• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "SVDF.h"
18 
19 #include "NeuralNetworksWrapper.h"
20 #include "gmock/gmock-matchers.h"
21 #include "gtest/gtest.h"
22 
23 using ::testing::FloatNear;
24 using ::testing::Matcher;
25 
26 namespace android {
27 namespace nn {
28 namespace wrapper {
29 
30 namespace {
31 
ArrayFloatNear(const std::vector<float> & values,float max_abs_error=1.e-6)32 std::vector<Matcher<float>> ArrayFloatNear(const std::vector<float>& values,
33                                            float max_abs_error=1.e-6) {
34   std::vector<Matcher<float>> matchers;
35   matchers.reserve(values.size());
36   for (const float& v : values) {
37     matchers.emplace_back(FloatNear(v, max_abs_error));
38   }
39   return matchers;
40 }
41 
42 }  // namespace
43 
44 using ::testing::ElementsAreArray;
45 
46 static float svdf_input[] = {0.12609188,  -0.46347019, -0.89598465,
47                              0.12609188,  -0.46347019, -0.89598465,
48 
49                              0.14278367,  -1.64410412, -0.75222826,
50                              0.14278367,  -1.64410412, -0.75222826,
51 
52                              0.49837467,  0.19278903,  0.26584083,
53                              0.49837467,  0.19278903,  0.26584083,
54 
55                              -0.11186574, 0.13164264,  -0.05349274,
56                              -0.11186574, 0.13164264,  -0.05349274,
57 
58                              -0.68892461, 0.37783599,  0.18263303,
59                              -0.68892461, 0.37783599,  0.18263303,
60 
61                              -0.81299269, -0.86831826, 1.43940818,
62                              -0.81299269, -0.86831826, 1.43940818,
63 
64                              -1.45006323, -0.82251364, -1.69082689,
65                              -1.45006323, -0.82251364, -1.69082689,
66 
67                              0.03966608,  -0.24936394, -0.77526885,
68                              0.03966608,  -0.24936394, -0.77526885,
69 
70                              0.11771342,  -0.23761693, -0.65898693,
71                              0.11771342,  -0.23761693, -0.65898693,
72 
73                              -0.89477462, 1.67204106,  -0.53235275,
74                              -0.89477462, 1.67204106,  -0.53235275};
75 
76 static float svdf_input_rank2[] = {
77     0.12609188,  -0.46347019, -0.89598465,
78     0.35867718,  0.36897406,  0.73463392,
79 
80     0.14278367,  -1.64410412, -0.75222826,
81     -0.57290924, 0.12729003,  0.7567004,
82 
83     0.49837467,  0.19278903,  0.26584083,
84     0.17660543,  0.52949083,  -0.77931279,
85 
86     -0.11186574, 0.13164264,  -0.05349274,
87     -0.72674477, -0.5683046,  0.55900657,
88 
89     -0.68892461, 0.37783599,  0.18263303,
90     -0.63690937, 0.44483393,  -0.71817774,
91 
92     -0.81299269, -0.86831826, 1.43940818,
93     -0.95760226, 1.82078898,  0.71135032,
94 
95     -1.45006323, -0.82251364, -1.69082689,
96     -1.65087092, -1.89238167, 1.54172635,
97 
98     0.03966608,  -0.24936394, -0.77526885,
99     2.06740379,  -1.51439476, 1.43768692,
100 
101     0.11771342,  -0.23761693, -0.65898693,
102     0.31088525,  -1.55601168, -0.87661445,
103 
104     -0.89477462, 1.67204106,  -0.53235275,
105     -0.6230064,  0.29819036,  1.06939757,
106 };
107 
108 static float svdf_golden_output[] = {
109     0.014899,    -0.0517661, -0.143725, -0.00271883,
110     0.014899,    -0.0517661, -0.143725, -0.00271883,
111 
112     0.068281,    -0.162217,  -0.152268, 0.00323521,
113     0.068281,    -0.162217,  -0.152268, 0.00323521,
114 
115     -0.0317821,  -0.0333089, 0.0609602, 0.0333759,
116     -0.0317821,  -0.0333089, 0.0609602, 0.0333759,
117 
118     -0.00623099, -0.077701,  -0.391193, -0.0136691,
119     -0.00623099, -0.077701,  -0.391193, -0.0136691,
120 
121     0.201551,    -0.164607,  -0.179462, -0.0592739,
122     0.201551,    -0.164607,  -0.179462, -0.0592739,
123 
124     0.0886511,   -0.0875401, -0.269283, 0.0281379,
125     0.0886511,   -0.0875401, -0.269283, 0.0281379,
126 
127     -0.201174,   -0.586145,  -0.628624, -0.0330412,
128     -0.201174,   -0.586145,  -0.628624, -0.0330412,
129 
130     -0.0839096,  -0.299329,  0.108746,  0.109808,
131     -0.0839096,  -0.299329,  0.108746,  0.109808,
132 
133     0.419114,    -0.237824,  -0.422627, 0.175115,
134     0.419114,    -0.237824,  -0.422627, 0.175115,
135 
136     0.36726,     -0.522303,  -0.456502, -0.175475,
137     0.36726,     -0.522303,  -0.456502, -0.175475};
138 
139 static float svdf_golden_output_rank_2[] = {
140     -0.09623547, -0.10193135, 0.11083051,  -0.0347917,
141     0.1141196,   0.12965347,  -0.12652366, 0.01007236,
142 
143     -0.16396809, -0.21247184, 0.11259045,  -0.04156673,
144     0.10132131,  -0.06143532, -0.00924693, 0.10084561,
145 
146     0.01257364,  0.0506071,   -0.19287863, -0.07162561,
147     -0.02033747, 0.22673416,  0.15487903,  0.02525555,
148 
149     -0.1411963,  -0.37054959, 0.01774767,  0.05867489,
150     0.09607603,  -0.0141301,  -0.08995658, 0.12867066,
151 
152     -0.27142537, -0.16955489, 0.18521598,  -0.12528358,
153     0.00331409,  0.11167502,  0.02218599,  -0.07309391,
154 
155     0.09593632,  -0.28361851, -0.0773851,  0.17199151,
156     -0.00075242, 0.33691186,  -0.1536046,  0.16572715,
157 
158     -0.27916506, -0.27626723, 0.42615682,  0.3225764,
159     -0.37472126, -0.55655634, -0.05013514, 0.289112,
160 
161     -0.24418658, 0.07540751,  -0.1940318,  -0.08911639,
162     0.00732617,  0.46737891,  0.26449674,  0.24888524,
163 
164     -0.17225097, -0.54660404, -0.38795233, 0.08389944,
165     0.07736043,  -0.28260678, 0.15666828,  1.14949894,
166 
167     -0.57454878, -0.64704704, 0.73235172,  -0.34616736,
168     0.21120001,  -0.22927976, 0.02455296,  -0.35906726,
169 };
170 
171 #define FOR_ALL_INPUT_AND_WEIGHT_TENSORS(ACTION) \
172   ACTION(Input)                                  \
173   ACTION(WeightsFeature)                         \
174   ACTION(WeightsTime)                            \
175   ACTION(Bias)                                   \
176   ACTION(StateIn)
177 
178 // For all output and intermediate states
179 #define FOR_ALL_OUTPUT_TENSORS(ACTION) \
180   ACTION(StateOut)                     \
181   ACTION(Output)
182 
183 // Derived class of SingleOpModel, which is used to test SVDF TFLite op.
184 class SVDFOpModel {
185  public:
SVDFOpModel(uint32_t batches,uint32_t units,uint32_t input_size,uint32_t memory_size,uint32_t rank)186   SVDFOpModel(uint32_t batches, uint32_t units, uint32_t input_size,
187               uint32_t memory_size, uint32_t rank)
188       : batches_(batches),
189         units_(units),
190         input_size_(input_size),
191         memory_size_(memory_size),
192         rank_(rank) {
193     std::vector<std::vector<uint32_t>> input_shapes{
194         {batches_, input_size_},  // Input tensor
195         {units_ * rank_, input_size_},    // weights_feature tensor
196         {units_ * rank_, memory_size_},   // weights_time tensor
197         {units_},                  // bias tensor
198         {batches_,  memory_size * units_ * rank_},   // state in tensor
199     };
200     std::vector<uint32_t> inputs;
201     auto it = input_shapes.begin();
202 
203     // Input and weights
204 #define AddInput(X)                                   \
205   OperandType X##OpndTy(Type::TENSOR_FLOAT32, *it++); \
206   inputs.push_back(model_.addOperand(&X##OpndTy));
207 
208     FOR_ALL_INPUT_AND_WEIGHT_TENSORS(AddInput);
209 
210 #undef AddInput
211 
212     // Parameters
213     OperandType RankParamTy(Type::INT32, {});
214     inputs.push_back(model_.addOperand(&RankParamTy));
215     OperandType ActivationParamTy(Type::INT32, {});
216     inputs.push_back(model_.addOperand(&ActivationParamTy));
217 
218     // Output and other intermediate state
219     std::vector<std::vector<uint32_t>> output_shapes{{batches_, memory_size_ * units_ * rank_},
220                                                      {batches_, units_}};
221     std::vector<uint32_t> outputs;
222 
223     auto it2 = output_shapes.begin();
224 
225 #define AddOutput(X)                                   \
226   OperandType X##OpndTy(Type::TENSOR_FLOAT32, *it2++); \
227   outputs.push_back(model_.addOperand(&X##OpndTy));
228 
229     FOR_ALL_OUTPUT_TENSORS(AddOutput);
230 
231 #undef AddOutput
232 
233     Input_.insert(Input_.end(), batches_ * input_size_, 0.f);
234     StateIn_.insert(StateIn_.end(), batches_ * units_ * rank_ * memory_size_, 0.f);
235 
236     auto multiAll = [](const std::vector<uint32_t> &dims) -> uint32_t {
237         uint32_t sz = 1;
238         for(uint32_t d:dims) { sz *= d; }
239         return sz;
240     };
241 
242     it2 = output_shapes.begin();
243 
244 #define ReserveOutput(X) X##_.insert(X##_.end(), multiAll(*it2++), 0.f);
245 
246     FOR_ALL_OUTPUT_TENSORS(ReserveOutput);
247 
248     model_.addOperation(ANEURALNETWORKS_SVDF, inputs, outputs);
249     model_.identifyInputsAndOutputs(inputs, outputs);
250 
251     model_.finish();
252   }
253 
Invoke()254   void Invoke() {
255     ASSERT_TRUE(model_.isValid());
256 
257     Compilation compilation(&model_);
258     compilation.finish();
259     Execution execution(&compilation);
260 
261     StateIn_.swap(StateOut_);
262 
263 #define SetInputOrWeight(X)                                                    \
264   ASSERT_EQ(execution.setInput(SVDF::k##X##Tensor, X##_.data(),                \
265                                sizeof(float) * X##_.size()),                   \
266             Result::NO_ERROR);
267 
268     FOR_ALL_INPUT_AND_WEIGHT_TENSORS(SetInputOrWeight);
269 
270 #undef SetInputOrWeight
271 
272 #define SetOutput(X)                                                            \
273   EXPECT_TRUE(X##_.data() != nullptr);                                          \
274   ASSERT_EQ(execution.setOutput(SVDF::k##X##Tensor, X##_.data(),                \
275                                 sizeof(float) * X##_.size()),                   \
276             Result::NO_ERROR);
277 
278     FOR_ALL_OUTPUT_TENSORS(SetOutput);
279 
280 #undef SetOutput
281 
282     ASSERT_EQ(execution.setInput(SVDF::kRankParam, &rank_, sizeof(rank_)),
283               Result::NO_ERROR);
284 
285     int activation = TfLiteFusedActivation::kTfLiteActNone;
286     ASSERT_EQ(execution.setInput(SVDF::kActivationParam, &activation,
287                                  sizeof(activation)),
288               Result::NO_ERROR);
289 
290     ASSERT_EQ(execution.compute(), Result::NO_ERROR);
291   }
292 
293 #define DefineSetter(X)                          \
294   void Set##X(const std::vector<float>& f) {     \
295     X##_.insert(X##_.end(), f.begin(), f.end()); \
296   }
297 
298   FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineSetter);
299 
300 #undef DefineSetter
301 
SetInput(int offset,float * begin,float * end)302   void SetInput(int offset, float* begin, float* end) {
303     for (; begin != end; begin++, offset++) {
304       Input_[offset] = *begin;
305     }
306   }
307 
308   // Resets the state of SVDF op by filling it with 0's.
ResetState()309   void ResetState() {
310       std::fill(StateIn_.begin(), StateIn_.end(), 0.f);
311       std::fill(StateOut_.begin(), StateOut_.end(), 0.f);
312   }
313 
314   // Extracts the output tensor from the SVDF op.
GetOutput() const315   const std::vector<float>& GetOutput() const { return Output_; }
316 
input_size() const317   int input_size() const { return input_size_; }
num_units() const318   int num_units() const { return units_; }
num_batches() const319   int num_batches() const { return batches_; }
320 
321  private:
322   Model model_;
323 
324   const uint32_t batches_;
325   const uint32_t units_;
326   const uint32_t input_size_;
327   const uint32_t memory_size_;
328   const uint32_t rank_;
329 
330 #define DefineTensor(X) std::vector<float> X##_;
331 
332   FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineTensor);
333   FOR_ALL_OUTPUT_TENSORS(DefineTensor);
334 
335 #undef DefineTensor
336 };
337 
TEST(SVDFOpTest,BlackBoxTest)338 TEST(SVDFOpTest, BlackBoxTest) {
339   SVDFOpModel svdf(/*batches=*/2, /*units=*/4, /*input_size=*/3,
340                    /*memory_size=*/10, /*rank=*/1);
341   svdf.SetWeightsFeature({-0.31930989, -0.36118156, 0.0079667, 0.37613347,
342                           0.22197971, 0.12416199, 0.27901134, 0.27557442,
343                           0.3905206, -0.36137494, -0.06634006, -0.10640851});
344 
345   svdf.SetWeightsTime(
346       {-0.31930989, 0.37613347,  0.27901134,  -0.36137494, -0.36118156,
347        0.22197971,  0.27557442,  -0.06634006, 0.0079667,   0.12416199,
348 
349        0.3905206,   -0.10640851, -0.0976817,  0.15294972,  0.39635518,
350        -0.02702999, 0.39296314,  0.15785322,  0.21931258,  0.31053296,
351 
352        -0.36916667, 0.38031587,  -0.21580373, 0.27072677,  0.23622236,
353        0.34936687,  0.18174365,  0.35907319,  -0.17493086, 0.324846,
354 
355        -0.10781813, 0.27201805,  0.14324132,  -0.23681851, -0.27115166,
356        -0.01580888, -0.14943552, 0.15465137,  0.09784451,  -0.0337657});
357 
358   svdf.SetBias({});
359 
360   svdf.ResetState();
361   const int svdf_num_batches = svdf.num_batches();
362   const int svdf_input_size = svdf.input_size();
363   const int svdf_num_units = svdf.num_units();
364   const int input_sequence_size =
365       sizeof(svdf_input) / sizeof(float) / (svdf_input_size * svdf_num_batches);
366   // Going over each input batch, setting the input tensor, invoking the SVDF op
367   // and checking the output with the expected golden values.
368   for (int i = 0; i < input_sequence_size; i++) {
369     float* batch_start = svdf_input + i * svdf_input_size * svdf_num_batches;
370     float* batch_end = batch_start + svdf_input_size * svdf_num_batches;
371     svdf.SetInput(0, batch_start, batch_end);
372 
373     svdf.Invoke();
374 
375     float* golden_start =
376         svdf_golden_output + i * svdf_num_units * svdf_num_batches;
377     float* golden_end = golden_start + svdf_num_units * svdf_num_batches;
378     std::vector<float> expected;
379     expected.insert(expected.end(), golden_start, golden_end);
380 
381     EXPECT_THAT(svdf.GetOutput(), ElementsAreArray(ArrayFloatNear(expected)));
382   }
383 }
384 
TEST(SVDFOpTest,BlackBoxTestRank2)385 TEST(SVDFOpTest, BlackBoxTestRank2) {
386   SVDFOpModel svdf(/*batches=*/2, /*units=*/4, /*input_size=*/3,
387                    /*memory_size=*/10, /*rank=*/2);
388   svdf.SetWeightsFeature({-0.31930989, 0.0079667,   0.39296314,  0.37613347,
389                           0.12416199,  0.15785322,  0.27901134,  0.3905206,
390                           0.21931258,  -0.36137494, -0.10640851, 0.31053296,
391                           -0.36118156, -0.0976817,  -0.36916667, 0.22197971,
392                           0.15294972,  0.38031587,  0.27557442,  0.39635518,
393                           -0.21580373, -0.06634006, -0.02702999, 0.27072677});
394 
395   svdf.SetWeightsTime(
396       {-0.31930989, 0.37613347,  0.27901134,  -0.36137494, -0.36118156,
397        0.22197971,  0.27557442,  -0.06634006, 0.0079667,   0.12416199,
398 
399        0.3905206,   -0.10640851, -0.0976817,  0.15294972,  0.39635518,
400        -0.02702999, 0.39296314,  0.15785322,  0.21931258,  0.31053296,
401 
402        -0.36916667, 0.38031587,  -0.21580373, 0.27072677,  0.23622236,
403        0.34936687,  0.18174365,  0.35907319,  -0.17493086, 0.324846,
404 
405        -0.10781813, 0.27201805,  0.14324132,  -0.23681851, -0.27115166,
406        -0.01580888, -0.14943552, 0.15465137,  0.09784451,  -0.0337657,
407 
408        -0.14884081, 0.19931212,  -0.36002168, 0.34663299,  -0.11405486,
409        0.12672701,  0.39463779,  -0.07886535, -0.06384811, 0.08249187,
410 
411        -0.26816407, -0.19905911, 0.29211238,  0.31264046,  -0.28664589,
412        0.05698794,  0.11613581,  0.14078894,  0.02187902,  -0.21781836,
413 
414        -0.15567942, 0.08693647,  -0.38256618, 0.36580828,  -0.22922277,
415        -0.0226903,  0.12878349,  -0.28122205, -0.10850525, -0.11955214,
416 
417        0.27179423,  -0.04710215, 0.31069002,  0.22672787,  0.09580326,
418        0.08682203,  0.1258215,   0.1851041,   0.29228821,  0.12366763});
419 
420   svdf.SetBias({});
421 
422   svdf.ResetState();
423   const int svdf_num_batches = svdf.num_batches();
424   const int svdf_input_size = svdf.input_size();
425   const int svdf_num_units = svdf.num_units();
426   const int input_sequence_size =
427       sizeof(svdf_input_rank2) / sizeof(float) / (svdf_input_size * svdf_num_batches);
428   // Going over each input batch, setting the input tensor, invoking the SVDF op
429   // and checking the output with the expected golden values.
430   for (int i = 0; i < input_sequence_size; i++) {
431     float* batch_start = svdf_input_rank2 + i * svdf_input_size * svdf_num_batches;
432     float* batch_end = batch_start + svdf_input_size * svdf_num_batches;
433     svdf.SetInput(0, batch_start, batch_end);
434 
435     svdf.Invoke();
436 
437     float* golden_start =
438         svdf_golden_output_rank_2 + i * svdf_num_units * svdf_num_batches;
439     float* golden_end = golden_start + svdf_num_units * svdf_num_batches;
440     std::vector<float> expected;
441     expected.insert(expected.end(), golden_start, golden_end);
442 
443     EXPECT_THAT(svdf.GetOutput(), ElementsAreArray(ArrayFloatNear(expected)));
444   }
445 }
446 
447 }  // namespace wrapper
448 }  // namespace nn
449 }  // namespace android
450