRegister(Location trg, DataType::Type type) = 0;
614 
615   virtual void GenerateNop() = 0;
616 
617   static QuickEntrypointEnum GetArrayAllocationEntrypoint(Handle<mirror::Class> array_klass);
618 
619  protected:
620   // Patch info used for recording locations of required linker patches and their targets,
621   // i.e. target method, string, type or code identified by their dex file and index,
622   // or .data.bimg.rel.ro entries identified by the boot image offset.
623   template <typename LabelType>
624   struct PatchInfo {
PatchInfoPatchInfo625     PatchInfo(const DexFile* dex_file, uint32_t off_or_idx)
626         : target_dex_file(dex_file), offset_or_index(off_or_idx), label() { }
627 
628     // Target dex file or null for .data.bmig.rel.ro patches.
629     const DexFile* target_dex_file;
630     // Either the boot image offset (to write to .data.bmig.rel.ro) or string/type/method index.
631     uint32_t offset_or_index;
632     // Label for the instruction to patch.
633     LabelType label;
634   };
635 
636   CodeGenerator(HGraph* graph,
637                 size_t number_of_core_registers,
638                 size_t number_of_fpu_registers,
639                 size_t number_of_register_pairs,
640                 uint32_t core_callee_save_mask,
641                 uint32_t fpu_callee_save_mask,
642                 const CompilerOptions& compiler_options,
643                 OptimizingCompilerStats* stats);
644 
645   virtual HGraphVisitor* GetLocationBuilder() = 0;
646   virtual HGraphVisitor* GetInstructionVisitor() = 0;
647 
648   // Returns the location of the first spilled entry for floating point registers,
649   // relative to the stack pointer.
GetFpuSpillStart()650   uint32_t GetFpuSpillStart() const {
651     return GetFrameSize() - FrameEntrySpillSize();
652   }
653 
GetFpuSpillSize()654   uint32_t GetFpuSpillSize() const {
655     return POPCOUNT(fpu_spill_mask_) * GetFloatingPointSpillSlotSize();
656   }
657 
GetCoreSpillSize()658   uint32_t GetCoreSpillSize() const {
659     return POPCOUNT(core_spill_mask_) * GetWordSize();
660   }
661 
HasAllocatedCalleeSaveRegisters()662   virtual bool HasAllocatedCalleeSaveRegisters() const {
663     // We check the core registers against 1 because it always comprises the return PC.
664     return (POPCOUNT(allocated_registers_.GetCoreRegisters() & core_callee_save_mask_) != 1)
665       || (POPCOUNT(allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_) != 0);
666   }
667 
CallPushesPC()668   bool CallPushesPC() const {
669     InstructionSet instruction_set = GetInstructionSet();
670     return instruction_set == InstructionSet::kX86 || instruction_set == InstructionSet::kX86_64;
671   }
672 
673   // Arm64 has its own type for a label, so we need to templatize these methods
674   // to share the logic.
675 
676   template <typename LabelType>
CommonInitializeLabels()677   LabelType* CommonInitializeLabels() {
678     // We use raw array allocations instead of ArenaVector<> because Labels are
679     // non-constructible and non-movable and as such cannot be held in a vector.
680     size_t size = GetGraph()->GetBlocks().size();
681     LabelType* labels =
682         GetGraph()->GetAllocator()->AllocArray<LabelType>(size, kArenaAllocCodeGenerator);
683     for (size_t i = 0; i != size; ++i) {
684       new(labels + i) LabelType();
685     }
686     return labels;
687   }
688 
689   template <typename LabelType>
CommonGetLabelOf(LabelType * raw_pointer_to_labels_array,HBasicBlock * block)690   LabelType* CommonGetLabelOf(LabelType* raw_pointer_to_labels_array, HBasicBlock* block) const {
691     block = FirstNonEmptyBlock(block);
692     return raw_pointer_to_labels_array + block->GetBlockId();
693   }
694 
GetCurrentSlowPath()695   SlowPathCode* GetCurrentSlowPath() {
696     return current_slow_path_;
697   }
698 
699   StackMapStream* GetStackMapStream();
700 
701   void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string);
702   uint64_t GetJitStringRootIndex(StringReference string_reference);
703   void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass);
704   uint64_t GetJitClassRootIndex(TypeReference type_reference);
705 
706   // Emit the patches assocatied with JIT roots. Only applies to JIT compiled code.
707   virtual void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data);
708 
709   // Frame size required for this method.
710   uint32_t frame_size_;
711   uint32_t core_spill_mask_;
712   uint32_t fpu_spill_mask_;
713   uint32_t first_register_slot_in_slow_path_;
714 
715   // Registers that were allocated during linear scan.
716   RegisterSet allocated_registers_;
717 
718   // Arrays used when doing register allocation to know which
719   // registers we can allocate. `SetupBlockedRegisters` updates the
720   // arrays.
721   bool* const blocked_core_registers_;
722   bool* const blocked_fpu_registers_;
723   size_t number_of_core_registers_;
724   size_t number_of_fpu_registers_;
725   size_t number_of_register_pairs_;
726   const uint32_t core_callee_save_mask_;
727   const uint32_t fpu_callee_save_mask_;
728 
729   // The order to use for code generation.
730   const ArenaVector<HBasicBlock*>* block_order_;
731 
732   DisassemblyInformation* disasm_info_;
733 
734  private:
735   class CodeGenerationData;
736 
737   void InitializeCodeGenerationData();
738   size_t GetStackOffsetOfSavedRegister(size_t index);
739   void GenerateSlowPaths();
740   void BlockIfInRegister(Location location, bool is_out = false) const;
741   void EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path);
742 
743   OptimizingCompilerStats* stats_;
744 
745   HGraph* const graph_;
746   const CompilerOptions& compiler_options_;
747 
748   // The current slow-path that we're generating code for.
749   SlowPathCode* current_slow_path_;
750 
751   // The current block index in `block_order_` of the block
752   // we are generating code for.
753   size_t current_block_index_;
754 
755   // Whether the method is a leaf method.
756   bool is_leaf_;
757 
758   // Whether an instruction in the graph accesses the current method.
759   // TODO: Rename: this actually indicates that some instruction in the method
760   // needs the environment including a valid stack frame.
761   bool requires_current_method_;
762 
763   // The CodeGenerationData contains a ScopedArenaAllocator intended for reusing the
764   // ArenaStack memory allocated in previous passes instead of adding to the memory
765   // held by the ArenaAllocator. This ScopedArenaAllocator is created in
766   // CodeGenerator::Compile() and remains alive until the CodeGenerator is destroyed.
767   std::unique_ptr<CodeGenerationData> code_generation_data_;
768 
769   friend class OptimizingCFITest;
770 
771   DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
772 };
773 
774 template <typename C, typename F>
775 class CallingConvention {
776  public:
CallingConvention(const C * registers,size_t number_of_registers,const F * fpu_registers,size_t number_of_fpu_registers,PointerSize pointer_size)777   CallingConvention(const C* registers,
778                     size_t number_of_registers,
779                     const F* fpu_registers,
780                     size_t number_of_fpu_registers,
781                     PointerSize pointer_size)
782       : registers_(registers),
783         number_of_registers_(number_of_registers),
784         fpu_registers_(fpu_registers),
785         number_of_fpu_registers_(number_of_fpu_registers),
786         pointer_size_(pointer_size) {}
787 
GetNumberOfRegisters()788   size_t GetNumberOfRegisters() const { return number_of_registers_; }
GetNumberOfFpuRegisters()789   size_t GetNumberOfFpuRegisters() const { return number_of_fpu_registers_; }
790 
GetRegisterAt(size_t index)791   C GetRegisterAt(size_t index) const {
792     DCHECK_LT(index, number_of_registers_);
793     return registers_[index];
794   }
795 
GetFpuRegisterAt(size_t index)796   F GetFpuRegisterAt(size_t index) const {
797     DCHECK_LT(index, number_of_fpu_registers_);
798     return fpu_registers_[index];
799   }
800 
GetStackOffsetOf(size_t index)801   size_t GetStackOffsetOf(size_t index) const {
802     // We still reserve the space for parameters passed by registers.
803     // Add space for the method pointer.
804     return static_cast<size_t>(pointer_size_) + index * kVRegSize;
805   }
806 
807  private:
808   const C* registers_;
809   const size_t number_of_registers_;
810   const F* fpu_registers_;
811   const size_t number_of_fpu_registers_;
812   const PointerSize pointer_size_;
813 
814   DISALLOW_COPY_AND_ASSIGN(CallingConvention);
815 };
816 
817 /**
818  * A templated class SlowPathGenerator with a templated method NewSlowPath()
819  * that can be used by any code generator to share equivalent slow-paths with
820  * the objective of reducing generated code size.
821  *
822  * InstructionType:  instruction that requires SlowPathCodeType
823  * SlowPathCodeType: subclass of SlowPathCode, with constructor SlowPathCodeType(InstructionType *)
824  */
825 template <typename InstructionType>
826 class SlowPathGenerator {
827   static_assert(std::is_base_of<HInstruction, InstructionType>::value,
828                 "InstructionType is not a subclass of art::HInstruction");
829 
830  public:
SlowPathGenerator(HGraph * graph,CodeGenerator * codegen)831   SlowPathGenerator(HGraph* graph, CodeGenerator* codegen)
832       : graph_(graph),
833         codegen_(codegen),
834         slow_path_map_(std::less<uint32_t>(),
835                        graph->GetAllocator()->Adapter(kArenaAllocSlowPaths)) {}
836 
837   // Creates and adds a new slow-path, if needed, or returns existing one otherwise.
838   // Templating the method (rather than the whole class) on the slow-path type enables
839   // keeping this code at a generic, non architecture-specific place.
840   //
841   // NOTE: This approach assumes each InstructionType only generates one SlowPathCodeType.
842   //       To relax this requirement, we would need some RTTI on the stored slow-paths,
843   //       or template the class as a whole on SlowPathType.
844   template <typename SlowPathCodeType>
NewSlowPath(InstructionType * instruction)845   SlowPathCodeType* NewSlowPath(InstructionType* instruction) {
846     static_assert(std::is_base_of<SlowPathCode, SlowPathCodeType>::value,
847                   "SlowPathCodeType is not a subclass of art::SlowPathCode");
848     static_assert(std::is_constructible<SlowPathCodeType, InstructionType*>::value,
849                   "SlowPathCodeType is not constructible from InstructionType*");
850     // Iterate over potential candidates for sharing. Currently, only same-typed
851     // slow-paths with exactly the same dex-pc are viable candidates.
852     // TODO: pass dex-pc/slow-path-type to run-time to allow even more sharing?
853     const uint32_t dex_pc = instruction->GetDexPc();
854     auto iter = slow_path_map_.find(dex_pc);
855     if (iter != slow_path_map_.end()) {
856       const ArenaVector<std::pair<InstructionType*, SlowPathCode*>>& candidates = iter->second;
857       for (const auto& it : candidates) {
858         InstructionType* other_instruction = it.first;
859         SlowPathCodeType* other_slow_path = down_cast<SlowPathCodeType*>(it.second);
860         // Determine if the instructions allow for slow-path sharing.
861         if (HaveSameLiveRegisters(instruction, other_instruction) &&
862             HaveSameStackMap(instruction, other_instruction)) {
863           // Can share: reuse existing one.
864           return other_slow_path;
865         }
866       }
867     } else {
868       // First time this dex-pc is seen.
869       iter = slow_path_map_.Put(dex_pc,
870                                 {{}, {graph_->GetAllocator()->Adapter(kArenaAllocSlowPaths)}});
871     }
872     // Cannot share: create and add new slow-path for this particular dex-pc.
873     SlowPathCodeType* slow_path =
874         new (codegen_->GetScopedAllocator()) SlowPathCodeType(instruction);
875     iter->second.emplace_back(std::make_pair(instruction, slow_path));
876     codegen_->AddSlowPath(slow_path);
877     return slow_path;
878   }
879 
880  private:
881   // Tests if both instructions have same set of live physical registers. This ensures
882   // the slow-path has exactly the same preamble on saving these registers to stack.
HaveSameLiveRegisters(const InstructionType * i1,const InstructionType * i2)883   bool HaveSameLiveRegisters(const InstructionType* i1, const InstructionType* i2) const {
884     const uint32_t core_spill = ~codegen_->GetCoreSpillMask();
885     const uint32_t fpu_spill = ~codegen_->GetFpuSpillMask();
886     RegisterSet* live1 = i1->GetLocations()->GetLiveRegisters();
887     RegisterSet* live2 = i2->GetLocations()->GetLiveRegisters();
888     return (((live1->GetCoreRegisters() & core_spill) ==
889              (live2->GetCoreRegisters() & core_spill)) &&
890             ((live1->GetFloatingPointRegisters() & fpu_spill) ==
891              (live2->GetFloatingPointRegisters() & fpu_spill)));
892   }
893 
894   // Tests if both instructions have the same stack map. This ensures the interpreter
895   // will find exactly the same dex-registers at the same entries.
HaveSameStackMap(const InstructionType * i1,const InstructionType * i2)896   bool HaveSameStackMap(const InstructionType* i1, const InstructionType* i2) const {
897     DCHECK(i1->HasEnvironment());
898     DCHECK(i2->HasEnvironment());
899     // We conservatively test if the two instructions find exactly the same instructions
900     // and location in each dex-register. This guarantees they will have the same stack map.
901     HEnvironment* e1 = i1->GetEnvironment();
902     HEnvironment* e2 = i2->GetEnvironment();
903     if (e1->GetParent() != e2->GetParent() || e1->Size() != e2->Size()) {
904       return false;
905     }
906     for (size_t i = 0, sz = e1->Size(); i < sz; ++i) {
907       if (e1->GetInstructionAt(i) != e2->GetInstructionAt(i) ||
908           !e1->GetLocationAt(i).Equals(e2->GetLocationAt(i))) {
909         return false;
910       }
911     }
912     return true;
913   }
914 
915   HGraph* const graph_;
916   CodeGenerator* const codegen_;
917 
918   // Map from dex-pc to vector of already existing instruction/slow-path pairs.
919   ArenaSafeMap<uint32_t, ArenaVector<std::pair<InstructionType*, SlowPathCode*>>> slow_path_map_;
920 
921   DISALLOW_COPY_AND_ASSIGN(SlowPathGenerator);
922 };
923 
924 class InstructionCodeGenerator : public HGraphVisitor {
925  public:
InstructionCodeGenerator(HGraph * graph,CodeGenerator * codegen)926   InstructionCodeGenerator(HGraph* graph, CodeGenerator* codegen)
927       : HGraphVisitor(graph),
928         deopt_slow_paths_(graph, codegen) {}
929 
930  protected:
931   // Add slow-path generator for each instruction/slow-path combination that desires sharing.
932   // TODO: under current regime, only deopt sharing make sense; extend later.
933   SlowPathGenerator<HDeoptimize> deopt_slow_paths_;
934 };
935 
936 }  // namespace art
937 
938 #endif  // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
939