1 /* Copyright (c) 2014, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #include <string>
16 #include <functional>
17 #include <memory>
18 #include <vector>
19
20 #include <stdint.h>
21 #include <stdlib.h>
22 #include <string.h>
23
24 #include <openssl/aead.h>
25 #include <openssl/bn.h>
26 #include <openssl/curve25519.h>
27 #include <openssl/digest.h>
28 #include <openssl/err.h>
29 #include <openssl/ec.h>
30 #include <openssl/ecdsa.h>
31 #include <openssl/ec_key.h>
32 #include <openssl/evp.h>
33 #include <openssl/nid.h>
34 #include <openssl/rand.h>
35 #include <openssl/rsa.h>
36
37 #if defined(OPENSSL_WINDOWS)
38 OPENSSL_MSVC_PRAGMA(warning(push, 3))
39 #include <windows.h>
40 OPENSSL_MSVC_PRAGMA(warning(pop))
41 #elif defined(OPENSSL_APPLE)
42 #include <sys/time.h>
43 #else
44 #include <time.h>
45 #endif
46
47 #include "../crypto/internal.h"
48 #include "internal.h"
49
50
51 // TimeResults represents the results of benchmarking a function.
52 struct TimeResults {
53 // num_calls is the number of function calls done in the time period.
54 unsigned num_calls;
55 // us is the number of microseconds that elapsed in the time period.
56 unsigned us;
57
PrintTimeResults58 void Print(const std::string &description) {
59 printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls,
60 description.c_str(), us,
61 (static_cast<double>(num_calls) / us) * 1000000);
62 }
63
PrintWithBytesTimeResults64 void PrintWithBytes(const std::string &description, size_t bytes_per_call) {
65 printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n",
66 num_calls, description.c_str(), us,
67 (static_cast<double>(num_calls) / us) * 1000000,
68 static_cast<double>(bytes_per_call * num_calls) / us);
69 }
70 };
71
72 #if defined(OPENSSL_WINDOWS)
time_now()73 static uint64_t time_now() { return GetTickCount64() * 1000; }
74 #elif defined(OPENSSL_APPLE)
time_now()75 static uint64_t time_now() {
76 struct timeval tv;
77 uint64_t ret;
78
79 gettimeofday(&tv, NULL);
80 ret = tv.tv_sec;
81 ret *= 1000000;
82 ret += tv.tv_usec;
83 return ret;
84 }
85 #else
time_now()86 static uint64_t time_now() {
87 struct timespec ts;
88 clock_gettime(CLOCK_MONOTONIC, &ts);
89
90 uint64_t ret = ts.tv_sec;
91 ret *= 1000000;
92 ret += ts.tv_nsec / 1000;
93 return ret;
94 }
95 #endif
96
97 static uint64_t g_timeout_seconds = 1;
98
TimeFunction(TimeResults * results,std::function<bool ()> func)99 static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
100 // total_us is the total amount of time that we'll aim to measure a function
101 // for.
102 const uint64_t total_us = g_timeout_seconds * 1000000;
103 uint64_t start = time_now(), now, delta;
104 unsigned done = 0, iterations_between_time_checks;
105
106 if (!func()) {
107 return false;
108 }
109 now = time_now();
110 delta = now - start;
111 if (delta == 0) {
112 iterations_between_time_checks = 250;
113 } else {
114 // Aim for about 100ms between time checks.
115 iterations_between_time_checks =
116 static_cast<double>(100000) / static_cast<double>(delta);
117 if (iterations_between_time_checks > 1000) {
118 iterations_between_time_checks = 1000;
119 } else if (iterations_between_time_checks < 1) {
120 iterations_between_time_checks = 1;
121 }
122 }
123
124 for (;;) {
125 for (unsigned i = 0; i < iterations_between_time_checks; i++) {
126 if (!func()) {
127 return false;
128 }
129 done++;
130 }
131
132 now = time_now();
133 if (now - start > total_us) {
134 break;
135 }
136 }
137
138 results->us = now - start;
139 results->num_calls = done;
140 return true;
141 }
142
SpeedRSA(const std::string & key_name,RSA * key,const std::string & selected)143 static bool SpeedRSA(const std::string &key_name, RSA *key,
144 const std::string &selected) {
145 if (!selected.empty() && key_name.find(selected) == std::string::npos) {
146 return true;
147 }
148
149 std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]);
150 const uint8_t fake_sha256_hash[32] = {0};
151 unsigned sig_len;
152
153 TimeResults results;
154 if (!TimeFunction(&results,
155 [key, &sig, &fake_sha256_hash, &sig_len]() -> bool {
156 // Usually during RSA signing we're using a long-lived |RSA| that has
157 // already had all of its |BN_MONT_CTX|s constructed, so it makes
158 // sense to use |key| directly here.
159 return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
160 sig.get(), &sig_len, key);
161 })) {
162 fprintf(stderr, "RSA_sign failed.\n");
163 ERR_print_errors_fp(stderr);
164 return false;
165 }
166 results.Print(key_name + " signing");
167
168 if (!TimeFunction(&results,
169 [key, &fake_sha256_hash, &sig, sig_len]() -> bool {
170 // Usually during RSA verification we have to parse an RSA key from a
171 // certificate or similar, in which case we'd need to construct a new
172 // RSA key, with a new |BN_MONT_CTX| for the public modulus. If we were
173 // to use |key| directly instead, then these costs wouldn't be
174 // accounted for.
175 bssl::UniquePtr<RSA> verify_key(RSA_new());
176 if (!verify_key) {
177 return false;
178 }
179 verify_key->n = BN_dup(key->n);
180 verify_key->e = BN_dup(key->e);
181 if (!verify_key->n ||
182 !verify_key->e) {
183 return false;
184 }
185 return RSA_verify(NID_sha256, fake_sha256_hash,
186 sizeof(fake_sha256_hash), sig.get(), sig_len, key);
187 })) {
188 fprintf(stderr, "RSA_verify failed.\n");
189 ERR_print_errors_fp(stderr);
190 return false;
191 }
192 results.Print(key_name + " verify");
193
194 return true;
195 }
196
align(uint8_t * in,unsigned alignment)197 static uint8_t *align(uint8_t *in, unsigned alignment) {
198 return reinterpret_cast<uint8_t *>(
199 (reinterpret_cast<uintptr_t>(in) + alignment) &
200 ~static_cast<size_t>(alignment - 1));
201 }
202
SpeedAEADChunk(const EVP_AEAD * aead,const std::string & name,size_t chunk_len,size_t ad_len,evp_aead_direction_t direction)203 static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name,
204 size_t chunk_len, size_t ad_len,
205 evp_aead_direction_t direction) {
206 static const unsigned kAlignment = 16;
207
208 bssl::ScopedEVP_AEAD_CTX ctx;
209 const size_t key_len = EVP_AEAD_key_length(aead);
210 const size_t nonce_len = EVP_AEAD_nonce_length(aead);
211 const size_t overhead_len = EVP_AEAD_max_overhead(aead);
212
213 std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]);
214 OPENSSL_memset(key.get(), 0, key_len);
215 std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]);
216 OPENSSL_memset(nonce.get(), 0, nonce_len);
217 std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]);
218 // N.B. for EVP_AEAD_CTX_seal_scatter the input and output buffers may be the
219 // same size. However, in the direction == evp_aead_open case we still use
220 // non-scattering seal, hence we add overhead_len to the size of this buffer.
221 std::unique_ptr<uint8_t[]> out_storage(
222 new uint8_t[chunk_len + overhead_len + kAlignment]);
223 std::unique_ptr<uint8_t[]> in2_storage(new uint8_t[chunk_len + kAlignment]);
224 std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]);
225 OPENSSL_memset(ad.get(), 0, ad_len);
226 std::unique_ptr<uint8_t[]> tag_storage(
227 new uint8_t[overhead_len + kAlignment]);
228
229
230 uint8_t *const in = align(in_storage.get(), kAlignment);
231 OPENSSL_memset(in, 0, chunk_len);
232 uint8_t *const out = align(out_storage.get(), kAlignment);
233 OPENSSL_memset(out, 0, chunk_len + overhead_len);
234 uint8_t *const tag = align(tag_storage.get(), kAlignment);
235 OPENSSL_memset(tag, 0, overhead_len);
236 uint8_t *const in2 = align(in2_storage.get(), kAlignment);
237
238 if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len,
239 EVP_AEAD_DEFAULT_TAG_LENGTH,
240 evp_aead_seal)) {
241 fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
242 ERR_print_errors_fp(stderr);
243 return false;
244 }
245
246 TimeResults results;
247 if (direction == evp_aead_seal) {
248 if (!TimeFunction(&results,
249 [chunk_len, nonce_len, ad_len, overhead_len, in, out, tag,
250 &ctx, &nonce, &ad]() -> bool {
251 size_t tag_len;
252 return EVP_AEAD_CTX_seal_scatter(
253 ctx.get(), out, tag, &tag_len, overhead_len,
254 nonce.get(), nonce_len, in, chunk_len, nullptr, 0,
255 ad.get(), ad_len);
256 })) {
257 fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
258 ERR_print_errors_fp(stderr);
259 return false;
260 }
261 } else {
262 size_t out_len;
263 EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, chunk_len + overhead_len,
264 nonce.get(), nonce_len, in, chunk_len, ad.get(), ad_len);
265
266 if (!TimeFunction(&results,
267 [chunk_len, nonce_len, ad_len, in2, out, out_len, &ctx,
268 &nonce, &ad]() -> bool {
269 size_t in2_len;
270 // N.B. EVP_AEAD_CTX_open_gather is not implemented for
271 // all AEADs.
272 return EVP_AEAD_CTX_open(
273 ctx.get(), in2, &in2_len, chunk_len, nonce.get(),
274 nonce_len, out, out_len, ad.get(), ad_len);
275 })) {
276 fprintf(stderr, "EVP_AEAD_CTX_open failed.\n");
277 ERR_print_errors_fp(stderr);
278 return false;
279 }
280 }
281
282 results.PrintWithBytes(
283 name + (direction == evp_aead_seal ? " seal" : " open"), chunk_len);
284 return true;
285 }
286
SpeedAEAD(const EVP_AEAD * aead,const std::string & name,size_t ad_len,const std::string & selected)287 static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name,
288 size_t ad_len, const std::string &selected) {
289 if (!selected.empty() && name.find(selected) == std::string::npos) {
290 return true;
291 }
292
293 return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len,
294 evp_aead_seal) &&
295 SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len,
296 evp_aead_seal) &&
297 SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len,
298 evp_aead_seal);
299 }
300
SpeedAEADOpen(const EVP_AEAD * aead,const std::string & name,size_t ad_len,const std::string & selected)301 static bool SpeedAEADOpen(const EVP_AEAD *aead, const std::string &name,
302 size_t ad_len, const std::string &selected) {
303 if (!selected.empty() && name.find(selected) == std::string::npos) {
304 return true;
305 }
306
307 return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len,
308 evp_aead_open) &&
309 SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len,
310 evp_aead_open) &&
311 SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len,
312 evp_aead_open);
313 }
314
SpeedHashChunk(const EVP_MD * md,const std::string & name,size_t chunk_len)315 static bool SpeedHashChunk(const EVP_MD *md, const std::string &name,
316 size_t chunk_len) {
317 EVP_MD_CTX *ctx = EVP_MD_CTX_create();
318 uint8_t scratch[8192];
319
320 if (chunk_len > sizeof(scratch)) {
321 return false;
322 }
323
324 TimeResults results;
325 if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool {
326 uint8_t digest[EVP_MAX_MD_SIZE];
327 unsigned int md_len;
328
329 return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) &&
330 EVP_DigestUpdate(ctx, scratch, chunk_len) &&
331 EVP_DigestFinal_ex(ctx, digest, &md_len);
332 })) {
333 fprintf(stderr, "EVP_DigestInit_ex failed.\n");
334 ERR_print_errors_fp(stderr);
335 return false;
336 }
337
338 results.PrintWithBytes(name, chunk_len);
339
340 EVP_MD_CTX_destroy(ctx);
341
342 return true;
343 }
SpeedHash(const EVP_MD * md,const std::string & name,const std::string & selected)344 static bool SpeedHash(const EVP_MD *md, const std::string &name,
345 const std::string &selected) {
346 if (!selected.empty() && name.find(selected) == std::string::npos) {
347 return true;
348 }
349
350 return SpeedHashChunk(md, name + " (16 bytes)", 16) &&
351 SpeedHashChunk(md, name + " (256 bytes)", 256) &&
352 SpeedHashChunk(md, name + " (8192 bytes)", 8192);
353 }
354
SpeedRandomChunk(const std::string & name,size_t chunk_len)355 static bool SpeedRandomChunk(const std::string &name, size_t chunk_len) {
356 uint8_t scratch[8192];
357
358 if (chunk_len > sizeof(scratch)) {
359 return false;
360 }
361
362 TimeResults results;
363 if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool {
364 RAND_bytes(scratch, chunk_len);
365 return true;
366 })) {
367 return false;
368 }
369
370 results.PrintWithBytes(name, chunk_len);
371 return true;
372 }
373
SpeedRandom(const std::string & selected)374 static bool SpeedRandom(const std::string &selected) {
375 if (!selected.empty() && selected != "RNG") {
376 return true;
377 }
378
379 return SpeedRandomChunk("RNG (16 bytes)", 16) &&
380 SpeedRandomChunk("RNG (256 bytes)", 256) &&
381 SpeedRandomChunk("RNG (8192 bytes)", 8192);
382 }
383
SpeedECDHCurve(const std::string & name,int nid,const std::string & selected)384 static bool SpeedECDHCurve(const std::string &name, int nid,
385 const std::string &selected) {
386 if (!selected.empty() && name.find(selected) == std::string::npos) {
387 return true;
388 }
389
390 TimeResults results;
391 if (!TimeFunction(&results, [nid]() -> bool {
392 bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid));
393 if (!key ||
394 !EC_KEY_generate_key(key.get())) {
395 return false;
396 }
397 const EC_GROUP *const group = EC_KEY_get0_group(key.get());
398 bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group));
399 bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
400
401 bssl::UniquePtr<BIGNUM> x(BN_new());
402 bssl::UniquePtr<BIGNUM> y(BN_new());
403
404 if (!point || !ctx || !x || !y ||
405 !EC_POINT_mul(group, point.get(), NULL,
406 EC_KEY_get0_public_key(key.get()),
407 EC_KEY_get0_private_key(key.get()), ctx.get()) ||
408 !EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(),
409 y.get(), ctx.get())) {
410 return false;
411 }
412
413 return true;
414 })) {
415 return false;
416 }
417
418 results.Print(name);
419 return true;
420 }
421
SpeedECDSACurve(const std::string & name,int nid,const std::string & selected)422 static bool SpeedECDSACurve(const std::string &name, int nid,
423 const std::string &selected) {
424 if (!selected.empty() && name.find(selected) == std::string::npos) {
425 return true;
426 }
427
428 bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid));
429 if (!key ||
430 !EC_KEY_generate_key(key.get())) {
431 return false;
432 }
433
434 uint8_t signature[256];
435 if (ECDSA_size(key.get()) > sizeof(signature)) {
436 return false;
437 }
438 uint8_t digest[20];
439 OPENSSL_memset(digest, 42, sizeof(digest));
440 unsigned sig_len;
441
442 TimeResults results;
443 if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool {
444 return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len,
445 key.get()) == 1;
446 })) {
447 return false;
448 }
449
450 results.Print(name + " signing");
451
452 if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool {
453 return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len,
454 key.get()) == 1;
455 })) {
456 return false;
457 }
458
459 results.Print(name + " verify");
460
461 return true;
462 }
463
SpeedECDH(const std::string & selected)464 static bool SpeedECDH(const std::string &selected) {
465 return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) &&
466 SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) &&
467 SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) &&
468 SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected);
469 }
470
SpeedECDSA(const std::string & selected)471 static bool SpeedECDSA(const std::string &selected) {
472 return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) &&
473 SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) &&
474 SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) &&
475 SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected);
476 }
477
Speed25519(const std::string & selected)478 static bool Speed25519(const std::string &selected) {
479 if (!selected.empty() && selected.find("25519") == std::string::npos) {
480 return true;
481 }
482
483 TimeResults results;
484
485 uint8_t public_key[32], private_key[64];
486
487 if (!TimeFunction(&results, [&public_key, &private_key]() -> bool {
488 ED25519_keypair(public_key, private_key);
489 return true;
490 })) {
491 return false;
492 }
493
494 results.Print("Ed25519 key generation");
495
496 static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5};
497 uint8_t signature[64];
498
499 if (!TimeFunction(&results, [&private_key, &signature]() -> bool {
500 return ED25519_sign(signature, kMessage, sizeof(kMessage),
501 private_key) == 1;
502 })) {
503 return false;
504 }
505
506 results.Print("Ed25519 signing");
507
508 if (!TimeFunction(&results, [&public_key, &signature]() -> bool {
509 return ED25519_verify(kMessage, sizeof(kMessage), signature,
510 public_key) == 1;
511 })) {
512 fprintf(stderr, "Ed25519 verify failed.\n");
513 return false;
514 }
515
516 results.Print("Ed25519 verify");
517
518 if (!TimeFunction(&results, []() -> bool {
519 uint8_t out[32], in[32];
520 OPENSSL_memset(in, 0, sizeof(in));
521 X25519_public_from_private(out, in);
522 return true;
523 })) {
524 fprintf(stderr, "Curve25519 base-point multiplication failed.\n");
525 return false;
526 }
527
528 results.Print("Curve25519 base-point multiplication");
529
530 if (!TimeFunction(&results, []() -> bool {
531 uint8_t out[32], in1[32], in2[32];
532 OPENSSL_memset(in1, 0, sizeof(in1));
533 OPENSSL_memset(in2, 0, sizeof(in2));
534 in1[0] = 1;
535 in2[0] = 9;
536 return X25519(out, in1, in2) == 1;
537 })) {
538 fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n");
539 return false;
540 }
541
542 results.Print("Curve25519 arbitrary point multiplication");
543
544 return true;
545 }
546
SpeedSPAKE2(const std::string & selected)547 static bool SpeedSPAKE2(const std::string &selected) {
548 if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) {
549 return true;
550 }
551
552 TimeResults results;
553
554 static const uint8_t kAliceName[] = {'A'};
555 static const uint8_t kBobName[] = {'B'};
556 static const uint8_t kPassword[] = "password";
557 bssl::UniquePtr<SPAKE2_CTX> alice(SPAKE2_CTX_new(spake2_role_alice,
558 kAliceName, sizeof(kAliceName), kBobName,
559 sizeof(kBobName)));
560 uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE];
561 size_t alice_msg_len;
562
563 if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len,
564 sizeof(alice_msg),
565 kPassword, sizeof(kPassword))) {
566 fprintf(stderr, "SPAKE2_generate_msg failed.\n");
567 return false;
568 }
569
570 if (!TimeFunction(&results, [&alice_msg, alice_msg_len]() -> bool {
571 bssl::UniquePtr<SPAKE2_CTX> bob(SPAKE2_CTX_new(spake2_role_bob,
572 kBobName, sizeof(kBobName), kAliceName,
573 sizeof(kAliceName)));
574 uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64];
575 size_t bob_msg_len, bob_key_len;
576 if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len,
577 sizeof(bob_msg), kPassword,
578 sizeof(kPassword)) ||
579 !SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len,
580 sizeof(bob_key), alice_msg, alice_msg_len)) {
581 return false;
582 }
583
584 return true;
585 })) {
586 fprintf(stderr, "SPAKE2 failed.\n");
587 }
588
589 results.Print("SPAKE2 over Ed25519");
590
591 return true;
592 }
593
SpeedScrypt(const std::string & selected)594 static bool SpeedScrypt(const std::string &selected) {
595 if (!selected.empty() && selected.find("scrypt") == std::string::npos) {
596 return true;
597 }
598
599 TimeResults results;
600
601 static const char kPassword[] = "password";
602 static const uint8_t kSalt[] = "NaCl";
603
604 if (!TimeFunction(&results, [&]() -> bool {
605 uint8_t out[64];
606 return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt,
607 sizeof(kSalt) - 1, 1024, 8, 16, 0 /* max_mem */,
608 out, sizeof(out));
609 })) {
610 fprintf(stderr, "scrypt failed.\n");
611 return false;
612 }
613 results.Print("scrypt (N = 1024, r = 8, p = 16)");
614
615 if (!TimeFunction(&results, [&]() -> bool {
616 uint8_t out[64];
617 return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt,
618 sizeof(kSalt) - 1, 16384, 8, 1, 0 /* max_mem */,
619 out, sizeof(out));
620 })) {
621 fprintf(stderr, "scrypt failed.\n");
622 return false;
623 }
624 results.Print("scrypt (N = 16384, r = 8, p = 1)");
625
626 return true;
627 }
628
629 static const struct argument kArguments[] = {
630 {
631 "-filter", kOptionalArgument,
632 "A filter on the speed tests to run",
633 },
634 {
635 "-timeout", kOptionalArgument,
636 "The number of seconds to run each test for (default is 1)",
637 },
638 {
639 "", kOptionalArgument, "",
640 },
641 };
642
Speed(const std::vector<std::string> & args)643 bool Speed(const std::vector<std::string> &args) {
644 std::map<std::string, std::string> args_map;
645 if (!ParseKeyValueArguments(&args_map, args, kArguments)) {
646 PrintUsage(kArguments);
647 return false;
648 }
649
650 std::string selected;
651 if (args_map.count("-filter") != 0) {
652 selected = args_map["-filter"];
653 }
654
655 if (args_map.count("-timeout") != 0) {
656 g_timeout_seconds = atoi(args_map["-timeout"].c_str());
657 }
658
659 bssl::UniquePtr<RSA> key(
660 RSA_private_key_from_bytes(kDERRSAPrivate2048, kDERRSAPrivate2048Len));
661 if (key == nullptr) {
662 fprintf(stderr, "Failed to parse RSA key.\n");
663 ERR_print_errors_fp(stderr);
664 return false;
665 }
666
667 if (!SpeedRSA("RSA 2048", key.get(), selected)) {
668 return false;
669 }
670
671 key.reset(
672 RSA_private_key_from_bytes(kDERRSAPrivate4096, kDERRSAPrivate4096Len));
673 if (key == nullptr) {
674 fprintf(stderr, "Failed to parse 4096-bit RSA key.\n");
675 ERR_print_errors_fp(stderr);
676 return 1;
677 }
678
679 if (!SpeedRSA("RSA 4096", key.get(), selected)) {
680 return false;
681 }
682
683 key.reset();
684
685 // kTLSADLen is the number of bytes of additional data that TLS passes to
686 // AEADs.
687 static const size_t kTLSADLen = 13;
688 // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs.
689 // These are AEADs that weren't originally defined as AEADs, but which we use
690 // via the AEAD interface. In order for that to work, they have some TLS
691 // knowledge in them and construct a couple of the AD bytes internally.
692 static const size_t kLegacyADLen = kTLSADLen - 2;
693
694 if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) ||
695 !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) ||
696 !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen,
697 selected) ||
698 !SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1",
699 kLegacyADLen, selected) ||
700 !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
701 kLegacyADLen, selected) ||
702 !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
703 kLegacyADLen, selected) ||
704 !SpeedAEAD(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen,
705 selected) ||
706 !SpeedAEAD(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen,
707 selected) ||
708 !SpeedAEADOpen(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen,
709 selected) ||
710 !SpeedAEADOpen(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen,
711 selected) ||
712 !SpeedHash(EVP_sha1(), "SHA-1", selected) ||
713 !SpeedHash(EVP_sha256(), "SHA-256", selected) ||
714 !SpeedHash(EVP_sha512(), "SHA-512", selected) ||
715 !SpeedRandom(selected) ||
716 !SpeedECDH(selected) ||
717 !SpeedECDSA(selected) ||
718 !Speed25519(selected) ||
719 !SpeedSPAKE2(selected) ||
720 !SpeedScrypt(selected)) {
721 return false;
722 }
723
724 return true;
725 }
726