• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jdphuff.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1995-1997, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2015-2016, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README.ijg
9  * file.
10  *
11  * This file contains Huffman entropy decoding routines for progressive JPEG.
12  *
13  * Much of the complexity here has to do with supporting input suspension.
14  * If the data source module demands suspension, we want to be able to back
15  * up to the start of the current MCU.  To do this, we copy state variables
16  * into local working storage, and update them back to the permanent
17  * storage only upon successful completion of an MCU.
18  */
19 
20 #define JPEG_INTERNALS
21 #include "jinclude.h"
22 #include "jpeglib.h"
23 #include "jdhuff.h"             /* Declarations shared with jdhuff.c */
24 
25 
26 #ifdef D_PROGRESSIVE_SUPPORTED
27 
28 /*
29  * Expanded entropy decoder object for progressive Huffman decoding.
30  *
31  * The savable_state subrecord contains fields that change within an MCU,
32  * but must not be updated permanently until we complete the MCU.
33  */
34 
35 typedef struct {
36   unsigned int EOBRUN;                  /* remaining EOBs in EOBRUN */
37   int last_dc_val[MAX_COMPS_IN_SCAN];   /* last DC coef for each component */
38 } savable_state;
39 
40 /* This macro is to work around compilers with missing or broken
41  * structure assignment.  You'll need to fix this code if you have
42  * such a compiler and you change MAX_COMPS_IN_SCAN.
43  */
44 
45 #ifndef NO_STRUCT_ASSIGN
46 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
47 #else
48 #if MAX_COMPS_IN_SCAN == 4
49 #define ASSIGN_STATE(dest,src)  \
50         ((dest).EOBRUN = (src).EOBRUN, \
51          (dest).last_dc_val[0] = (src).last_dc_val[0], \
52          (dest).last_dc_val[1] = (src).last_dc_val[1], \
53          (dest).last_dc_val[2] = (src).last_dc_val[2], \
54          (dest).last_dc_val[3] = (src).last_dc_val[3])
55 #endif
56 #endif
57 
58 
59 typedef struct {
60   struct jpeg_entropy_decoder pub; /* public fields */
61 
62   /* These fields are loaded into local variables at start of each MCU.
63    * In case of suspension, we exit WITHOUT updating them.
64    */
65   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
66   savable_state saved;          /* Other state at start of MCU */
67 
68   /* These fields are NOT loaded into local working state. */
69   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
70 
71   /* Pointers to derived tables (these workspaces have image lifespan) */
72   d_derived_tbl *derived_tbls[NUM_HUFF_TBLS];
73 
74   d_derived_tbl *ac_derived_tbl; /* active table during an AC scan */
75 } phuff_entropy_decoder;
76 
77 typedef phuff_entropy_decoder *phuff_entropy_ptr;
78 
79 /* Forward declarations */
80 METHODDEF(boolean) decode_mcu_DC_first (j_decompress_ptr cinfo,
81                                         JBLOCKROW *MCU_data);
82 METHODDEF(boolean) decode_mcu_AC_first (j_decompress_ptr cinfo,
83                                         JBLOCKROW *MCU_data);
84 METHODDEF(boolean) decode_mcu_DC_refine (j_decompress_ptr cinfo,
85                                          JBLOCKROW *MCU_data);
86 METHODDEF(boolean) decode_mcu_AC_refine (j_decompress_ptr cinfo,
87                                          JBLOCKROW *MCU_data);
88 
89 
90 /*
91  * Initialize for a Huffman-compressed scan.
92  */
93 
94 METHODDEF(void)
start_pass_phuff_decoder(j_decompress_ptr cinfo)95 start_pass_phuff_decoder (j_decompress_ptr cinfo)
96 {
97   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
98   boolean is_DC_band, bad;
99   int ci, coefi, tbl;
100   d_derived_tbl **pdtbl;
101   int *coef_bit_ptr;
102   jpeg_component_info *compptr;
103 
104   is_DC_band = (cinfo->Ss == 0);
105 
106   /* Validate scan parameters */
107   bad = FALSE;
108   if (is_DC_band) {
109     if (cinfo->Se != 0)
110       bad = TRUE;
111   } else {
112     /* need not check Ss/Se < 0 since they came from unsigned bytes */
113     if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
114       bad = TRUE;
115     /* AC scans may have only one component */
116     if (cinfo->comps_in_scan != 1)
117       bad = TRUE;
118   }
119   if (cinfo->Ah != 0) {
120     /* Successive approximation refinement scan: must have Al = Ah-1. */
121     if (cinfo->Al != cinfo->Ah-1)
122       bad = TRUE;
123   }
124   if (cinfo->Al > 13)           /* need not check for < 0 */
125     bad = TRUE;
126   /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
127    * but the spec doesn't say so, and we try to be liberal about what we
128    * accept.  Note: large Al values could result in out-of-range DC
129    * coefficients during early scans, leading to bizarre displays due to
130    * overflows in the IDCT math.  But we won't crash.
131    */
132   if (bad)
133     ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
134              cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
135   /* Update progression status, and verify that scan order is legal.
136    * Note that inter-scan inconsistencies are treated as warnings
137    * not fatal errors ... not clear if this is right way to behave.
138    */
139   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
140     int cindex = cinfo->cur_comp_info[ci]->component_index;
141     coef_bit_ptr = & cinfo->coef_bits[cindex][0];
142     if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
143       WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
144     for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
145       int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
146       if (cinfo->Ah != expected)
147         WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
148       coef_bit_ptr[coefi] = cinfo->Al;
149     }
150   }
151 
152   /* Select MCU decoding routine */
153   if (cinfo->Ah == 0) {
154     if (is_DC_band)
155       entropy->pub.decode_mcu = decode_mcu_DC_first;
156     else
157       entropy->pub.decode_mcu = decode_mcu_AC_first;
158   } else {
159     if (is_DC_band)
160       entropy->pub.decode_mcu = decode_mcu_DC_refine;
161     else
162       entropy->pub.decode_mcu = decode_mcu_AC_refine;
163   }
164 
165   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
166     compptr = cinfo->cur_comp_info[ci];
167     /* Make sure requested tables are present, and compute derived tables.
168      * We may build same derived table more than once, but it's not expensive.
169      */
170     if (is_DC_band) {
171       if (cinfo->Ah == 0) {     /* DC refinement needs no table */
172         tbl = compptr->dc_tbl_no;
173         pdtbl = (d_derived_tbl **)(entropy->derived_tbls) + tbl;
174         jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, pdtbl);
175       }
176     } else {
177       tbl = compptr->ac_tbl_no;
178       pdtbl = (d_derived_tbl **)(entropy->derived_tbls) + tbl;
179       jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, pdtbl);
180       /* remember the single active table */
181       entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
182     }
183     /* Initialize DC predictions to 0 */
184     entropy->saved.last_dc_val[ci] = 0;
185   }
186 
187   /* Initialize bitread state variables */
188   entropy->bitstate.bits_left = 0;
189   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
190   entropy->pub.insufficient_data = FALSE;
191 
192   /* Initialize private state variables */
193   entropy->saved.EOBRUN = 0;
194 
195   /* Initialize restart counter */
196   entropy->restarts_to_go = cinfo->restart_interval;
197 }
198 
199 
200 /*
201  * Figure F.12: extend sign bit.
202  * On some machines, a shift and add will be faster than a table lookup.
203  */
204 
205 #define AVOID_TABLES
206 #ifdef AVOID_TABLES
207 
208 #define NEG_1 ((unsigned)-1)
209 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((NEG_1)<<(s)) + 1) : (x))
210 
211 #else
212 
213 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
214 
215 static const int extend_test[16] =   /* entry n is 2**(n-1) */
216   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
217     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
218 
219 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
220   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
221     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
222     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
223     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
224 
225 #endif /* AVOID_TABLES */
226 
227 
228 /*
229  * Check for a restart marker & resynchronize decoder.
230  * Returns FALSE if must suspend.
231  */
232 
233 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)234 process_restart (j_decompress_ptr cinfo)
235 {
236   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
237   int ci;
238 
239   /* Throw away any unused bits remaining in bit buffer; */
240   /* include any full bytes in next_marker's count of discarded bytes */
241   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
242   entropy->bitstate.bits_left = 0;
243 
244   /* Advance past the RSTn marker */
245   if (! (*cinfo->marker->read_restart_marker) (cinfo))
246     return FALSE;
247 
248   /* Re-initialize DC predictions to 0 */
249   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
250     entropy->saved.last_dc_val[ci] = 0;
251   /* Re-init EOB run count, too */
252   entropy->saved.EOBRUN = 0;
253 
254   /* Reset restart counter */
255   entropy->restarts_to_go = cinfo->restart_interval;
256 
257   /* Reset out-of-data flag, unless read_restart_marker left us smack up
258    * against a marker.  In that case we will end up treating the next data
259    * segment as empty, and we can avoid producing bogus output pixels by
260    * leaving the flag set.
261    */
262   if (cinfo->unread_marker == 0)
263     entropy->pub.insufficient_data = FALSE;
264 
265   return TRUE;
266 }
267 
268 
269 /*
270  * Huffman MCU decoding.
271  * Each of these routines decodes and returns one MCU's worth of
272  * Huffman-compressed coefficients.
273  * The coefficients are reordered from zigzag order into natural array order,
274  * but are not dequantized.
275  *
276  * The i'th block of the MCU is stored into the block pointed to by
277  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
278  *
279  * We return FALSE if data source requested suspension.  In that case no
280  * changes have been made to permanent state.  (Exception: some output
281  * coefficients may already have been assigned.  This is harmless for
282  * spectral selection, since we'll just re-assign them on the next call.
283  * Successive approximation AC refinement has to be more careful, however.)
284  */
285 
286 /*
287  * MCU decoding for DC initial scan (either spectral selection,
288  * or first pass of successive approximation).
289  */
290 
291 METHODDEF(boolean)
decode_mcu_DC_first(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)292 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
293 {
294   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
295   int Al = cinfo->Al;
296   register int s, r;
297   int blkn, ci;
298   JBLOCKROW block;
299   BITREAD_STATE_VARS;
300   savable_state state;
301   d_derived_tbl *tbl;
302   jpeg_component_info *compptr;
303 
304   /* Process restart marker if needed; may have to suspend */
305   if (cinfo->restart_interval) {
306     if (entropy->restarts_to_go == 0)
307       if (! process_restart(cinfo))
308         return FALSE;
309   }
310 
311   /* If we've run out of data, just leave the MCU set to zeroes.
312    * This way, we return uniform gray for the remainder of the segment.
313    */
314   if (! entropy->pub.insufficient_data) {
315 
316     /* Load up working state */
317     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
318     ASSIGN_STATE(state, entropy->saved);
319 
320     /* Outer loop handles each block in the MCU */
321 
322     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
323       block = MCU_data[blkn];
324       ci = cinfo->MCU_membership[blkn];
325       compptr = cinfo->cur_comp_info[ci];
326       tbl = entropy->derived_tbls[compptr->dc_tbl_no];
327 
328       /* Decode a single block's worth of coefficients */
329 
330       /* Section F.2.2.1: decode the DC coefficient difference */
331       HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
332       if (s) {
333         CHECK_BIT_BUFFER(br_state, s, return FALSE);
334         r = GET_BITS(s);
335         s = HUFF_EXTEND(r, s);
336       }
337 
338       /* Convert DC difference to actual value, update last_dc_val */
339       s += state.last_dc_val[ci];
340       state.last_dc_val[ci] = s;
341       /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
342       (*block)[0] = (JCOEF) LEFT_SHIFT(s, Al);
343     }
344 
345     /* Completed MCU, so update state */
346     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
347     ASSIGN_STATE(entropy->saved, state);
348   }
349 
350   /* Account for restart interval (no-op if not using restarts) */
351   entropy->restarts_to_go--;
352 
353   return TRUE;
354 }
355 
356 
357 /*
358  * MCU decoding for AC initial scan (either spectral selection,
359  * or first pass of successive approximation).
360  */
361 
362 METHODDEF(boolean)
decode_mcu_AC_first(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)363 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
364 {
365   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
366   int Se = cinfo->Se;
367   int Al = cinfo->Al;
368   register int s, k, r;
369   unsigned int EOBRUN;
370   JBLOCKROW block;
371   BITREAD_STATE_VARS;
372   d_derived_tbl *tbl;
373 
374   /* Process restart marker if needed; may have to suspend */
375   if (cinfo->restart_interval) {
376     if (entropy->restarts_to_go == 0)
377       if (! process_restart(cinfo))
378         return FALSE;
379   }
380 
381   /* If we've run out of data, just leave the MCU set to zeroes.
382    * This way, we return uniform gray for the remainder of the segment.
383    */
384   if (! entropy->pub.insufficient_data) {
385 
386     /* Load up working state.
387      * We can avoid loading/saving bitread state if in an EOB run.
388      */
389     EOBRUN = entropy->saved.EOBRUN;     /* only part of saved state we need */
390 
391     /* There is always only one block per MCU */
392 
393     if (EOBRUN > 0)             /* if it's a band of zeroes... */
394       EOBRUN--;                 /* ...process it now (we do nothing) */
395     else {
396       BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
397       block = MCU_data[0];
398       tbl = entropy->ac_derived_tbl;
399 
400       for (k = cinfo->Ss; k <= Se; k++) {
401         HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
402         r = s >> 4;
403         s &= 15;
404         if (s) {
405           k += r;
406           CHECK_BIT_BUFFER(br_state, s, return FALSE);
407           r = GET_BITS(s);
408           s = HUFF_EXTEND(r, s);
409           /* Scale and output coefficient in natural (dezigzagged) order */
410           (*block)[jpeg_natural_order[k]] = (JCOEF) LEFT_SHIFT(s, Al);
411         } else {
412           if (r == 15) {        /* ZRL */
413             k += 15;            /* skip 15 zeroes in band */
414           } else {              /* EOBr, run length is 2^r + appended bits */
415             EOBRUN = 1 << r;
416             if (r) {            /* EOBr, r > 0 */
417               CHECK_BIT_BUFFER(br_state, r, return FALSE);
418               r = GET_BITS(r);
419               EOBRUN += r;
420             }
421             EOBRUN--;           /* this band is processed at this moment */
422             break;              /* force end-of-band */
423           }
424         }
425       }
426 
427       BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
428     }
429 
430     /* Completed MCU, so update state */
431     entropy->saved.EOBRUN = EOBRUN;     /* only part of saved state we need */
432   }
433 
434   /* Account for restart interval (no-op if not using restarts) */
435   entropy->restarts_to_go--;
436 
437   return TRUE;
438 }
439 
440 
441 /*
442  * MCU decoding for DC successive approximation refinement scan.
443  * Note: we assume such scans can be multi-component, although the spec
444  * is not very clear on the point.
445  */
446 
447 METHODDEF(boolean)
decode_mcu_DC_refine(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)448 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
449 {
450   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
451   int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
452   int blkn;
453   JBLOCKROW block;
454   BITREAD_STATE_VARS;
455 
456   /* Process restart marker if needed; may have to suspend */
457   if (cinfo->restart_interval) {
458     if (entropy->restarts_to_go == 0)
459       if (! process_restart(cinfo))
460         return FALSE;
461   }
462 
463   /* Not worth the cycles to check insufficient_data here,
464    * since we will not change the data anyway if we read zeroes.
465    */
466 
467   /* Load up working state */
468   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
469 
470   /* Outer loop handles each block in the MCU */
471 
472   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
473     block = MCU_data[blkn];
474 
475     /* Encoded data is simply the next bit of the two's-complement DC value */
476     CHECK_BIT_BUFFER(br_state, 1, return FALSE);
477     if (GET_BITS(1))
478       (*block)[0] |= p1;
479     /* Note: since we use |=, repeating the assignment later is safe */
480   }
481 
482   /* Completed MCU, so update state */
483   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
484 
485   /* Account for restart interval (no-op if not using restarts) */
486   entropy->restarts_to_go--;
487 
488   return TRUE;
489 }
490 
491 
492 /*
493  * MCU decoding for AC successive approximation refinement scan.
494  */
495 
496 METHODDEF(boolean)
decode_mcu_AC_refine(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)497 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
498 {
499   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
500   int Se = cinfo->Se;
501   int p1 = 1 << cinfo->Al;        /* 1 in the bit position being coded */
502   int m1 = (NEG_1) << cinfo->Al;  /* -1 in the bit position being coded */
503   register int s, k, r;
504   unsigned int EOBRUN;
505   JBLOCKROW block;
506   JCOEFPTR thiscoef;
507   BITREAD_STATE_VARS;
508   d_derived_tbl *tbl;
509   int num_newnz;
510   int newnz_pos[DCTSIZE2];
511 
512   /* Process restart marker if needed; may have to suspend */
513   if (cinfo->restart_interval) {
514     if (entropy->restarts_to_go == 0)
515       if (! process_restart(cinfo))
516         return FALSE;
517   }
518 
519   /* If we've run out of data, don't modify the MCU.
520    */
521   if (! entropy->pub.insufficient_data) {
522 
523     /* Load up working state */
524     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
525     EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
526 
527     /* There is always only one block per MCU */
528     block = MCU_data[0];
529     tbl = entropy->ac_derived_tbl;
530 
531     /* If we are forced to suspend, we must undo the assignments to any newly
532      * nonzero coefficients in the block, because otherwise we'd get confused
533      * next time about which coefficients were already nonzero.
534      * But we need not undo addition of bits to already-nonzero coefficients;
535      * instead, we can test the current bit to see if we already did it.
536      */
537     num_newnz = 0;
538 
539     /* initialize coefficient loop counter to start of band */
540     k = cinfo->Ss;
541 
542     if (EOBRUN == 0) {
543       for (; k <= Se; k++) {
544         HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
545         r = s >> 4;
546         s &= 15;
547         if (s) {
548           if (s != 1)           /* size of new coef should always be 1 */
549             WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
550           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
551           if (GET_BITS(1))
552             s = p1;             /* newly nonzero coef is positive */
553           else
554             s = m1;             /* newly nonzero coef is negative */
555         } else {
556           if (r != 15) {
557             EOBRUN = 1 << r;    /* EOBr, run length is 2^r + appended bits */
558             if (r) {
559               CHECK_BIT_BUFFER(br_state, r, goto undoit);
560               r = GET_BITS(r);
561               EOBRUN += r;
562             }
563             break;              /* rest of block is handled by EOB logic */
564           }
565           /* note s = 0 for processing ZRL */
566         }
567         /* Advance over already-nonzero coefs and r still-zero coefs,
568          * appending correction bits to the nonzeroes.  A correction bit is 1
569          * if the absolute value of the coefficient must be increased.
570          */
571         do {
572           thiscoef = *block + jpeg_natural_order[k];
573           if (*thiscoef != 0) {
574             CHECK_BIT_BUFFER(br_state, 1, goto undoit);
575             if (GET_BITS(1)) {
576               if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
577                 if (*thiscoef >= 0)
578                   *thiscoef += p1;
579                 else
580                   *thiscoef += m1;
581               }
582             }
583           } else {
584             if (--r < 0)
585               break;            /* reached target zero coefficient */
586           }
587           k++;
588         } while (k <= Se);
589         if (s) {
590           int pos = jpeg_natural_order[k];
591           /* Output newly nonzero coefficient */
592           (*block)[pos] = (JCOEF) s;
593           /* Remember its position in case we have to suspend */
594           newnz_pos[num_newnz++] = pos;
595         }
596       }
597     }
598 
599     if (EOBRUN > 0) {
600       /* Scan any remaining coefficient positions after the end-of-band
601        * (the last newly nonzero coefficient, if any).  Append a correction
602        * bit to each already-nonzero coefficient.  A correction bit is 1
603        * if the absolute value of the coefficient must be increased.
604        */
605       for (; k <= Se; k++) {
606         thiscoef = *block + jpeg_natural_order[k];
607         if (*thiscoef != 0) {
608           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
609           if (GET_BITS(1)) {
610             if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
611               if (*thiscoef >= 0)
612                 *thiscoef += p1;
613               else
614                 *thiscoef += m1;
615             }
616           }
617         }
618       }
619       /* Count one block completed in EOB run */
620       EOBRUN--;
621     }
622 
623     /* Completed MCU, so update state */
624     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
625     entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
626   }
627 
628   /* Account for restart interval (no-op if not using restarts) */
629   entropy->restarts_to_go--;
630 
631   return TRUE;
632 
633 undoit:
634   /* Re-zero any output coefficients that we made newly nonzero */
635   while (num_newnz > 0)
636     (*block)[newnz_pos[--num_newnz]] = 0;
637 
638   return FALSE;
639 }
640 
641 
642 /*
643  * Module initialization routine for progressive Huffman entropy decoding.
644  */
645 
646 GLOBAL(void)
jinit_phuff_decoder(j_decompress_ptr cinfo)647 jinit_phuff_decoder (j_decompress_ptr cinfo)
648 {
649   phuff_entropy_ptr entropy;
650   int *coef_bit_ptr;
651   int ci, i;
652 
653   entropy = (phuff_entropy_ptr)
654     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
655                                 sizeof(phuff_entropy_decoder));
656   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
657   entropy->pub.start_pass = start_pass_phuff_decoder;
658 
659   /* Mark derived tables unallocated */
660   for (i = 0; i < NUM_HUFF_TBLS; i++) {
661     entropy->derived_tbls[i] = NULL;
662   }
663 
664   /* Create progression status table */
665   cinfo->coef_bits = (int (*)[DCTSIZE2])
666     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
667                                 cinfo->num_components*DCTSIZE2*sizeof(int));
668   coef_bit_ptr = & cinfo->coef_bits[0][0];
669   for (ci = 0; ci < cinfo->num_components; ci++)
670     for (i = 0; i < DCTSIZE2; i++)
671       *coef_bit_ptr++ = -1;
672 }
673 
674 #endif /* D_PROGRESSIVE_SUPPORTED */
675