• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Generated file (from: depthwise_conv2d_float_large_2.mod.py). Do not edit
CreateModel(Model * model)2 void CreateModel(Model *model) {
3   OperandType type2(Type::INT32, {});
4   OperandType type3(Type::TENSOR_FLOAT32, {1, 1, 1, 4});
5   OperandType type0(Type::TENSOR_FLOAT32, {1, 2, 2, 4});
6   OperandType type1(Type::TENSOR_FLOAT32, {4});
7   // Phase 1, operands
8   auto op1 = model->addOperand(&type0);
9   auto op2 = model->addOperand(&type0);
10   auto op3 = model->addOperand(&type1);
11   auto pad0 = model->addOperand(&type2);
12   auto act = model->addOperand(&type2);
13   auto stride = model->addOperand(&type2);
14   auto channelMultiplier = model->addOperand(&type2);
15   auto op4 = model->addOperand(&type3);
16   // Phase 2, operations
17   static float op2_init[] = {0.25f, 0.0f, 10.0f, 100.0f, 0.25f, 1.0f, 20.0f, 100.0f, 0.25f, 0.0f, 30.0f, 100.0f, 0.25f, 1.0f, 40.0f, 100.0f};
18   model->setOperandValue(op2, op2_init, sizeof(float) * 16);
19   static float op3_init[] = {600000.0f, 700000.0f, 800000.0f, 900000.0f};
20   model->setOperandValue(op3, op3_init, sizeof(float) * 4);
21   static int32_t pad0_init[] = {0};
22   model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1);
23   static int32_t act_init[] = {0};
24   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
25   static int32_t stride_init[] = {1};
26   model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1);
27   static int32_t channelMultiplier_init[] = {1};
28   model->setOperandValue(channelMultiplier, channelMultiplier_init, sizeof(int32_t) * 1);
29   model->addOperation(ANEURALNETWORKS_DEPTHWISE_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, channelMultiplier, act}, {op4});
30   // Phase 3, inputs and outputs
31   model->identifyInputsAndOutputs(
32     {op1},
33     {op4});
34   assert(model->isValid());
35 }
36 
is_ignored(int i)37 bool is_ignored(int i) {
38   static std::set<int> ignore = {};
39   return ignore.find(i) != ignore.end();
40 }
41