• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1## Auto Detect and Advise
2
3tfprof analyzes profiles and generates advice for common issues.
4
5### Run Advise.
6
7```python
8# First create a profiler. See profiler tutorials for more details.
9profiler = tf.profiler.Profiler(sess.graph)
10run_meta = config_pb2.RunMetadata()
11_ = sess.run(r1,
12             options=config_pb2.RunOptions(
13                 trace_level=config_pb2.RunOptions.FULL_TRACE),
14             run_metadata=run_meta)
15profiler.add_step(1, run_meta)
16
17# Then Start advise.
18profiler.advise()
19
20# For one-shot API
21tf.profiler.advise(
22    sess.graph, run_meta=run_metadata)
23```
24
25```shell
26# Run advisor on CLI
27# See CLI tutorial on generating the files.
28tfprof --graph_path=graph.pbtxt \
29       --run_meta_path=run_metadata \
30       --op_log_path=tfprof_log
31
32tfprof> advise
33AcceleratorUtilizationChecker:
34device: /job:worker/replica:0/task:0/device:GPU:0 low utilization: 0.03
35device: /job:worker/replica:0/task:0/device:GPU:1 low utilization: 0.08
36device: /job:worker/replica:0/task:0/device:GPU:2 low utilization: 0.04
37device: /job:worker/replica:0/task:0/device:GPU:3 low utilization: 0.21
38
39OperationChecker:
40Found operation using NHWC data_format on GPU. Maybe NCHW is faster.
41
42ExpensiveOperationChecker:
43top 1 operation type: SoftmaxCrossEntropyWithLogits, cpu: 1.37sec, accelerator: 0us, total: 1.37sec (26.68%)
44top 2 operation type: MatMul, cpu: 427.39ms, accelerator: 280.76ms, total: 708.14ms (13.83%)
45top 3 operation type: ConcatV2, cpu: 357.83ms, accelerator: 31.80ms, total: 389.63ms (7.61%)
46seq2seq_attention_model.py:360:build_graph:self._add_seq2seq(), cpu: 3.16sec, accelerator: 214.84ms, total: 3.37sec
47  seq2seq_attention_model.py:293:_add_seq2seq:decoder_outputs, ..., cpu: 2.46sec, accelerator: 3.25ms, total: 2.47sec
48    seq2seq_lib.py:181:sampled_sequence_...:average_across_ti..., cpu: 2.46sec, accelerator: 3.24ms, total: 2.47sec
49      seq2seq_lib.py:147:sequence_loss_by_...:crossent = loss_f..., cpu: 2.46sec, accelerator: 3.06ms, total: 2.46sec
50        seq2seq_attention_model.py:289:sampled_loss_func:num_classes=vsize), cpu: 2.46sec, accelerator: 3.06ms, total: 2.46sec
51        seq2seq_attention_model.py:282:sampled_loss_func:labels = tf.resha..., cpu: 164us, accelerator: 0us, total: 164us
52      seq2seq_lib.py:148:sequence_loss_by_...:log_perp_list.app..., cpu: 1.33ms, accelerator: 120us, total: 1.45ms
53      seq2seq_lib.py:151:sequence_loss_by_...:total_size = tf.a..., cpu: 154us, accelerator: 23us, total: 177us
54    seq2seq_lib.py:184:sampled_sequence_...:return cost / tf...., cpu: 97us, accelerator: 8us, total: 105us
55      math_ops.py:690:cast:return gen_math_o..., cpu: 62us, accelerator: 3us, total: 65us
56      math_ops.py:839:binary_op_wrapper:return func(x, y,..., cpu: 35us, accelerator: 5us, total: 40us
57  seq2seq_attention_model.py:192:_add_seq2seq:sequence_length=a..., cpu: 651.56ms, accelerator: 158.92ms, total: 810.48ms
58    seq2seq_lib.py:104:bidirectional_rnn:sequence_length, ..., cpu: 306.58ms, accelerator: 73.54ms, total: 380.12ms
59      core_rnn.py:195:static_rnn:state_size=cell.s..., cpu: 306.52ms, accelerator: 73.54ms, total: 380.05ms
60        rnn.py:218:_rnn_step:_maybe_copy_some_..., cpu: 303.76ms, accelerator: 73.54ms, total: 377.30ms
61        rnn.py:216:_rnn_step:time >= max_seque..., cpu: 2.75ms, accelerator: 0us, total: 2.75ms
62      core_rnn.py:179:static_rnn:max_sequence_leng..., cpu: 67us, accelerator: 0us, total: 67us
63    seq2seq_lib.py:110:bidirectional_rnn:initial_state_bw,..., cpu: 296.21ms, accelerator: 73.54ms, total: 369.75ms
64      core_rnn.py:195:static_rnn:state_size=cell.s..., cpu: 296.11ms, accelerator: 73.54ms, total: 369.65ms
65        rnn.py:218:_rnn_step:_maybe_copy_some_..., cpu: 292.04ms, accelerator: 73.54ms, total: 365.58ms
66        rnn.py:216:_rnn_step:time >= max_seque..., cpu: 4.07ms, accelerator: 0us, total: 4.07ms
67      core_rnn.py:178:static_rnn:min_sequence_leng..., cpu: 85us, accelerator: 0us, total: 85us
68      core_rnn.py:179:static_rnn:max_sequence_leng..., cpu: 16us, accelerator: 0us, total: 16us
69    seq2seq_lib.py:113:bidirectional_rnn:outputs = [tf.con..., cpu: 46.88ms, accelerator: 3.87ms, total: 50.75ms
70 ...(omitted)
71top 1 graph node: seq2seq/loss/sampled_sequence_loss/sequence_loss_by_example/SoftmaxCrossEntropyWithLogits_11, cpu: 89.92ms, accelerator: 0us, total: 89.92ms
72top 2 graph node: train_step/update_seq2seq/output_projection/w/ApplyAdam, cpu: 84.52ms, accelerator: 0us, total: 84.52ms
73top 3 graph node: seq2seq/loss/sampled_sequence_loss/sequence_loss_by_example/SoftmaxCrossEntropyWithLogits_19, cpu: 73.02ms, accelerator: 0us, total: 73.02ms
74```
75
76### Checker
77
78There is no magic behind advise mode. tfprof builds the profiles first, then
79it runs through a list of `Checkers`, each one responsible for checking one
80area with the profile and report issues. A `Checker` is like a plugin.
81
82For example:
83
84#### JobChecker (Not Available OSS)
85
86*   Checks RecvTensor RPC latency and bandwidth.
87*   Checks CPU/Memory utilization of the job.
88
89#### AcceleratorUtilization Checker
90* Checks what percentage of time the accelerator spends on computation.
91
92#### OperationChecker
93
94*   Checks whether the operation runs with optimal options.
95*   Checks if there is a better implementation to replace the current operation.
96
97#### ExpensiveOperationChecker
98
99*   Checks the most expensive operation type.
100*   Checks the most expensive graph nodes.
101*   Checks the most expensive graph-building Python codes.
102
103#### Contribute Your Checker
104
105Follow examples of accelerator_utilization_checker.h
106
107
108
109